首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 465 毫秒
1.
基于南海东北部1998~2019年的多源卫星遥感数据和风场再分析数据, 较系统地分析了南海东北部涡旋内部叶绿素a浓度的分布特征, 通过量化统计和涡心坐标系参数合成等方法探究了中尺度涡对叶绿素a浓度变化的影响规律及潜在机制。结果表明: (1)南海东北部约有60%的中尺度涡旋内部存在叶绿素a浓度增加和减少的现象。(2)南海东北部中尺度涡内部叶绿素a扰动受到涡旋抽吸和涡致Ekman抽吸机制的共同调控, 其中约有38% (39%)的暖(冷)涡内涡旋抽吸的贡献更大, 21% (24%)的暖(冷)涡内涡致Ekman抽吸的贡献更大。(3)南海东北部中尺度涡生命周期内的海表叶绿素a浓度变化存在显著的阶段性差异, 在冷暖涡的生成期, 涡旋抽吸的作用更为显著, 而在冷暖涡的顶峰和消亡期, 涡致Ekman抽吸的作用更为明显。上述研究结果有助于理解南海东北部初级生产力对中尺度涡的响应过程与机理, 对认识海洋物理-生物耦合过程具有一定的参考价值和研究意义。  相似文献   

2.
We have studied the relation between the hydrography, the composition and horizontal structure of the larval fish community, and the horizontal distribution patterns of larval fish abundances in an area characterised by strong mesoscale oceanographic activity, located between the Canary Islands and the African coast (the Canaries Coastal Transition Zone), during August 1999. Upwelling, upwelling filaments, cyclonic and anticyclonic eddies and island wakes are typical mesoscale features of the northwest African coast in summer. A single upwelling filament off Cabo Juby was joined in mid-August by a second that originated about 100 km to the north. The two filaments flowed together and merged 100 km offshore. The merged filament was partially entrained around a cyclonic eddy, trapped between the Canary Islands and the African coast, and interacted with cyclonic and anticyclonic eddies shed from Gran Canaria. Mesoscale oceanographic features strongly influenced the horizontal distributions of fish larvae. Eddies acted as a mechanism of concentration, while upwelling filaments were dispersive, transporting larvae from the African neritic zone into oceanic areas and towards the Canary archipelago. This transport was the major cause of the predominance of neritic larvae in the composition of the larval fish community of the area. The results also suggest: (1) that anchovy larvae are good indicators of the offshore displacement of upwelled water; (2) that the alternation between anchovy and sardine as species dominant in the larval fish community of the area during summer depends upon the water temperature in the African upwelling region, anchovy dominating at higher temperature; (3) that a coupling of anchovy and sardine spawning with the mesoscale oceanographic structure formed by the upwelling filaments and trapped eddy overcomes the negative effect that Ekman transport has on their populations.  相似文献   

3.
吕宋海峡西部深海盆内孤立波潜标观测研究   总被引:6,自引:2,他引:4  
Mesoscale eddies have been suggested to have an impact on biological carbon fixation in the South China Sea (SCS). However, their overall contribution to primary production during the spring inter-monsoon pe riod is still unknown. Based on large-scale biological and environmental in situ observations and synchro nous remote sensing data, the distribution patterns of phytoplankton biomass and the primary production, and the role of mesoscale eddies in regulating primary production in different eddy-controlled waters were investigated. The results suggested that the surface chlorophyll a concentrations and water column inte grated primary production (IPP) are significantly higher in cyclonic eddies and lower in the anticyclonic eddies as compared to that in non-eddy waters. Although eddies could affect various environmental factors, such as nutrients, temperature and light availability, nutrient supply is suggested to be the most important one through which mesoscale eddies regulated the distribution patterns of phytoplankton biomass and pri mary production. The estimated IPP in cyclonic and anticyclonic eddies are about 29.5% higher and 16.6% lower than the total average in the whole study area, respectively, indicating that the promotion effect of mesoscale cold eddies on the primary production was much stronger than the inhibition effect of the warm eddies per unit area. Overall, mesoscale eddies are crucial physical processes that affect the biological car bon fixation and the distribution pattern of primary production in the SCS open sea, especially during the spring inter-monsoon period.  相似文献   

4.
5.
根据2013年3-4月、6-7月、9月和11-12月4个航次的调查资料;分析南沙海域浮游虫戎亚目的种类组成、优势种、栖息密度和群落结构特征;并探讨季风转换对其影响及其与管水母的关系。研究海域内共鉴定浮游虫戎亚目12科26属63种。生态类群结构属于热带大洋性。优势种较少;共出现7种;其中;孟加拉蛮虫戎(Lestrigonus bengalensis)为唯一的年度优势种;优势地位显著。物种组成存在季节性变化;分为春季、夏季与秋-冬季3个群落。虫戎年均栖息密度为18.30×10-2 ind/m3;高数量区主要分布于近岸水域;数量季节变化不明显;但平面分布季节差异明显。虫戎年均丰富度、多样性、均匀度指数和多样性阈值各是1.23、1.28、0.33、0.48。虫戎物种组成随季风转换左右近岸低盐水影响程度而变化;群落结构、生物多样性和栖息密度平面分布随季风转换所驱动的表层环流结构改变而变化。虫戎群落分布与管水母间的相关性证实研究海域两类群物种间的寄宿关系。这种关系促使孟加拉蛮虫戎在沿岸低盐水影响下更易形成高优势度;而表现出类似近岸海域优势种优势地位显著的特点。  相似文献   

6.
Horizontal and vertical distributions of δ~(18)O and δ~(13)C were investigated in shells of four planktonic foraminiferal species, Globigerinoides ruber, Globigerinoides sacculifer, Pulleniatina obliquiloculata and Neogloboquedrina dutertrei, from a total of 62 core-top sediment samples from the Indonesian throughflow region. Results were compared to modern hydrologic conditions in order to explore potential of proxies in reconstructing fluvial discharge and upper ocean water column characteristics in this region. Our results show that, in the Makassar Strait, both of depleted δ~(18)O and δ~(13)C of these four species were linked to freshwater input. In the Bali Sea,however, depleted δ~(18)O and δ~(13)C for these species may be due to different reasons. Depleted δ~(18)O was a result of freshwater input and as well influenced by along-shore currents while depleted δ~(13)C was more likely due to the Java-Sumatra upwelling. Comparison of shell δ~(18)O records and hydrographic data of World Ocean Atlas 2005 suggests that G. ruber and G. sacculifer calcify within the mixed-layer, respectively at 0–50 m and 20–75 m water depth, and P. obliquiloculata and N. dutertrei within the upper thermocline, both at 75–125 m water depth. N.dutertrei calcifies at slightly deeper water depth than P. obliquiloculata does. In general, δ~(13)C values of both G.ruber and G. sacculifer are larger than those of P. obliquiloculata and N. dutertrei at all sites, possibly related to depth habitats of these species and vertical distribution of nutrients in the Indonesian throughflow region.  相似文献   

7.
Global observations of nonlinear mesoscale eddies   总被引:51,自引:0,他引:51  
Sixteen years of sea-surface height (SSH) fields constructed by merging the measurements from two simultaneously operating altimeters are analyzed to investigate mesoscale variability in the global ocean. The prevalence of coherent mesoscale features (referred to here as “eddies”) with radius scales of O(100 km) is readily apparent in these high-resolution SSH fields. An automated procedure for identifying and tracking mesoscale features based on their SSH signatures yields 35,891 eddies with lifetimes ?16 weeks. These long-lived eddies, comprising approximately 1.15 million individual eddy observations, have an average lifetime of 32 weeks and an average propagation distance of 550 km. Their mean amplitude and a speed-based radius scale as defined by the automated procedure are 8 cm and 90 km, respectively.The tracked eddies are found to originate nearly everywhere in the World Ocean, consistent with previous conclusions that virtually all of the World Ocean is baroclinically unstable. Overall, there is a slight preference for cyclonic eddies. However, there is a preference for the eddies with long lifetimes and large propagation distances to be anticyclonic. In the southern hemisphere, the distributions of the amplitudes and rotational speeds of eddies are more skewed toward large values for cyclonic eddies than for anticyclonic eddies. As a result, eddies with amplitudes >10 cm and rotational speeds >20 cm s−1 are preferentially cyclonic in the southern hemisphere. By contrast, there is a slight preference for anticyclonic eddies for nearly all amplitudes and rotational speeds in the northern hemisphere.On average, there is no evidence of anisotropy of these eddies. Their average shape is well represented as Gaussian within the central 2/3 of the eddy, but the implied radius of maximum rotational speed is 64% smaller than the observed radius of maximum speed. In part because of this mismatch between the radii of maximum axial speed in the observations and the Gaussian approximation, a case is made that a quadratic function that is a very close approximation of the mode profile of the eddy (i.e., the most frequently occurring value at each radius) is a better representation of the composite shape of the eddies. This would imply that the relative vorticity is nearly constant within the interiors of most eddies, i.e., the fluid motion consists approximately of solid-body rotation.Perhaps the most significant conclusion of this study is that essentially all of the observed mesoscale features outside of the tropical band 20°S-20°N are nonlinear by the metric U/c, where U is the maximum circum-average geostrophic speed within the eddy interior and c is the translation speed of the eddy. A value of U/c > 1 implies that there is trapped fluid within the eddy interior. Many of the extratropical eddies are highly nonlinear, with 48% having U/c > 5 and 21% having U/c > 10. Even in the tropics, approximately 90% of the observed mesoscale features are nonlinear by this measure.Two other nondimensional parameters also indicate strong degrees of nonlinearity in the tracked eddies. The distributions of all three measures of nonlinearity are more skewed toward large values for cyclonic eddies than for anticyclonic eddies in the southern hemisphere extratropics but the opposite is found in the northern hemisphere extratropics. There is thus a preference for highly nonlinear extratropical eddies to be cyclonic in the southern hemisphere but anticyclonic in the northern hemisphere.Further evidence in support of the interpretation of the observed features as nonlinear eddies is the fact that they propagate nearly due west with small opposing meridional deflections of cyclones and anticyclones (poleward and equatorward, respectively) and with propagation speeds that are nearly equal to the long baroclinic Rossby wave phase speed. These characteristics are consistent with theoretical expectations for large, nonlinear eddies. While there is no apparent dependence of propagation speed on eddy polarity, the eddy speeds relative to the local long Rossby wave phase speeds are found to be about 20% faster in the southern hemisphere than in the northern hemisphere. The distributions of the propagation directions of cyclones and anticyclones are essentially the same, except mirrored about a central azimuth angle of about 1.5° equatorward. This small, but we believe statistically significant, equatorward rotation of the central azimuth may be evidence of the effects of ambient currents (meridional advection or the effects of vertical shear on the potential vorticity gradient vector) on the propagation directions of the eddies.While the results presented here are persuasive evidence that most of the observed westward-propagating SSH variability consists of isolated nonlinear mesoscale eddies, it is shown that the eddy propagation speeds are about 25% slower than the westward propagation speeds of features in the SSH field that have scales larger than those of the tracked eddies. This scale dependence of the propagation speed may be evidence for the existence of dispersion and the presence of features that obey linear Rossby wave dynamics and have larger scales and faster propagation speeds than the nonlinear eddies. The amplitudes of these larger-scale signals are evidently smaller than those of the mesoscale eddy field since they are not easily isolated from the energetic nonlinear eddies.  相似文献   

8.
Aluminium distributions in Central East Atlantic waters (Canary Islands)   总被引:1,自引:0,他引:1  
DASA-reactive aluminium and nutrients have been determined on a grid located in Central East Atlantic waters (Canary Islands) during early spring. The sample area shows major features of biogeochemical interest, such as elevated aeolian (dust) inputs from the Sahara desert, proximity to upwelling areas (150–200 km) and mesoscale features induced by the effect of the islands on the course of the Canary Current. The aluminium distributions show a marked latitudinal E-W gradient. The low values towards the east are explained by the intrusion of cold waters originated in the upwelling region off northwest Africa, where aluminium is scavenged by organic matter. High values towards the west suggest aeolian inputs that may stretch to below the seasonal thermocline. Nutrients are shown to be inefficient to trace these features, as they are quickly used by biological uptake. The mesoscale circulation south of the islands produces cyclonic and anticyclonic eddies that, respectively, rise and sink the thermocline over 60 m. Aluminium appears to be a useful tracer for this mixing process as well as for the intrusion of cold waters coming from the eastern boundary.  相似文献   

9.
10.
In this paper we summarise the photo-physiological responses of phytoplankton to upwelling of macronutrients in mesoscale eddies in the subtropical North Atlantic (EDDIES project, Sargasso Sea) and subtropical North Pacific (E-FLUX project, Hawaii). The observations, obtained on two sets of cruises over 2 years, occupied six cyclonic eddies and two mode-water eddies. The photosynthetic physiological parameters were measured using a bench-top fluorescence induction and relaxation (FIRe) system and a submersible in situ fast repetition rate fluorometer (FRRF) deployed on an undulating towed vehicle. Both of these instruments were used to provide highly sensitive and well-resolved data on community responses. The responses are dependent on both the type of eddy and its stage of development. Our results indicate that, while cyclonic eddies in the Atlantic and Pacific can increase primary photosynthetic production early in their development, mode-water eddies in the subtropical North Atlantic can support patchy blooms of large diatoms for long periods of time (more than 3 months).  相似文献   

11.
The distribution and transport of chlorophyll a (Chla), particulate (POC) and dissolved (DOC) organic carbon, and the respiratory ETS activity of the microplankton community were studied along a filament-eddy system located in the transition zone between the NW Africa upwelling and Canary Islands waters. Two independent filaments (F1 and F2) stemming from the coastal jet, between Cape Juby and Cape Bojador, merged about 100 km offshore, turning southward and onshore forced by the circulation of a recurrent oceanic cyclonic eddy. In general, the coastal upwelling waters presented higher Chla, but lower POC, DOC and ETS activity than filament waters. However, differences in organic carbon distribution and respiratory activity were observed among stations from the two filaments. The bio-chemical fields were strongly influenced by a complex sub-mesoscale hydrography resulting from the interaction of cyclonic and anticyclonic island eddies with the filaments. The combined F1 + F2 filament system transported 97.1 kg s−1 of excess (non-refractory) total organic carbon (e-TOC), a value comparable to other published estimates from upwelling filaments in the NE Atlantic. About 90% of e-TOC was exported as DOC, since eddy re-circulation precluded the offshore transport of POC. Assuming that the calculated transport of e-TOC is representative of the annual average, the yearly offshore transport (3.1 x 109 kg C) would represent about 25% of the upwelling primary production of the region of study.  相似文献   

12.
The vertical distribution and migratory behaviour of hyperiid amphipods were studied in a series of tows carried out during a 48-h sampling period at an oceanic station at the northern edge of the Benguela System during a major penetration by Angola Current waters. A total of 49 species of hyperiid amphipods were collected; of these, Tetrathyrus forcipatus was the most abundant, with densities greater than two individuals per 10 m3. Vibilia armata, Lestrigonus latissimus, L. bengalensis and Paratyphis promontorii were also highly abundant. During the sampling period most species were concentrated in the uppermost 40 m of the water column, though in other regions the vertical distribution of these same species has been reported to be broader. Only a few species were able to migrate through the thermocline. We hypothesize that both the non-migratory behaviour and the aggregation of individuals and species were caused by two primary factors: the existence of a strong thermocline, which hindered the transit of species to deeper layers, and abundant concentrations of gelatinous zooplankton above the thermocline. Hyperiids and the gelatinous zooplankton, particularly medusae and siphonophores, exhibited a close association during the sampling period, suggesting that hyperiids are able to partition their habitat by using the different medusan and siphonophoran species as specific substrates, thereby reducing interspecific competition.  相似文献   

13.
Surface distribution (0–100 m) of zooplankton biomass and specific aminoacyl-tRNA synthetases (AARS) activity, as a proxy of structural growth, were assessed during winter 2002 and spring 2004 in the Labrador Sea. Two fronts formed by strong boundary currents, several anticyclonic eddies and a cyclonic eddy were studied. The spatial contrasts observed in seawater temperature, salinity and fluorescence, associated with those mesoscale structures, affected the distributions of both zooplankton biomass and specific AARS activity, particularly those of the smaller individuals. Production rates of large organisms (200–1000 μm) were significantly related to microzooplankton biomass (63–200 μm), suggesting a cascade effect from hydrography through microzooplankton to large zooplankton. Water masses defined the biomass distribution of the three dominant species: Calanus glacialis was restricted to cold waters on the shelves while Calanus hyperboreus and Calanus finmarchicus were widespread from Canada to Greenland. Zooplankton production was up to ten-fold higher inside anticyclonic eddies than in the surrounding waters. The recent warming tendency observed in the Labrador Sea will likely generate weaker convection and less energetic mesoscale eddies. This may lead to a decrease in zooplankton growth and production in the Labrador basin.  相似文献   

14.
A numerical study of the decay of an alongshore baroclinic jet (ABJ) formed by transient wind stress favorable for upwelling and downwelling is carried out. The study is based on the Princeton Ocean Model (POM) applied to a circular stratified basin with a constant depth. In the case of a fully developed upwelling (downwelling), the alongshore jet is subjected to baroclinic instability, and its decay is predominantly accompanied by selective formation of cyclonic (anticyclonic) mesoscale eddies. If the upwelling or downwelling is not fully developed, the necessary condition for the baroclinic instability of the ABJ in a basin with a constant depth is the presence of the β-effect. The β-effect causes separation of the ABJ from the shoreline in the eastern part of the basin and thereby stimulates baroclinic instability. As a result, mesoscale meanders and eddies can be generated in the eastern part of the basin only if the diameter of the basin D is large enough to satisfy the inequality D > $\sqrt {{{R_I f} \mathord{\left/ {\vphantom {{R_I f} \beta }} \right. \kern-0em} \beta }} $ , where R I is the baroclinic Rossby radius, f is the Coriolis parameter, and β = df/dy.  相似文献   

15.
Mesoscale eddies, which are mainly caused by baroclinic effects in the ocean, are common oceanic phenomena in the Northwest Pacific Ocean and play very important roles in ocean circulation, ocean dynamics and material energy transport. The temperature structure of mesoscale eddies will lead to variations in oceanic baroclinity, which can be reflected in the sea level anomaly (SLA). Deep learning can automatically extract different features of data at multiple levels without human intervention, and find the hidden relations of data. Therefore, combining satellite SLA data with deep learning is a good way to invert the temperature structure inside eddies. This paper proposes a deep learning algorithm, eddy convolution neural network (ECN), which can train the relationship between mesoscale eddy temperature anomalies and sea level anomalies (SLAs), relying on the powerful feature extraction and learning abilities of convolutional neural networks. After obtaining the temperature structure model through ECN, according to climatic temperature data, the temperature structure of mesoscale eddies in the Northwest Pacific is retrieved with a spatial resolution of 0.25° at depths of 0–1 000 m. The overall accuracy of the ECN temperature structure is verified using Argo profiles at the locations of cyclonic and anticyclonic eddies during 2015–2016. Taking 10% error as the acceptable threshold of accuracy, 89.64% and 87.25% of the cyclonic and anticyclonic eddy temperature structures obtained by ECN met the threshold, respectively.  相似文献   

16.
在前人的工作中,拉格朗日分析法被用来演示大尺度环流,同时拉格朗日拟序结构可以较好的演示中尺度涡两维结构的发展过程。然而,很少研究关注怎么利用拉格朗日分析法针对中尺度涡三维结构进行演示。与以往利用欧拉方法研究中尺度涡三维结构的工作不同,我们利用拉格朗日分析法,从另一个视角来研究涡旋结构。我们在海山上方模拟出一个理想的气旋涡,涡旋内的下沉流和涡旋旁的上升流形成一个闭合的环流。这种结构很难从欧拉角度来演示。然而,粒子的运动轨迹很好地展示了整个循环:流体在涡旋中旋转下沉,汇聚到底层的上升流区,并通过上升流返回到海表面。我们也将拉格朗日分析法应用于真实的模拟结果中。作为中国南海的一个重要现象,靠近越南中部的海域中的偶极子(反气旋涡/气旋涡),关于其结构的研究已经比较成熟了,但这些研究主要关注的是海面过程。通过拉格朗日分析,我们很好的演示了偶极子的三维结构:流体在反气旋涡(气旋涡)内部旋转上升(下沉)。更重要的是,粒子的轨迹表明,这两个涡旋之间不存在水团交换,因为强边界急流将它们彼此分开。以上结论均得到了计算误差估计的可信度支持。尽管在强辐散流和强垂直扩散流中,计算误差逐渐增大,但是在一定的时间步长和积分周期内,计算误差始终保持在一个较小的值。  相似文献   

17.
High-resolution data collected southeast of the Canary Islands during late winter 2006 are analyzed to describe the hydrography and three-dimensional circulation in the coastal transition zone off NW Africa. The data are optimally interpolated over a regular grid, the geostrophic velocity field is calculated and the Q-vector formulation of the omega equation is used to compute the quasi-geostrophic (QG) mesoscale vertical velocity. The coastal transition zone is divided into upwelling, frontal and offshore regions with distinct physical and dynamic characteristics. The upwelling region is characterized by cold and weakly stratified waters flowing towards the equator, with a poleward undercurrent of approximately 0.05 m s−1 over the continental slope. The frontal region exhibits a southwestward baroclinic jet associated with cross-shore raising isopycnals; the jet transport is close to 1 Sv, with maximum velocities of 0.18 m s−1 at surface decreasing to 0.05 m s−1 at 300 db. Vertical sections across the frontal region show the presence of deep eddies probably generated by the topographic blocking of the islands to the southward current, as well as much shallower eddies that likely have arisen as instabilities of the baroclinic upwelling jet. The QG mesoscale vertical velocity field is patchy, estimated to range from −18 to 12 m day−1, with the largest absolute values corresponding to an anticyclonic eddy located south of Fuerteventura Island. These values are significantly larger than estimates for other vertical velocities: diapycnal vertical velocities associated with mixing in the frontal region (a few meters per day), and wind-induced vertical velocities (non-linear Ekman pumping arising from the interaction between the wind stress and the background vorticity, maximum values of a few meters per day; linear Ekman pumping due to the divergence of Ekman transport, a fraction of a meter per day; or the coastal constraint in the upwelling region, about 0.7 m day−1). However, the patchiness in both the QG mesoscale vertical velocity and the non-linear Ekman pumping velocity cause their integrated vertical transports to be one order of magnitude smaller than either coastal Ekman transport (0.08 Sv), integrated linear Ekman pumping (−0.05 Sv) or diapycnal transfer (about 0.1–0.2 Sv). The pattern of the near-surface fluorescence field is a good indicator of these different contributions, with large homogeneous values in the coastal upwelling region and a patchy structure associated with the offshore mesoscale structures.  相似文献   

18.
In general, a mesoscale cyclonic (anticyclonic) eddy has a colder (warmer) core, and it is considered as a cold (warm) eddy. However, recently research found that there are a number of “abnormal” mesoscale cyclonic (anticyclonic) eddies associated with warm (cold) cores in the South China Sea (SCS). These “abnormal” eddies pose a challenge to previous works on eddy detection, characteristic analysis, eddy-induced heat and salt transports, and even on mesoscale eddy dynamics. Based on a 9-year (2000–2008) numerical modelling data, the cyclonic warm-core eddies (CWEs) and anticyclonic cold-core eddies (ACEs) in the SCS are analyzed. This study found that the highest incidence area of the “abnormal” eddies is the northwest of Luzon Strait. In terms of the eddy snapshot counting method, 8 620 CWEs and 9 879 ACEs are detected, accounting for 14.6% and 15.8% of the total eddy number, respectively. The size of the “abnormal” eddies is usually smaller than that of the “normal” eddies, with the radius only around 50 km. In the generation time aspect, they usually appear within the 0.1–0.3 interval in the normalized eddy lifespan. The survival time of CWEs (ACEs) occupies 16.3% (17.1%) of the total eddy lifespan. Based on two case studies, the intrusion of Kuroshio warm water is considered as a key mechanism for the generation of these “abnormal” eddies near the northeastern SCS.  相似文献   

19.
利用AVISO数据集的卫星高度计资料,分析了中国台湾以东中尺度涡的时空特征,通过具体的中尺度涡实例探讨了其对台湾以东黑潮路径的影响。研究表明气旋式中尺度涡在春夏季节的数目要少于反气旋式中尺度涡,在秋冬季节气旋式涡旋个数则多于反气旋涡;并且台东以东区域涡旋传播存在多种路径,涡旋的存在对台湾东北部黑潮入侵东海的路径具有重大影响,特别是2004年夏季台湾以东区域存在多个涡旋,相应的吕宋海峡黑潮主轴向东偏移明显,台湾东北黑潮入侵东海的路径发生了显著变化。  相似文献   

20.
两个西边界流延伸体区域中尺度涡统计特征分析   总被引:3,自引:2,他引:1  
黑潮和湾流是世界大洋中最典型的两支西边界流,黑潮延伸体(Kuroshio Extention,KE)和湾流延伸体(Gulf Stream Extention,GSE)区域中尺度涡活动十分活跃。本文综合利用卫星高度计资料和Argo浮标资料,对KE和GSE区域中尺度涡的表层特征及其对温盐影响进行了统计研究和对比分析。结果表明:黑潮和湾流主轴附近为涡旋频率的高值区,主轴南北两侧分别以气旋涡和反气旋涡数量占多,主轴附近的涡旋强度明显大于其他区域;两个区域的涡旋以西向移动为主,气旋涡和反气旋涡都具有向南(赤道)偏离的趋势;两个区域的涡旋数量都以夏、秋季较多,涡旋强度都在春、夏季较大,且GSE区域涡旋强度明显大于KE区域;气旋涡(反气旋涡)引起内部明显的温度负(正)异常,KE区域气旋涡(反气旋涡)内部呈"负-正"("正-负")上下层相反的盐度异常分布,GSE区域气旋涡(反气旋涡)在各层呈现较为一致的盐度负(正)异常;两个区域中尺度涡对温盐场的平均影响深度可达1 000×104 Pa以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号