首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
采用表面荧光显微分析方法对2014年夏季中国第6次北极科学考察期间采集于加拿大海盆7个海冰站位的融池、冰芯和冰下海水样品进行了细菌和原生生物群落分析。结果表明,上述3类生境中的第一优势类群均为细菌(不包括ICE07站位出现水华融池的统计),分别占总生物量的42.8%、37.8%和50.7%;第二优势类群均为鞭毛虫,分别占总生物量的40.2%、34.3%和37.5%。包含细菌、鞭毛虫和纤毛虫在内的异养生物在总生物量中占有优势,显示微食物环在其中起着重要作用。在北冰洋夏季快速融冰的背景下,3类生境总体上缺少快速生长的条件,总生物量偏低。其中ICE07站位出现融池水华和冰表自养鞭毛藻高值,推测合适的藻种和营养盐的额外补充共同促成了该站位冰表(融池)藻华的形成。  相似文献   

2.
To examine algae populations, three expeditions (in March 2001, April 2002 and February 2003) were conducted in the Guba Chupa (Chupa Estuary; north-western White Sea), and one cruise was carried out in the open part of the White Sea in April 2003 and in the northern part of the Barents Sea in July 2001. Sea ice algae and phytoplankton composition and abundance and the content of sediment traps under the land-fast ice in the White Sea and annual and multi-year pack ice in the Barents Sea were investigated. The community in land-fast sea ice was dominated by pennate diatoms and its composition was more closely related to that of the underlying sediments than was the community of the pack ice, which was dominated by flagellates, dinoflagellates and centric diatoms. Algae were far more abundant in land-fast ice: motile benthic and ice-benthic species found favourable conditions in the ice. The pack ice community was more closely related to that of the surrounding water. It originated from plankton incorporation during sea ice formation and during seawater flood events. An additional source for ice colonization may be multi-year ice. Algae may be released from the ice during brine drainage or sea ice melting. Many sea ice algae developed spores before the ice melt. These algae were observed in the above-bottom sediment traps all year around. Three possible fates of ice algae can be distinguished: 1) suspension in the water column, 2) sinking to the bottom and 3) ingestion by herbivores in the ice, at the ice-water interface or in the water column.  相似文献   

3.
Summer sea ice characteristics of the Chukchi Sea   总被引:1,自引:0,他引:1       下载免费PDF全文
During August 1999, we investigated sea ice characteristics; its distribution, surface feature, thickness, ice floe movement, and the temperature field around inter-borders of air/ice/seawater in the Chukchi Sea. Thirteen ice cores were drilled at 11 floe stations in the area of 72°24′ 77°18′N, 153°34′ 163°28′W and the ice core structure was observed. From field observation, three melting processes of ice were observed; surface layer melting, surface and bottom layers melting, and all of ice melting. The observation of temperature fields around sea ice floes showed that the bottom melting under the ice floes were important process. As ice floes and open water areas were alternately distributed in summer Arctic Ocean; the water under ice was colder than the open water by 0.4 2.8℃. The sun radiation heated seawater in open sea areas so that the warmer water went to the bottom when the ice floes move to those areas. This causes ice melting to start at the bottom of the ice floes. This process can balance effectively the temperature fluctuating in the sea in summer. From the crystalline structure of sea ice observed from the cores, it was concluded that the ice was composed of ice crystals and brine-ice films. During the sea ice melting, the brine-ice films between ice crystals melted firstly; then the ice crystals were encircled by brine films; the sea ice became the mixture of ice and liquid brine. At the end of melting, the ice crystals would be separated each other, the bond between ice crystals weakens and this leads to the collapse of the ice sheet.  相似文献   

4.
<正> Abundance,biomass and composition of the ice algal and phytoplank-ton communities were investigated in the southeastern Laptev Sea in spring 1999.Diatoms dominated the algal communities and pennate diatoms dominated the dia-tom population.12 dominant algal species occurred within sea ice and underlyingwater column,including Fragilariopsis oceanica,F.cylindrus,Nitzschiafrigida,N.promare,Achnanthes taeniata,Nitzschia neofrigida,Naviculapelagica,N.vanhoef fenii,N.septentrionalis,Melosira arctica,Clindrothecaclosterium and Pyrarnimonas sp.The algal abundance of bottom 10 cm sea icevaried between 14.6 and 1562.2×10~4 ceils l~(-1)with an average of 639.0×10~4cells l~(-1),and the algal biomass ranged from 7.89 to 2093.5μg C l~(-1)with an av-erage of 886.9μg C l~(-1),which were generally one order of magnitude higherthan those of sub-bottom ice and two orders of magnitude higher than those ofunderlying surface water.The integrated algal abundance and biomass of lower-most 20 cm ice column were averagely 7.7 and 12.2 times as those of upper 20 mwater column,respectively,suggesting that the ice algae might play an importantrole in maintaining the coastal marine ecosystem before the thawing of sea ice.Icealgae influenced the phytoplankton community of the underlying water column.However,the“seeding”of ice algae for phytoplankton bloom was negligible be-cause of the iow phytoplankton biomass within the underlying water column.  相似文献   

5.
It is shown that the melting of ice floating on the ocean will introduce a volume of water about 2.6 per cent greater than that of the originally displaced sea water. The melting of floating ice in a global warming will cause the ocean to rise. If all the extant sea ice and floating shelf ice melted, the global sea level would rise about 4 cm. The sliding of grounded ice into the sea, however, produces a mean water level rise in two parts ; some of the rise is delayed. The first part, while the ice floats, is equal to the volume of displaced sea water. The second part, equal to 2.6 per cent of the first, is contributed as it melts. These effects result from the difference in volume of equal weights of fresh and salt water. This component of sea rise is apparently unrecognized in the literature to date, although it can be interpreted as a form of halosteric sea level change by regarding the displaced salt water and the meltwater (even before melting) as a unit. Although salinity changes are known to affect sea level, all existing analyses omit our calculated volume change. We present a protocol that can be used to calculate global sea level rise on the basis of the addition of meltwater from grounded and floating ice; of course thermosteric volume change must be added.  相似文献   

6.
Ice algal accumulations were recognised by their vertical distribution in the ice, as surface, interior and bottom assemblages. The latter were quantitatively the most important in the Barents Sea and in particular the sub-ice assemblage floating towards, or attached to, the undcr-surface of the sea ice. Colonisation of the ice takes place by a "sieving" of the water between closely spaced platelets on the ice under-surface. Once associated with the ice, the assemblage undergoes a succession terminated by the dominance of ice specialists. In a horizontal S-N section through the ice, three distinct zones may be recognised: at the ice edge the recently colonised ice has a layer of algae up to a few millimeters in thickness consisting primarily of planktonic species. Further into older first year ice the algal layer becomes thicker and is typically dominated by the pennate diatom Nilzschia frigida Grunow. Below multi-year ice in the central polar basin decimetre-thick mats of algae are found, consisting almost exclusively of the centric diatom Melosira arclica (Ehrenberg) Dickie and a few associated, mostly epiphytic, species. The predominantly planktonic sub-ice assemblages at the ice edge can grow under stable conditions as soon as the light becomes adequate in the spring, and they are able to multiply actively for one to two months before planktonic growth is possible. The sub-ice plankton assemblage thus forms an inoculum released to the stabilising water when the ice starts melting. This may explain how a phytoplankton bloom can develop explosively at the ice edge as soon as the ice melting commences, at a time when the number of algal cells in the water column is still very low.  相似文献   

7.
Phytoplankton in the south-western Kara Sea: composition and distribution   总被引:1,自引:0,他引:1  
The taxonomic composition and spatial distribution of pelagic algae were studied in the south-western Kara Sea in August-September 1981. In the north-western and easternmost regions of the study area the phytoplankton community, dominated by neritic diatoms and autotrophic dinoflagellates, was at the late spring bloom stage of the seasonal succession. In the central deep-water zone of the sea, there was a predominance of heterotrophic dinoflagellates from the genera Protoperidinium and Dinophysis , and the autotrophic compartment of the algal community was clearly in a stage of decline. The distribution of the phytoplankton assemblages followed closely the major routes of receding marginal ice zones. Three stages of the seasonal succession were established for the area of interest: (1) early spring (ice edge) bloom of arcto-boreal neritic diatoms; (2) late spring bloom of neritic diatoms and autotrophic dinoflagellates, fuelled by continental run-off; and (3) summer minimum with a predominance of heterotrophic dinoflagellates, followed by autumnal decline of the phytoplankton community.  相似文献   

8.
史久新 《极地研究》2018,30(3):287-302
本文介绍了近期南极冰架-海洋相互作用的研究进展。冰架底部融化速率大于前缘崩解通量,成为南极冰盖质量损失的首要途径。冰架下的海洋按照底部融化驱动因素的不同,可以分为由高密度陆架水驱动的冷冰腔和由变性绕极深层水驱动的暖冰腔。威德尔海的菲尔希纳-龙尼冰架和罗斯海的罗斯冰架属于冷冰腔,占南极冰架总面积的2/3,却只贡献了15%的净融化;东南太平洋扇区阿蒙森海和别林斯高晋海等若干属于暖冰腔的小型冰架,虽然只占南极冰架总面积的8%,却贡献了超过一半的冰架融水。以往看做冷冰腔的东南极托滕冰架和埃默里冰架,也相继发现有变性绕极深层水进入冰腔并造成底部融化。冰架对海洋有冷却和淡化的作用。冷冰腔输出的冰架水具有海洋中最低的温度,对南极陆架水性质乃至南极底层水的形成都有影响。冰架融化加剧,可能是近期观测到的南极底层水淡化的原因。  相似文献   

9.
A model study is conducted to examine the role of Pacific water in the dramatic retreat of arctic sea ice during summer 2007.The model generally agrees with the observations in showing considerable seasonal and interannual variability of the Pacific water inflow at Bering Strait in response to changes in atmospheric circulation. During summer 2007 anomalously strong southerly winds over the Pacific sector of the Arctic Ocean strengthen the ocean circulation and bring more Pacific water into the Arctic than the recent(2000-2006) average.The simulated summer(3 months) 2007 mean Pacific water inflow at Bering Strait is 1.2 Sv,which is the highest in the past three decades of the simulation and is 20%higher than the recent average.Particularly ,the Pacific water inflow in September 2007 is about 0.5 Sv or 50%above the 2000-2006 average.The strengthened warm Pacific water inflow carries an additional 1.0×10~(20) Joules of heat into the Arctic,enough to melt an additional 0.5 m of ice over the whole Chukchi Sea.In the model the extra summer oceanic heat brought in by the Pacific water mainly stays in the Chukchi and Beaufort region,contributing to the warming of surface waters in that region.The heat is in constant contact with the ice cover in the region in July through September.Thus the Pacific water plays a role in ice melting in the Chukchi and Beaufort region all summer long in 2007,likely contributing to up to 0.5 m per month additional ice melting in some area of that region .  相似文献   

10.
海冰生物群落是北极生态系统的重要组成部分,在北冰洋初级生产和碳循环中扮演着重要角色。本文利用荧光显微分析技术对2012年度夏季采集于北冰洋中心区的浮冰生物群落进行了分析,结果显示:柱总生物量平均为105.85±53.41 mgC •m-2,其中细菌占生物量的47.2%,而后依次是硅藻(26.7%),鞭毛虫(18.2%),鞭毛藻(6.9%)和纤毛虫(1.0%)。最高纬站位(123°43.454′E 87°39.598′N)出现冰底鞭毛藻藻华现象,生物量可达329.6 μg C•L-1,该站位生物群落处于硅藻藻华后期,海冰上层存在较大程度的融冰作用,底部冰芯营养盐N/P比较高,可能形成有利于鞭毛藻生长的小生境。与已有研究结果的对比表明,近年来夏季北极海冰的快速融化对浮冰生物群落结构产生了明显影响,异养类群生物量升高,细菌取代硅藻成为优势类群。  相似文献   

11.
Multi-temporal satellite images, field observations and field measurements were used to investigate the mechanisms by which sea ice melts offshore from the Mackenzie River Delta. Satellite data recorded between April and August 1986 were corrected to a map projection and calibrated such that albedo and temperature values could be compared. Three stages in the melting of sea ice were identified: flooding (overflows), insolation and melting by warm river water. The albedo values of overflows were as much as 1/7 that of ice values while the albedo of ice decreased by 1/3 over the summer. Approximately two weeks after the overflows develop, sea surface temperatures rise as the river-discharge peaks and becomes the dominant source of energy. By this process, ice removal in the delta regime is initiated two months earlier than adjacent coasts with minimal runoff. However, the net result is only a two-week acceleration of ice removal in the delta region.  相似文献   

12.
本文依托2010夏季中国第四次北极科学考察,通过对高纬度极地冰下水和冰芯的营养盐的连续观测及表层水颗粒物的藻类色素分析,获取了夏季快速融冰下冰水界面营养盐和光合色素的分布信息。结果表明调查期间表层水磷酸盐和硅酸盐相对于无机氮更丰富(依据Redfield比值),表现为显著的氮限制。而冰芯无机氮浓度相对更高,融冰释放对水体无机氮有一定的补充。色素分析显示岩藻黄素(Fuco)和叶绿素a(Chl a)是水体颗粒物的主要光合色素。在8/15至8/18期间,叶绿素c(Chl c)、硅藻黄素(Diato)、硅甲藻黄素(Diadino)和岩藻黄素(Fuco)分别达到6,22,73和922μg/m3,体现了硅藻在群落中的优势地位。岩藻黄素(Fuco)的浓度在融冰快速期间有巨大的提升,主要来源于冰芯底部释放的衰老的冰生硅藻和浮游硅藻的生长。此外,青绿黄素(Prasino)和叶黄素(Lut)与岩藻黄素(Fuco)分布模式有明显的差异,暗示青绿藻和绿藻与硅藻对海冰融化的不同响应。  相似文献   

13.
2014年夏季北极东北航道冰情分析   总被引:1,自引:0,他引:1       下载免费PDF全文
使用2003—2014年6—9月份的AMSR-E和AMSR-2海冰密集度数据计算了北极海冰范围, 并获得海冰空间分布图。通过分析得出, 2014年北极夏季海冰范围在数值上与2003—2013年的多年平均值很接近, 在空间分布上与多年中值范围相比主要表现为两个方面的不同:(1)2014年夏季拉普捷夫海及其以北海域海冰明显少于多年中值范围, 9月份冰区最北边界超过了85°N;(2)巴伦支海北部斯瓦尔巴群岛至法兰士约瑟夫地群岛区域海冰范围明显多于多年中值范围, 而且海冰范围在8月份不减反增, 冰区边界较7月份往南扩张了约0.8个纬度。2014年夏季在拉普捷夫海以南风为主, 而在巴伦支海以北风为主。南风将俄罗斯大陆上温暖的空气吹向高纬地区, 造成高纬地区温度偏高, 促进拉普捷夫海海冰融化, 并使海冰往北退缩。北风将北冰洋上的冷空气吹向低纬地区, 造成巴伦支海的气温偏低, 不利于海冰的融化, 同时北风使海冰往南漂移扩散, 造成巴伦支海北部海冰范围在2014年偏多。2014年北地群岛航线开通时间范围大约在8月上旬到10月上旬, 时长约两个月。新西伯利亚群岛及附近海域的开通时间稍早于北地群岛, 但关闭时间比北地群岛晚, 所以 2014年东北航道全线开通的时间主要受制于北地群岛附近海冰变化。  相似文献   

14.
湖冰冰情物候特征是气候变化的敏感指示器之一。论文以呼伦湖为研究对象,基于MODIS、Landsat、GF-1、HJ-1等多源遥感影像及气象数据,利用RS和GIS技术综合分析了1986—2017年呼伦湖冰情物候特征及其对区域气候的响应。结果表明:① 呼伦湖年均开始冻结时间在10月下旬至11月上旬,从结冰开始到完全封冻的时间平均只有6.4 d;开始融冰时间在次年的4月上旬,消融期平均为32 d左右,到5月初或5月上旬湖冰完全融化。② 1986—2017年,在整个研究期呼伦湖完全封冻期呈现显著缩短趋势,平均缩短18.5 d;完全结冰时间有一定延迟现象,平均延后8.4 d;冰全部融化时间呈现提前趋势,平均提前了11.2 d。③ 湖冰冻结消融空间特征表现不同,冻结时先从湖岸形态较复杂地区结冰,然后由东岸向西岸迅速封冻,消融时先从湖泊西北岸开始,逐渐向东岸融化。④ 在影响因素方面,呼伦湖冰情特征主要受到区域气温、风速、风向等因素的影响。  相似文献   

15.
勾鹏  叶庆华  魏秋方 《地理科学进展》2015,34(10):1241-1249
湖冰物候事件是气候变化的敏感指示器。本文以西藏纳木错湖为研究对象,基于MODIS多光谱反射率产品数据监测了2000-2013年纳木错湖冰冻融日期,并结合多个气象站点的气象数据和实测湖面温度、湖面辐射亮温分析验证了湖冰变化的原因。纳木错湖冰变化较好地响应了区域气候变暖:开始冻结日期延迟和完全消融日期提前使湖冰存在期显著缩短(2.8 d/a)、湖冰冻结期增长、湖冰消融期缩短,其中消融期变化最为明显,平均每年缩短3.1 d。湖冰冻融日期的变化表明:2000年后纳木错湖冰冻结困难,消融加速,稳定性减弱。纳木错湖冰变化主要受湖面温度、湖面辐射亮温和气温变化的影响,它们可以作为气象因子来解释区域气候变化。  相似文献   

16.
Large amounts of ground ice are born with permafrost on the Qinghai-Tibet Plateau.Degradation of permafrost resulted from the climate warming will inevitably lead to melting of ground ice.The water released from the melting ground ice enters hydrologic cycles at various levels,and changes regional hydrologic regimes to various degrees.Due to difficulties in monitoring the perma-frost-degradation-release-water process,direct and reliable evidence is few.The accumulative effect of releasing water,however,is remarkable in the macro-scale hydrologic process.On the basis of the monitoring results of water-levels changes in some lakes on the Qinghai-Tibet Plateau,and combined with the previous results of the hydrologic changing trends at the regional scale,the authors preliminarily discussed the possibilities of the degrading permafrost on the Qinghai-Tibet Plateau as a potential water source during climate warming.  相似文献   

17.
通过利用2010年1月—2016年12月CALIOP(the Cloud-aerosol lidar with orthogonal polariz-ation)冰云和气溶胶3级月平均产品和MODIS(Moderate-resolution imaging spectroradiometer)大气3级日平均产品研究气溶...  相似文献   

18.
A baroclinic. 3-D model is described. It is adapted to the Barents Sea and includes thermodynamics and atmospheric input. The freezing and melting of ice is allowed for in the model. The main task of the study is to look at the development of the ice cover, the vertical mixing, and the vertical and horizontal density gradients.
Despite simple approximations in the air temperature input, realistic ice-cover is produced in the model area during simulation of a "freezing period" (winter). This intermediate result is briefly discussed and also forms the start of a "melting period" simulation (spring/summer). Atmospheric input data (wind, air pressure, and heat flux) from the spring and summer 1983 is used, and details about vertical mixing, temperature, and salinity are discussed. The simulation results demonstrate the temporal variation of the thermocline depth, the variation of the ice cover, and the horizontal changes of density. The conclusion is that despite often simplified input, the model seems to produce a physical picture characteristic of the Barents Sea.  相似文献   

19.
《Polar Science》2014,8(4):385-396
The photosynthetic characteristics of sinking a microalgal community were studied to compare with the ice algal community in the sea ice and the phytoplankton community in the water column under the sea ice at the beginning of the light season in the first-year sea ice ecosystem on the Mackenzie Shelf, in the western Canadian Arctic. The phytoplankton community was collected using a water bottle, whereas the sinking algal community was collected using particle collectors, and the ice algal community was obtained by using an ice-core sampler from the bottom portion of ice core. Photosynthesis versus irradiance (P-E) incubation experiments were conducted on deck to obtain the initial slope (αB) and the maximum photosynthetic rate (PmB) of the three algal communities. The αB and the PmB of the light saturation curve, and chlorophyll a (Chl a) specific absorption coefficient (āph*) between the sinking microalgal community and the ice algal community were similar and were distinctly different from the phytoplankton community. The significant linear relationship between αB and PmB, which was obtained among the three groups, may suggest that a photo-acclimation strategy is common for all algal communities under the low light regime of the early season. Although the sinking algal community could be held for the entire duration of deployment at maximum, this community remained photosynthetically active once exposed to light. This response suggests that sinking algal communities can be the seed population, which results in a subsequent phytoplankton bloom under the sea ice or in a surface layer, as well as representing food for the higher trophic level consumers in the Arctic Ocean even before the receding of the sea ice.  相似文献   

20.
The Antarctic ice sheet is arguably the most critical in terms of future sea-level rise, primarily because it contains 70% of the world's fresh water. While there exists evidence of accelerated ice-sheet ablation during the past decade, the possibility that the ice sheets contributed little to 20th century sea-level rise could result in Antarctica becoming the largest contributor to sea-level rise during the 21st century. Here we review the findings of studies published following the 2007 Intergovernmental Panel for Climate Change (IPCC) study, focusing on the role of Antarctica in present-day (1992–2006) sea-level rise. We show that the choice of glacial isostatic adjustment (GIA) model significantly affects GRACE-estimated Antarctic mass loss, adding 0.25–0.45 mm/yr to the estimate of sea-level rise. The current estimate of Antarctica's contribution to sea-level rise has a wide range: from −0.12 to +0.52 mm/yr. The discrepancy between observed sea-level trend of 1.8 mm/yr and those estimated from various geophysical sources (2.10 ± 0.99 mm/yr) is 0.30 mm/yr. The role of Antarctica in sea-level rise might be better constrained by lengthening satellite observations, using long-term GPS data to discriminate subglacial vertical motion from ice mass balance, and detecting the sea-level signal due to elastic loading from the melting ice-sheets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号