首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Time-series of chlorophyll-a(CHL),a proxy for phytoplankton biomass,and various satellite-derived climate indicators are compared in a region of the Subantarctic Southern Ocean(40°-60°S,110°-140°E)for years 2012-2014.CHL reached a minimum in winter(June)and a maximum in late summer(early February).Zonal mean CHL decreased towards the south.Mean sea surface temperature(SST)ranged between 8℃and 15℃and peaked in late February.CHL and SST were positively correlated from March to June,negatively correlated from July to September.CHL and wind speed(WIND)were negatively correlated with peak WIND occurred in winter.Wind direction(WIRD)was mostly in the southwest to westerly direction.The Antarctic Oscillation index(AAO)and CHL were negatively correlated(R=−0.58),indicating that as synoptic wind systems move southwards,CHL increases,and conversely when wind systems move northwards,CHL decreases.A genetic algorithm is used to calibrate the biogeochemical DMS model’s key parameters.Under 4×CO2(after year 2100)Regional mean SST increases 12%-17%,WIND increases 1.2ms−1,Cloud Cover increases 4.8%and mixed layer depth(MLD)decreases 48m.The annual CHL increases 6.3%.The annual mean DMS flux increase 25.2%,increases 37%from day 1 to day 280 and decrease 3%from day 288 to day 360.The general increase of DMS flux under 4×CO2 conditions indicates the Subantarctic regional climate would be affected by changes in the DMS flux,with the potential for a cooling effect in the austral summer and autumn.  相似文献   

2.
The relationships between the neon flying squid, Ommastrephes bartrami, and the relative ocean environmental factors are analyzed. The environmental factors collected are sea surface temperature (SST), chlorophyll concentration (Chl-a) and sea surface height (SSH) from NASA, as well as the yields of neon flying squid in the North Pacific Ocean. The results show that the favorable temperature for neon flying squid living is 10℃-22℃ and the favorite temperature is between 15℃-17℃. The Chl-a concentration is 0.1-0.6 mg/m3. When Chl-a concentration changes to 0.12-0.14 mg/m3, the probability of forming fishing ground becomes very high. In most fishing grounds,the SSH is higher than the mean SSH. The generalized additive model (GAM) was applied to analyze the correlations between neon flying squid and ocean environmental factors. Every year, squids migrate northward from June to August and return southward during October-November, and the characteristics of the both migrations are very different. When squids migrate to the north, most relationships between the yields and SST are positive. The relationships are negative when squids move to southward. The relationships between the yields and Chl-a concentrations are negative from June to October, and insignificant in November. There is no obvious correlation between the catches of squid and longitude, but good with latitude.  相似文献   

3.
The effects of the mixing of wave transport flux residual(Bvl) on the upper ocean is studied through carrying out the control run(CR) and a series of sensitive runs(SR) with ROMS model.In this study,the important role of Bvl is revealed by comparing the ocean temperature,statistical analysis of errors and evaluating the mixed layer depth.It is shown that the overestimated SST is improved effectively when the wave-induced mixing is incorporated to the vertical mixing scheme.As can be seen from the vertical structure of temperature 28℃ isotherm changes from 20 min CR to 35 m in SR3,which is more close to the observation.Statistic analysis shows that the root-mean-square errors of the temperature in 10 m are reduced and the correlation between model results and observation data are increased after considering the effect of Bvl.The numerical results of the ocean temperature show improvement in summer and in tropical zones in winter,especially in the strong current regions in summer.In August the mixed layer depth(MLD) which is defined as the depth that the temperature has changed 0.5℃ from the reference depth of 10 m is further analyzed.The simulation results have a close relationship with undetermined coefficient of Bvl,sensitivity studies show that a coefficient about 0.1 is reasonable value in the model.  相似文献   

4.
Four climatologies on a monthly scale (January, April, May and November) of chlorophyll a within the South China Sea (SCS) were calculated using a Coastal Zone Color Scanner (CZCS) (1979-1983) and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) (1998-2002). We analyzed decadal variability of chlorophyll a by comparing the products of the two observation periods. The relationships of variability in chlorophyll a with sea surface wind speed (SSW), sea surface temperature (SST), wind stress (WS), and mixed layer depth (MLD) were determined. The results indicate that there is obvious chlorophyll a decadal variability in the SCS. The decadal chlorophyll a presents distinct seasonal variability in characteristics, which may be as a result of various different dynamic processes. The negative chlorophyll a concentration anomaly in January was associated with the warming of SST and a shallower MLD. Generally, there were higher chlorophyll a concentrations in spring during the SeaWiFS period compared with the CZCS period. However, the chlorophyll a concentration exhibits some regional differences during this season, leading to an explanation being difficult. The deepened MLD may have contributed to the positive chlorophyll a concentration anomalies from the northwestern Luzon Island to the northeastern region of Vietnam during April and May. The increases of chlorophyll a concentration in northwestern Borneo during May may be because the stronger SSW and higher WS produce a deeper mixed layer and convective mixing, leading to high levels of nutrient concentrations. The higher chlorophyll a off southeastern Vietnam may be associated with the advective transport of the colder water extending from the Karimata Strait to southeastern Vietnam.  相似文献   

5.
Thirty years of monthly mean anomalies of sea level(SL) at 15 Japanese coastal stations, sea sur-face temperature (SST) and sea level pressure (SLP) in or over the northern Pacific were analyzed bycanonical correlation analysis (CCA) to study the relationship between the interdecadal SL variationand large scale climate state. Given two time-varying fields this technique identifies the pair ofspacial patterns with optimally correlated time series.The results show that there are two important air-sea interactive processes in the extratropicalPacific region for the variation of the SL at the Japanese coast on interdecadal scale. One is theocean heating or cooling of the atmosphere over the Kuroshio extension region, which results in ahuge SLP anomalous vortex with planetary spacial scale big enough to change the global climate. An-other is the large Kuroshio meander phenomenon controlled by the large-scale wind-stress curls oneyear earlier in the adjacent region of the Hawaiian Islands. The first process im  相似文献   

6.
The relationships between the neon flying squid, Ommastrephes bartrami, and the relative ocean environmental factors are analyzed. The environmental factors collected are sea surface temperature (SST), chlorophyll concentration (Chl-a) and sea surface height (SSH) from NASA, as well as the yields of neon flying squid in the North Pacific Ocean. The results show that the favorable temperature for neon flying squid living is 10°C–22°C and the favorite temperature is between 15°C–17°C. The Chl-a concentration is 0.1–0.6 mg/m3. When Chl-a concentration changes to 0.12–0.14 mg/m3, the probability of forming fishing ground becomes very high. In most fishing grounds, the SSH is higher than the mean SSH. The generalized additive model (GAM) was applied to analyze the correlations between neon flying squid and ocean environmental factors. Every year, squids migrate northward from June to August and return southward during October–November, and the characteristics of the both migrations are very different. When squids migrate to the north, most relationships between the yields and SST are positive. The relationships are negative when squids move to southward. The relationships between the yields and Chl-a concentrations are negative from June to October, and insignificant in November. There is no obvious correlation between the catches of squid and longitude, but good with latitude. Supported by the National High Technology Research and Development Program of China (863 Program, No. 2003AA607030); National Key Technology Research and Development Program (No. 2006BAD09A05)  相似文献   

7.
Sea surface temperature (SST) variation in the Subei coastal waters, East China, which is important for the ecological environment of the Yellow Sea where Enteromorphaprolifera blooms frequently, is affected by the East Asian winter monsoon (EAWM), El Nifio-Southem Oscillation (ENSO), and Pacific Decadal Oscillation (PDO). In this study, correlations between climatic events and SST anomalies (SSTA) around the Subei (North Jiangsu Province, East China) Coast from 1981-2012 are analyzed, using empirical orthogonal function (EOF) and correlation analyses. First, a key region was determined by EOF analysis to represent the Subei coastal waters. Then, coherency analyses were performed on this key region. According to the correlation analysis, the EAWM index has a positive correlation with the spring and summer SSTA of the key region. Furthermore, the Nifio3.4 index is negatively correlated with the spring and summer SSTA of the key region 1 year ahead, and the PDO has significant negative coherency with spring SSTA and negative coherency with summer SSTA in the key region 1 year ahead. Overall, PDO exhibits the most significant impact on SSTA of the key region. In the key region, all these factors are correlated more significantly with SSTA in spring than in summer. This suggests that outbreaks ofEnteromorpha prolifera in the Yellow Sea are affected by global climatic changes, especially the PDO.  相似文献   

8.
Understanding the effects of environmental heterogeneity on zooplankton communities has been a hot topic for several decades. However, relatively little is known about the responses of zooplankton communities to environmental conditions at large scales from inshore waters to the open ocean. Here, we used the abundance, biovolume, taxa and size spectra of zooplankton collected from the surface waters of the western Pacific Ocean during the winter of 2014 to study the relationship between zooplankton community characteristics and environmental conditions using multiple linear regression(MLR) analysis and redundancy analysis(RDA). According to a hierarchical cluster analysis based on hydrographic conditions, the study area was classified into five water masses. Significant correlations were identified between the limited nutrients and the zooplankton abundance and biovolume from inshore waters to the open ocean. Non-metric multidimensional scaling(NMDS) revealed two distinct zooplankton assemblages. In the northern inshore, Copepoda and Euphausiacea were the dominant zooplankton taxa and in other water masses, Chaetognatha and gelatinous zooplankton were the dominant zooplankton taxa in addition to Copepoda. Our results suggested that, on a large scale from inshore waters to the open ocean in the western Pacific Ocean, the spatial distribution of zooplankton taxa was mainly influenced by environmental conditions, while in the inshore waters, it was due to the top-down effect of the dominant zooplankton taxa. Finally, the slope of the normalized biovolume size spectra(NBSS) was negatively correlated with chlorophyll-a(Chl-a) concentration and PO_4~(3-)-P concentration in the inshore waters, which indicated that the higher the trophic level the dominant zooplankton taxa were, the steeper the NBSS slope was.  相似文献   

9.
We investigated the spatio-temporal and environmental factors that affect the distribution and abundance of wintering anchovy and quantifi es the infl uences of these factors. Generalized additive models(GAMs) were developed to examine the variation in species distribution and abundance with a set of spatiotemporal and oceanographic factors, using data collected by bottom trawl surveys and remote sensing in the central and southern Yellow Sea during 2000–2011. The fi nal model accounted for 28.21% and 41.03% of the variance in anchovy distribution and abundance, respectively. The results of a two-step GAM showed that hour, longitude, latitude, temperature gradient(TGR), and chlorophyll a(Chl- a) concentration best explained the anchovy distribution(presence/absence) and that a model including year, longitude, latitude, depth, sea surface temperature(SST), and TGR best described anchovy abundance(given presence). Longitude and latitude were the most important factors affecting both distribution and abundance, but the area of high abundance tended to be east and south of the area where anchovy were most likely to be present. Hour had a signifi cant effect on distribution, but year was more important for anchovy abundance, indicating that the anchovy catch ratio varied across the day but abundance had an apparent interannual variation. With respect to environmental factors, TGR and Chl- a concentration had effects on distribution, while depth, SST, and TGR affected abundance. Changes in SST between two successive years or between any year and the 2000–2011 mean were not associated with changes in anchovy distribution or abundance. This fi nding indicated that short- and long-term water temperature changes during 2000–2011 were not of suffi cient magnitude to give rise to variation in wintering anchovy distribution or abundance in the study area. The results of this study have important implications for fi sheries management.  相似文献   

10.
A large number of autonomous profiling floats deployed in global oceans have provided abundant temperature and salinity profiles of the upper ocean. Many floats occasionally profile observations during the passage of tropical cyclones. These in-situ observations are valuable and useful in studying the ocean’s response to tropical cyclones, which are rarely observed due to harsh weather conditions. In this paper, the upper ocean response to the tropical cyclones in the northwestern Pacific during 2000–2005 is analyzed and discussed based on the data from Argo profiling floats. Results suggest that the passage of tropical cyclones caused the deepening of mixed layer depth (MLD), cooling of mixed layer temperature (MLT), and freshening of mixed layer salinity (MLS). The change in MLT is negatively correlated to wind speed. The cooling of the MLT extended for 50–150 km on the right side of the cyclone track. The change of MLS is almost symmetrical in distribution on both sides of the track, and the change of MLD is negatively correlated to pre-cyclone initial MLD.  相似文献   

11.
SST variations of the Kuroshio from AVHRR observation   总被引:1,自引:0,他引:1  
1 INTRODUCTION The Kuroshio Current (KC), being the western boundary current in the North Pacific subtropical gyre, is the second strongest current in the world af- ter the Gulf Stream and is famous as a strong and fast flow. KC plays an important role in…  相似文献   

12.
The newly developed Coupled Ocean-Atmosphere-Wave-Sediment Transport(COAWST) Modeling System is applied to investigate typhoon-ocean interactions in this study. The COAWST modeling system represents the state-of-the-art numerical simulation technique comprising several coupled models to study coastal and environmental processes. The modeling system is applied to simulate Typhoon Muifa(2011), which strengthened from a tropical storm to a super typhoon in the Northwestern Pacific, to explore the heat fluxes exchanged among the processes simulated using the atmosphere model WRF, ocean model ROMS and wave model SWAN. These three models adopted the same horizontal grid. Three numerical experiments with different coupling configurations are performed in order to investigate the impact of typhoon-ocean interaction on the intensity and ocean response to typhoon. The simulated typhoon tracks and intensities agree with observations. Comparisons of the simulated variables with available atmospheric and oceanic observations show the good performance of using the coupled modeling system for simulating the ocean and atmosphere processes during a typhoon event. The fully coupled simulation that includes a ocean model identifies a decreased SST as a result of the typhoon-forced entrainment. Typhoon intensity and wind speed are reduced due to the decrease of the sea surface temperature when using a coupled ocean model. The experiments with ocean coupled to atmosphere also results in decreased sea surface heat flux and air temperature. The heat flux decreases by about 29% compared to the WRF only case. The reduction of the energy induced by SST decreases, resulting in weakening of the typhoon. Coupling of the waves to the atmosphere and ocean model induces a slight increase of SST in the typhoon center area with the ocean-atmosphere interaction increased as a result of wave feedback to atmosphere.  相似文献   

13.
14.
The seasonal response of surface wind speed to sea surface temperature(SST)change in the Northern Hemisphere was investigated using 10 years(2002-2011)high-resolution satellite observations and reanalysis data.The results showed that correlation between surface wind speed perturbations and SST perturbations exhibits remarkable seasonal variation,with more positive correlation is stronger in the cold seasons than in the warm seasons.This seasonality in a positive correlation between SST and surface wind speed is attributable primarily to seasonal changes of oceanic and atmospheric background conditions in frontal regions.The mean SST gradient and the prevailing surface winds are strong in winter and weak in summer.Additionally,the eddy-induced response of surface wind speed is stronger in winter than in summer,although the locations and numbers of mesoscale eddies do not show obvious seasonal features.The response of surface wind speed is apparently due to stability and mixing within the marine atmospheric boundary layer(MABL),modulated by SST perturbations.In the cold seasons,the stronger positive(negative)SST perturbations are easier to increase(decrease)the MABL height and trigger(suppress)momentum vertical mixing,contributing to the positive correlation between SST and surface wind speed.In comparison,SST perturbations are relatively weak in the warm seasons,resulting in a weak response of surface wind speed to SST changes.This result holds for each individual region with energetic eddy activity in the Northern Hemisphere.  相似文献   

15.
The resolution of ocean reanalysis datasets is generally low because of the limited resolution of their associated numerical models.Low-resolution ocean reanalysis datasets are therefore usually interpolated to provide an initial or boundary field for higher-resolution regional ocean models.However,traditional interpolation methods(nearest neighbor interpolation,bilinear interpolation,and bicubic interpolation) lack physical constraints and can generate significant errors at land-sea boundarie s and around islands.In this paper,a machine learning method is used to design an interpolation algorithm based on Gaussian process regression.The method uses a multiscale kernel function to process two-dimensional space meteorological ocean processes and introduces multiscale physical feature information(sea surface wind stress,sea surface heat flux,and ocean current velocity).This greatly improves the spatial resolution of ocean features and the interpolation accuracy.The effectiveness of the algorithm was validated through interpolation experiments relating to sea surface temperature(SST).The root mean square error(RMSE)of the interpolation algorithm was 38.9%,43.7%,and 62.4% lower than that of bilinear interpolation,bicubic interpolation,and nearest neighbor interpolation,respectively.The interpolation accuracy was also significantly better in offshore area and around islands.The algorithm has an acceptable runtime cost and good temporal and spatial generalizability.  相似文献   

16.
台风对中国东南海域叶绿素a浓度影响的遥感研究   总被引:1,自引:0,他引:1  
通过对台风过境前后近一个月的MODIS卫星3A级叶绿素a浓度及海表温度数据的比较与分析,发现海表温度,海表叶绿素a浓度均受到较大的影响,其中海表温度平均下降2~3℃,最高下降近10℃;同时叶绿素a浓度在湛江、阳江海域升高约1.43倍,在东海海域平均升高2.44倍,最高可达9.75倍,并且叶绿素a浓度增长有一个约3~5 d的延迟效应。由此可见,利用卫星遥感资料监测台风对海洋叶绿素a浓度、海表表温度等环境参数的变化有应用前景。  相似文献   

17.
Using hydrographic data sampled during four successive late summer-early autumn cruises in 2004-2007, vertical stratification along transects in the lee of Taiwan Island was analyzed to investigate upper ocean responses to orographically induced dipole wind stress curl (WSC). Results indicate that mixed-layer depth (MLD) and its relationship with thermocline depth varied under different local wind forcings. Average MLD along the transects from the 2004 to 2007 cruises were 18.5,30.7,39.2 and 24.5m, respectively. The MLD along the transects deepened remarkably and resulted in thermocline ventilation in 2005 and 2006, whereas ventilation did not occur in 2004 and 2007. Estimates indicate that frictional wind speed was the major factor in MLD variations. To a large degree, the combined effects of frictional wind speed and Ekman pumping are responsible for the spatial pattern of MLD during the cruises.  相似文献   

18.
西北太平洋柔鱼资源与海洋环境的GIS空间分析   总被引:12,自引:0,他引:12  
本文根据1995~2001年的西北太平洋地区(35°N~45°N,140°E~170°W)巴特柔鱼资源调查与生产的实际情况对柔鱼渔获量进行了研究,并利用同期遥感反演的海洋表层温度数据(SST)和近表层叶绿素a数据(Chlorophylla),拓展了GIS的空间分析功能,定量地研究了我国远洋柔鱼产量与水温、叶绿素等海洋要素场之间的关系,揭示西北太平洋柔鱼中心渔场的环境特征,以期为我国西北太平洋海区的鱿鱼生产服务。  相似文献   

19.
Sea ice thickness is highly spatially variable and can cause uneven ocean heat and salt flux on subgrid scales in climate models.Previous studies have demonstrated improvements in ocean mixing simulation using parameterization schemes that distribute brine rejection directly in the upper ocean mixed layer.In this study,idealized ocean model experiments were conducted to examine modeled ocean mixing errors as a function of the lead fraction in a climate model grid.When the lead is resolved by the grid,the added salt at the sea surface will sink to the base of the mixed layer and then spread horizontally.When averaged at a climate-model grid size,this vertical distribution of added salt is lead-fraction dependent.When the lead is unresolved,the model errors were systematic leading to greater surface salinity and deeper mixed-layer depth(MLD).An empirical function was developed to revise the added-salt-related parameter n from being fixed to lead-fraction dependent.Application of this new scheme in a climate model showed significant improvement in modeled wintertime salinity and MLD as compared to series of CTD data sets in 1997/1998 and 2006/2007.The results showed the most evident improvement in modeled MLD in the Arctic Basin,similar to that using a fixed n=5,as recommended by the previous Arctic regional model study,in which the parameter n obtained is close to 5 due to the small lead fraction in the Arctic Basin in winter.  相似文献   

20.
A novel method is proposed to obtain the power spectra of hidden variables in a chaotic time series. By embedding the data in phase space , and recording the conditional probability densityof points that the trajectory encounters as it evolves in the reconstructed phase space, it is possible torecover the power spectra of hidden variables in chaotic time series through a spectral analysis over theconditional probability density time series. The method is robust in the application to Lorenz system, 4-di-mension Rossler system and rigid body motion by linear feedback system (LFRBM). Applying the method the time series of sea surface temperature (SST) of the South China Sea, we obtained the power spectraof the wind speed (WS) from SST data. Furthermore, the results showged that there exists an importantnonlinear interaction between the SST and the WS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号