首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We present a brief survey of the works devoted to the investigation of the Atlantic Multidecadal Oscillation, i.e., of the quasiperiodic variations of sea-surface temperature in the North Atlantic with typical time scales of 50–100 yr. This oscillation is a manifestation of the natural variability in the ocean-atmosphere system. The characteristic scale of the Atlantic Multidecadal Oscillation is determined by the speed of the meridional oceanic circulation in the North Atlantic. The analyzed oscillation affects various climatic characteristics: air temperature, river discharge in the European and North-American regions, the number and intensity of tropical cyclones in the Atlantic Ocean, and the parameters of mid-latitude cyclones and anticyclones in the Atlantic-European region. The main mechanism by which the Atlantic Multidecadal Oscillation affects the climatic characteristics of the regions neighboring with the North Atlantic is the atmospheric response to the thermal anomalies in the ocean leading to a shift of the centers of atmospheric action and to the changes in the intensity and predominant directions of propagation of atmospheric cyclones and anticyclones. By using the results of long-term instrumental observations carried out in Eastern Europe and the data array of reconstructed temperature in the Alpine region, it is shown that the Atlantic Multidecadal Oscillation is responsible for a significant part of low-frequency variations of temperature in Europe. This fact confirms the potential predictability of the regional atmospheric manifestations of the Atlantic Multidecadal Oscillation on the decadal-scale. Translated from Morskoi Gidrofizicheskii Zhurnal, No. 4, pp. 69–79, July–August, 2008.  相似文献   

2.
By using the NCEP reanalysis data for 1952–2000, we estimate the parameters of cyclones and anticyclones in the Black-Sea region and evaluate the statistical characteristics of their variability for each season. It is shown that the frequency of cyclones decreases in all seasons (except summer) as a result of the intensification of the North Atlantic Oscillation in the 1960–90s and the displacement of the predominant paths of synoptic disturbances to the north. For anticyclones, we reveal the opposite trend. The parameters of cyclones and anticyclones are characterized by quasiperiodic variations on the subdecadal scale also induced by the North Atlantic Oscillation. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 6, pp. 47–58, November–December, 2007.  相似文献   

3.
北太平洋海温场的时空特征分析   总被引:1,自引:1,他引:1  
近年来运用海表温度作副热带高压和长期天气预报方面取得了显著效果,为了进一步探讨海洋对气候和长期天气过程的影响,必须重视海温场的特征分析。这几年已有一些工作[1,3,7],从不同侧面对北太平洋海温场进行研究。本文试图从海—气相互作用的角度分析北太平洋海温场的时空分布特征及其年际变动,进而讨论它们对大气的影响。  相似文献   

4.
On the basis of the contemporary array of oceanographic and hydrometeorological data, we compute the characteristics of variations of the Gulf-Stream transport in 1950–2004. The role played by the low-frequency oscillations of vorticity of the wind field and turbulent heat fluxes in the North Atlantic in the formation of the analyzed variations is estimated. We reveal a significant (on a 5% confidence level) positive linear trend of the monthly average Gulf-Stream transport manifested in the increase in the Gulf-Stream transport by 13 Sv for the investigated period. On the basis of the established estimates, we make a conclusion that about a quarter of the interannual variations of the Gulf-Stream transport is caused by the low-frequency oscillations of vorticity of the wind field in the Subtropical Atlantic. Moreover, the Gulf-Stream transport is delayed relative to the wind oscillations by about 2 yr. An important role in the changes in the Gulf-Stream transport is played by the response of the system of west boundary currents to the quasiperiodic action of turbulent heat fluxes on the surface of the ocean connected with the North-Atlantic Oscillation. The intensification of turbulent heat fluxes in the Northern Subpolar Cyclonic Gyre and their weakening in the north part of the Subtropical Anticyclonic Gyre are accompanied by the intensification of the Gulf Stream observed after 3–5 yr. The anomalies of turbulent heat fluxes of the opposite sign are followed by weakening of the Gulf Stream also after a period of 3–5 yr. We also mention a potentially important role played the Pacific decadal oscillation in maintaining the decadal variations of the intensity of Gulf Stream. The influence of this oscillation on the Gulf-Stream transport is realized both via the changes in the wind field in different phases of oscillations and due to its influence on the heat exchange of the ocean with the atmosphere.  相似文献   

5.
Various statistical methods (empirical orthogonal function (EOF), rotated EOF, singular value decomposition (SVD), principal oscillation pattern (POP), complex EOF (CEOF) and joint CEOF) were applied to low-pass filtered (>7 years) sea surface temperature (SST), subsurface temperature and 500 hPa geopotential height in order to reveal standing and propagating features of decadal variations in the North Pacific. Four decadal ocean-atmosphere covariant modes were found in this study. The first mode is the well-known ENSO-like mode associated with the “Pacific-North American” atmospheric pattern, showing SST variations reversed between the tropics and the extratropics. In the western tropical Pacific, subsurface temperature variations were found to be out of phase with the SST variations. The other three modes are related to the oceanic general circulation composed of the subtropical gyre, the Alaskan gyre and the subpolar gyre, respectively. The 1988/89 event in the northern North Pacific was found to be closely associated with the subtropical gyre mode, and the atmospheric pattern associated with this mode is the Arctic Oscillation. An upper ocean heat budget analysis suggests that the surface net heat flux and mean gyre advection are important to the Alaskan gyre mode. For the subpolar gyre mode, the mean gyre advection, local Ekman pumping and surface net heat flux play important roles. Possible air-sea interactions in the North Pacific are also discussed. The oceanic signals for these decadal modes occupy a thick layer in the North Pacific, so that accumulated heat content may in turn support long-term climate variations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Analyses were performed on hydrographic data gathered along the 137°E meridian by the R/V Ryofu Maru of the Japan Meteorological Agency (JMA). Distributions were obtained of the mean and standard deviation of water temperature and salinity along the section. Relationships between interannual variations of these variables and wind forcing were examined. A correlation analysis revealed that temperature change, which occurred in the equatorial region of the western North Pacific accompanied by El Nino and La Nina events, reached about 20°N with the inclination of isotherms across the north equatorial current fluctuating around 20°N. Empirical orthogonal function (EOF) analysis of the winter water temperatures in the section was performed to extract variations following El Nino and La Nina events as the first mode and those corresponding to decadal changes of sea surface temperature (SST) in the North Pacific as the second mode. Interannual variations in the area of the North Pacific tropical saline water (NPTSW) and the North Pacific intermediate water (NPIW) along the section correspond well to interannual variations of the wind-stress curl minimum (negative value) in the area southeast of Japan. A remaining problem is to quantitatively evaluate the lag times of the variations to the wind-stress curl variation. In the equatorial region of the section, the northward extension of saline water is weak, and negative water temperature anomalies have often occurred in connection with El Nino events since the latter half of the 1970s. These changes may be part of the decadal variation of the North Pacific.  相似文献   

7.
Decadal variations of the transport and bifurcation latitude of the North Equatorial Current (NEC) in the northwestern tropical Pacific Ocean over 1959–2011 are investigated using outputs of the Ocean Analysis/Reanalysis System 3 prepared by the European Centre for Medium-Range Weather Forecasts. The results indicate that the NEC transports at different longitudes have different decadal fluctuations, which are strongest around 139°E. The NEC bifurcation latitude (NBL) has its largest decadal variations around 150 m. Extremes of the decadal NEC transport and NBL before 1975 correspond to different circulation anomalies from those after 1975. The regression map against decadal NBL exhibits negative sea surface height (SSH) anomalies and a cyclonic gyre anomaly over the northwestern tropical Pacific Ocean, while that against the decadal NEC transport exhibits a dipole structure, with positive/negative SSH anomalies to the north/south of about 13°N. Furthermore, decadal variations of the NEC transport and NBL over the whole period have different correlations with Pacific Decadal Oscillation (PDO) and Tropical Pacific Decadal Variability (TPDV). Generally, the decadal NEC transport shows higher correlations with PDO than with TPDV, while the NBL has higher correlations with TPDV than with PDO. The high correlation of decadal NEC transport with PDO mainly comes from that of its northern branch with PDO, while its southern branch shows higher correlation with TPDV.  相似文献   

8.
Basin-scale variations in oceanic physical variables are thought to organize patterns of biological response across the Pacific Ocean over decadal time scales. Different physical mechanisms can be responsible for the diverse basin-scale patterns of sea-surface temperature (SST), mixed-layer depth, thermocline depth, and horizontal currents, although they are linked in various ways. In light of various theories and observations, we interpret observed basinwide patterns of decadal-scale variations in upper-ocean temperatures. Evidence so far indicates that large-scale perturbations of the Aleutian Low generate temperature anomalies in the central and eastern North Pacific through the combined action of net surface heat flux, turbulent mixing and Ekman advection. The surface-forced temperature anomalies in the central North Pacific subduct and propagate southwestwards in the ocean thermocline to the subtropics but apparently do not reach the equator. The large-scale Ekman pumping resulting from changes of the Aleutian Low forces western-intensified thermocline depth anomalies that are approximately consistent with Sverdrup theory. These thermocline changes are associated with SST anomalies in the Kuroshio/Oyashio Extension that are of the same sign as those in the central North Pacific, but lagged by several years. The physics of the possible feedback from the SST anomalies to the Aleutian Low, which might close a coupled ocean–atmosphere mode of decadal variability, is poorly understood and is an area of active research. The possible responses of North Pacific Ocean ecosystems to these complicated physical patterns is summarized.  相似文献   

9.
黑潮延伸体海表温度锋位置的变化特征   总被引:2,自引:1,他引:1  
High spatial resolution sea surface temperature(SST) data from 1993 to 2013 are used to detect the position of the Kuroshio Extension sea surface temperature front(KEF) from 141°E to 158°E,and the seasonal,monthly and interannual-to-decadal variations of the KEF position are investigated.The latitudinal position of the KEF varies with longitudes:the westernmost part of the KEF from 141°E to 144°E is relatively stable,whereas the easternmost part from 153°E to 158°E exhibits the largest amplitude of its north-south displacement.In the light of the magnitudes of the standard deviations at longitudes,then the KEF is divided into three sections:western part of the KEF(KEFw,141°–144°E),central part of the KEF(KEFc,144°–153°E) and eastern part of the KEF(KEFe,153°–158°E).Further analysis reveals that the KEFw position is dominated by the decadal variability,while the KEFc and KEFe positions change significantly both on interannual and decadal time scales.In addition,the KEFw position is well correlated with the KEF path length.The possible mode leading to the decadal oscillation of the KEFw is further discussed.The KEFw position exhibits significant connections with the Pacific decadal oscillation(PDO) index and the north Pacific gyre oscillation(NPGO) index with a time lag of 40 and 33 months,respectively.  相似文献   

10.
Observations of primary productivity, 234Th, and particulate organic carbon (POC) were made from west to east across the northern North Pacific Ocean (from station K2 to Ocean Station Papa) during September–October 2005. Primary productivities in this region varied longitudinally from approximately 236 to 444 mgC m−2d−1 and clearly indicate the West High East Low (WHEL) trend. We estimated east-west variations in the POC flux from the surface layer (0–100 m) by using 234Th as a tracer. POC fluxes in the western region (44–53 mgC m−2d−1) were higher than those in the eastern region (21–34 mgC m−2d−1). However, the export ratios (e-ratios) ranged from approximately 8% to 16% and did not show the WHEL trend. Contrary to our expectation, no relation between POC flux (or e-ratio) and diatom biomass (or dominance) was apparent in autumn in the northern North Pacific.  相似文献   

11.
采用来自大洋环流模式ECCO2 (the estimating the circulation and climate of the ocean, phase II project)的再分析数据对1992—2019年北太平洋副热带西部模态水(subtropical mode water, STMW)的年代际变化特征及机制进行了分析。结果表明:STMW形成体积具有显著的年代际变化,于1992—1997年、2000—2005年和2011—2017年期间为正异常,而于1998—1999年和2006—2010年期间为负异常,由晚冬生成区混合层体积的年代际变化引起。STMW形成厚度和面积均呈现类似的年代际变化。合成分析表明, STMW形成体积正异常期间,黑潮延伸体上游南侧STMW生成区,海表涡动能相对负异常期间减小,同时预先层结相对负异常期间减弱,并伴随着海表高度异常。通过混合层收支分析发现,混合层形成体积年代际变化与海洋预先层结调控的混合层底卷吸作用变化同步且大小相当,而与海气形成率变化无关。增强(减弱)的海洋预先层结通过调控STMW形成区冬季混合层底卷吸过程,阻碍(促进)冬季混合层加深,最终使得STMW形成体积减少(增加)。进一步分析表明, STMW形成体积年代际变化受与太平洋年代际涛动相关的风应力旋度异常的远场调控。  相似文献   

12.
Interannual variability of the Japan/East Sea (JES) sea surface temperature (SST) is investigated from the reconstructed NOAA/AVHRR Oceans Pathfinder best SST data (1985–2002) using the complex empirical function (CEOF) analysis. The iterative empirical function analysis is used for the SST data reconstruction. The first two leading CEOFs account for 86.0% of total variance with 66.4% for the first mode and 19.6% for the second mode. The first CEOF mode represents a standing oscillation and a maximum belt in the central JES. There are two near-7-year events and one 2–3-year event during the period of 1985–2002. The first mode oscillates by adjacent atmospheric systems such as the Aleutian Low, the North Pacific High, the Siberian High, and the East Asian jet stream. Positive correlation in a zonal belt between the first mode JES SST anomaly and the background surface air temperature/SST anomaly reveals intensive ocean-atmosphere interaction near the Polar Front in the North Pacific. The second CEOF mode represents two features: standing oscillation and propagating signal. The standing oscillation occurs in the northern (north of 44°N) and southern (south of 39°N and west of 136°E) JES with around 180° phase difference. A weak southwestward propagating signal is detected between the two regions. The eastward propagating signal is detected from the East Korean Bay to near 135°E. The second mode contains 4–5-year periodicity before 1998 and 2–3-year periodicity thereafter. It is associated with the Arctic Oscillation, which leads it by 1–5-year. Furthermore, a strong correlation with the background surface air temperature/SST anomaly is detected in the tropical to subtropical western Pacific.  相似文献   

13.
Time-series measurements of dissolved inorganic carbon (DIC) and nutrient concentrations were conducted in the northwestern North Pacific from October 2002 to August 2004. Assuming that data obtained in different years represented time-series seasonal data for a single year, vertical distributions of DIC and nutrients showed large seasonal variabilities in the surface layer (∼100 m). Seasonal variabilities in normalized DIC (nDIC) and nitrate concentrations at the sea surface were estimated to be 81–113 μmol kg−1 and 12.7–15.7 μmol kg−1, respectively, in the Western Subarctic Gyre. The variability in nutrients between May and July was generally at least double that in other seasons. In the Western Subarctic Gyre, estimations based on statistical analyses revealed that seasonal new production was 39–61 gC m−2 and tended to be higher in the southwestern regions or coastal regions. The seasonal new productions in the northwestern North Pacific were two or more times higher than in the North Pacific subtropical gyre and the northeastern North Pacific. It is likely that this difference is due to spatial variations in the concentrations of trace metals and the species of phytoplankton present. In addition, from estimations of surface pCO2 it was verified that the Western Subarctic Gyre is a source of atmospheric CO2 between February and May and a sink for CO2 between July and October.  相似文献   

14.
This study uses the Climate Forecast System Reanalysis(CFSR) to investigate the responses of the Southern Hemisphere(SH) extratropical climate to two types of El Ni?o–Southern Oscillation(ENSO)—the eastern Pacific(EP) type and the central Pacific(CP) type in different seasons. The responses are denoted by the anomalies of climate variables associated with one-standard-deviation increase in the Ni?o3 or Ni?o4 index. The results show that in austral spring the differences in the ENSO-related anomaly(ERA) patterns of atmospheric circulation between the EP ENSO period(1979–1998) and CP ENSO period(1999–2010) are mainly associated with the change in the ENSO-PSA2 relationship. Such differences affect the ERA fields of surface air temperature and mixed layer temperature, and finally result in significant differences in sea-ice concentration anomalies in the Atlantic sector. In austral summer, significant correlation exists between the variations of SAM and both of the variations of Ni?o3 and Ni?o4 in 1979–1998, while the correlation between SAM and Ni?o4 disappears in 1999–2010. For all seasons, the strength of the climate ERAs depend on if there are close relationship between ENSO and the major climate variation modes of the SH extratropics. For the climate variables, the ERA patterns of surface air temperature are generally controlled by surface wind anomalies and mirrored by the mixed layer temperature anomalies. The mixed layer depth anomalies are primarily modulated by surface heat flux anomalies and occasionally by anomalous wind. There are strikingly strong anomalies of surface heat flux in the autumn of 1979–1998 related to the Ni?o3 variation, the period when there is only significant correlation between ENSO and PSA2. There are no evidence that the SH extratropical climate variability induced by Ni?o3 variations are stronger in the EP-ENSO period, and that variability induced by Ni?o4 variations are stronger in the CP-ENSO period.  相似文献   

15.
北太平洋海表温度及各贡献因子的变化   总被引:2,自引:0,他引:2  
刘珊  王辉  姜华  金啟华 《海洋学报》2013,35(1):63-75
采用1958年1月至2007年12月SODA海洋上层温度的月平均资料,基于海温变化方程和统计分析方法,分析了北太平洋海表面温度(SST)异常特征及各局地因子贡献比例的变化。结果表明,伴随着1976/1977风场最强中心位置的南北移动,形成了两个北太平洋SST年际-年代际变化的异常中心:一个是位于30°N附近的副热带海盆内区,SST异常主要受风应力强度的主导;一个是位于40°N附近的副热带和副极地环流交汇区,SST异常主要受风应力旋度的位置即风场位置的影响。在副热带海盆内区,最强降温发生在1978-1982年,SST异常的主要局地贡献因子为海表热通量和经向平流,二者所占比例和约为50%~60%,均为同相增温或降温作用,余项所占比例约为20%~50%。在副热带和副极地环流交汇区,海盆内区和西部边界区的SST异常的跃变时间同为1975年,但是内区的垂直混合项的跃变时间早于西部5年左右。SST异常的主要贡献因子为海表热通量和经向平流,但在1983-1988年海温强降温期间,经向平流项贡献大于海表热通量项的贡献。两个区域的垂直混合项均为降温贡献,虽然量值小却显示出很强的年代际变化信号。平流项中经向平流最大,垂直平流最小。  相似文献   

16.
南海冬季海浪的时空变率特征   总被引:4,自引:1,他引:3  
The spatial and temporal variation characteristics of the waves in the South China Sea(SCS) in the boreal winter during the period of 1979/1980–2011/2012 have been investigated based on the European Centre for Medium-range Weather Forecasts interim(ERA-Interim) reanalysis dataset. The results show that the leading mode of significant wave height anomalies(SWHA) in the SCS exhibits significant interannual variation and a decadal shift around the mid-1990 s, and features a basin-wide pattern in the entire SCS with a center located in the west of the Luzon Strait. The decadal change from a weak regime to a strong regime is mainly associated with the enhancement of winter monsoon modulated by the Pacific decadal oscillation(PDO). The interannual variation of the SWHA has a significant negative correlation with the El Ni?o Southern Oscillation(ENSO) in the same season and the preceding autumn. For a better understanding of the physical mechanism between the SCS ocean waves and ENSO, further investigation is made by analyzing atmospheric circulation. The impact of the ENSO on the SWHA over the SCS is bridged by the East Asian winter monsoon and Pacific-East Asian teleconnection in the lower troposphere. During the El Ni?o(La Ni?a), the anomalous Philippine Sea anticyclone(cyclone) dominates over the Western North Pacific, helps to weaken(enhance) East Asian winter monsoon and then emerges the negative(positive) SWHA in the SCS.  相似文献   

17.
1 IntroductionAs is well known, the increasing greenhousegas and SO2extricated into the atmosphere due to hu-man activities have alreadyresulted in the global sur-face air temperature (SAT) and sea surface temper-ature (SST) rising. The globally mean surf…  相似文献   

18.
众所周知,ENSO(El Nino/ Southern Oscillation)是发生在热带太平洋的年际时间尺度上最强的气候信号,与 El Nino (La Nina)相应的正(负)海温距平(SSTA)主要分布于赤道中东太平洋地区(Rasmusson et al.,1982)。相对于热带太平洋的年际ENSO现象,人们注意到北太平洋海平面气压(SLP)存在更长周期的年代际变化(Trenberth et al.,1994),有人认为这与北太平洋的表层温度(SST)变化有关(Latif et al.,1994),也有人认为与热带SST的异常关系更为密切(Jacobs et al.,1994)。20世纪80年代后的ENSO事件和20世纪60,70年代有明显的差别(Wang,1995),20世纪90年后El Nino发生频数增加,并且在1997和1998年出现了20世纪最强的一次Nino事件(McPhaden,1999)。 因此,不论是作为大气年代际变化可能的一个驱动因子,还是作为年际ENSO的背景场,从整体上了解太平洋SST的年代际时间尺度上的时、空变化特征都是十分重要的。  相似文献   

19.
张艳慧  王凡  臧楠 《海洋学报》2008,30(6):17-23
利用20世纪80年代和90年代WOD01(World Ocean Database2001)中的CTD温盐剖面资料和2000年以后Argo资料,对比分析了热带西太平洋次表层和中层水团分布的年代变化特征。分析结果表明,在这两个时期,起源于南北太平洋中高纬度海域的各次表层水和中层水,在热带西太平洋分布特征和交织在一起的总体态势基本一致,水团性质的年代变化不大。这与上述两个时段全球海洋-大气耦合系统趋于正常状态相吻合。通过辨识和跟踪表征次表层水性质的盐度极大值,发现南太平洋热带水沿西边界向北扩散程度有所加大,由前一时期的5°N,进一步扩散到6°~7°N;北太平洋热带水在西边界附近的向南扩散程度有所削弱,在2002-2005年间只向南扩散到4°N,而前一个时期则可向南扩散到2°N。通过辨识表征中层水性质的盐度极小值,南极中层水在西边界附近向北扩散程度有所加大,在2002-2005年到达13°N附近,而前一个时期只到达11°N;同期,北太平洋中层水在西边界附近的向南扩散程度有所削弱。上述年代变化与全球水循环强度的变化之间有何关系有待进一步研究。  相似文献   

20.
A new type of pycnostad has been identified in the western subtropical-subarctic transition region of the North Pacific, based on the intensive hydrographic survey carried out in July, 2002. The potential density, temperature and salinity of the pycnostad were found to be 26.5–26.7 σ θ , 5°–7°C and 33.5–33.9 psu respectively. The pycnostad is denser, colder and fresher than those of the North Pacific Central Mode Water and different from those of other known mode waters in the North Pacific. The thickness of the pycnostad is comparable to that of other mode waters, spreading over an area of at least 650 × 500 km around 43°N and 160°E in the western transition region. Hence, we refer to the pycnostad as Transition Region Mode Water (TRMW). Oxygen data, geostrophic current speed and climatology of mixed layer depth in the winter suggest that the TRMW is formed regularly in the deep winter mixed layer near the region where it was observed. Analysis of surface heat flux also supports the idea and suggests that there is significant interannual variability in the property of the TRMW. The TRMW is consistently distributed between the Subarctic Boundary and the Subarctic Front. It is also characterized by a wide T-S range with similar density, which is the characteristic of such a transition region between subtropical and subarctic water masses, which forms a density-compensating temperature and salinity front. The frontal nature also tends to cause isopycnal intrusions within the pycnostad of the TRMW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号