首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wheatland  M.S. 《Solar physics》2001,203(1):87-106
Rates of flaring in individual active regions on the Sun during the period 1981–1999 are examined using United States Air Force/Mount Wilson (USAF/MWL) active-region observations together with the Geostationary Operational Environmental Satellite (GOES) soft X-ray flare catalog. Of the flares in the catalog above C1 class, 61.5% are identified with an active region. Evidence is presented for obscuration, i.e. that the increase in soft X-ray flux during a large flare decreases the likelihood of detection of soft X-ray events immediately following the large flare. This effect means that many events are missing from the GOES catalog. It is estimated that in the absence of obscuration the number of flares above C1 class would be higher by (75±23)%. A second observational selection effect – an increased tendency for larger flares to be identified with an active region – is also identified. The distributions of numbers of flares produced by individual active regions and of mean flaring rate among active regions are shown to be approximately exponential, although there are excess numbers of active regions with low flare numbers and low flaring rates. A Bayesian procedure is used to analyze the time history of the flaring rate in the individual active regions. A substantial number of active regions appear to exhibit variation in flaring rate during their transit of the solar disk. Examples are shown of regions with and without rate variation, illustrating the different distributions of times between events (waiting-time distributions) that are observed. A piecewise constant Poisson process is found to provide a good model for the observed waiting-time distributions. Finally, applications of analysis of the rate of flaring to understanding the flare mechanism and to flare prediction are discussed.  相似文献   

2.
Craig  I.J.D.  Wheatland  M.S. 《Solar physics》2002,211(1-2):275-287
The ability of magnetic reconnection solutions to explain statistical flare data is discussed. It is assumed that flares occur at well-defined, isolated sites within an active region, determined by the null points and separators of the coronal magnetic field (Craig, 2001). Statistical flare observations then derive from a multiplicity of independent sites, flaring in parallel, that produce events of widely varying output (Wheatland, 2002). Given that the `separator length' at an individual site controls the event frequency and the mean energy release, it is shown that the observed frequency-energy spectrum N(E)can be inverted to yield a source function that relates directly to the distribution of separator lengths. It is also pointed out that, under the parallel flaring model, inferred waiting-time distributions are naturally interpreted as a superposition of individual point processes. Only a modest number of flaring separators is required to mimic a Poisson process.  相似文献   

3.
A time-dependent model for the energy of a flaring solar active region is presented based on an existing stochastic jump-transition model (Wheatland and Glukhov in Astrophys. J. 494, 858, 1998; Wheatland in Astrophys. J. 679, 1621, 2008 and Solar Phys. 255, 211, 2009). The magnetic free energy of an active region is assumed to vary in time due to a prescribed (deterministic) rate of energy input and prescribed (random) jumps downwards in energy due to flares. The existing model reproduces observed flare statistics, in particular flare frequency – size and waiting-time distributions, but modeling presented to date has considered only the time-independent choices of constant energy input and constant flare-transition rates with a power-law distribution in energy. These choices may be appropriate for a solar active region producing a constant mean rate of flares. However, many solar active regions exhibit time variation in their flare productivity, as exemplified by NOAA active region (AR) 11029, observed during October – November 2009 (Wheatland in Astrophys. J. 710, 1324, 2010). Time variation is incorporated into the jump-transition model for two cases: (1) a step change in the rates of flare transitions, and (2) a step change in the rate of energy supply to the system. Analytic arguments are presented describing the qualitative behavior of the system in the two cases. In each case the system adjusts by shifting to a new stationary state over a relaxation time which is estimated analytically. The model exhibits flare-like event statistics. In each case the frequency – energy distribution is a power law for flare energies less than a time-dependent rollover set by the largest energy the system is likely to attain at a given time. The rollover is not observed if the mean free energy of the system is sufficiently large. For Case 1, the model exhibits a double exponential waiting-time distribution, corresponding to flaring at a constant mean rate during two intervals (before and after the step change), if the average energy of the system is large. For Case 2 the waiting-time distribution is a simple exponential, again provided the average energy of the system is large. Monte Carlo simulations of Case 1 are presented which confirm the estimate for the relaxation time and the expected forms of the frequency – energy and waiting-time distributions. The simulation results provide a qualitative model for observed flare statistics in AR 11029.  相似文献   

4.
Frequency distributions and correlations of solar X-ray flare parameters   总被引:3,自引:0,他引:3  
We have determined frequency distributions of flare parameters from over 12000 solar flares recorded with the Hard X-Ray Burst Spectrometer (HXRBS) on the Solar Maximum Mission (SMM) satellite. These parameters include the flare duration, the peak counting rate, the peak hard X-ray flux, the total energy in electrons, and the peak energy flux in electrons (the latter two computed assuming a thick-target flare model). The energies were computed above a threshold energy between 25 and 50 keV. All of the distributions can be represented by power laws above the HXRBS sensitivity threshold. Correlations among these parameters are determined from linear regression fits as well as from the slopes of the frequency distributions. Variations of the frequency distributions were investigated with respect to the solar activity cycle.Theoretical models for the frequency distribution of flare parameters depend on the probability of flaring and the temporal evolution of the flare energy build-up. Our results are consistent with stochastic flaring and exponential energy build-up, with an average build-up time constant that is 0.5 times the mean time between flares. The measured distributions of flares are also consistent with predicted distributions of flares from computer simulations of avalanche models that are governed by the principle of self-organized criticality.  相似文献   

5.
Yung-Ping Chou 《Solar physics》2001,199(2):345-369
We perform numerical simulations using an avalanche model for solar flares, in which the effect of avalanche event duration is included and the lateral boundary condition can be either open or periodic. The results from the simulations show that self-organized criticality (SOC) exists under a variety of conditions of helicity dissipation, and they are similar in the sense that the indices of power-law distributions of avalanche sizes are the same, while the duration and waiting time distributions differ little. Of interest are: (1) if there exists helicity dissipation in the course of avalanches, SOC exists only when the amount of helicity dissipation per avalanche is small; (2) sudden reductions in the total helicity of the system do not severely disturb SOC, if the amount reduced is moderate; (3) the distribution of waiting times is shown to be exponential, in consistent with the Poisson statistics other avalanche models have predicted, and the exponent increases as the effect of event duration becomes larger. The self-similar structure of the avalanche time series is also examined. These results imply that, although helicity is dissipated in resistive diffusion of flares, the amount of dissipation should be small and the conservation law of helicity thus holds in an approximate sense. Also, the coronal mass ejections (CMEs), observed to take helicity out of the solar corona in an eruptive way, may disrupt the statistical equilibrium of the corona only temporarily.  相似文献   

6.
We use Renewal Theory for the estimation and interpretation of the flare rate from the Geostationary Operational Environmental Satellite (GOES) soft X-ray?flare catalogue. It is found that, in addition to the flare rate variability with the solar cycles, a much faster variation occurs. The fast variation on time scales of days and hours down to minute scale appears to be comparable with time intervals between two successive flares (waiting times). The detected fast non-stationarity of the flaring rate is discussed in the framework of the previously published stochastic models of the waiting time dynamics.  相似文献   

7.
Inspired by the finding that the large waiting time of solar flares presents a power-law distribution, we investigate the waiting time distribution (WTD) of coronal mass ejections (CMEs). SOHO/LASCO CME observations from 1996 to 2003 are used in this study. It is shown that the observed CMEs have a similar power-law behavior to the flares, with an almost identical power-law index. This strongly supports the viewpoint that solar flares and CMEs are different manifestations of the same physical process. We have also investigated separately the WTDs of fast-type and slow-type CMEs and found that their indices are identical, which imply that both types of CME may originate from the same physical mechanism.  相似文献   

8.
9.
We present, for the first time, an analysis of seven intense X-ray flares observed from six stars (LAV 796, LAV 1174, SHM2002 3734, 2MASS 02191082+5707324, V553 Car, V557 Car). These stars are located in the region of young open star clusters NGC 869 and IC 2602. These flares detected in the XMM-Newton data show a rapid rise (10–40 min) and a slow decay (20–90 min). The X-ray luminosities during the flares in the energy band 0.3–7.5 keV are in the range of 1029.9 to 1031.7 erg s?1. The strongest flare was observed with the ratio ~13 for count rates at peak of the flare to the quiescent intensity. The maximum temperature during the flares has been found to be ~100 MK. The semi-loop lengths for the flaring loops are estimated to be of the order of 1010 cm. The physical parameters of the flaring structure, the peak density, pressure and minimum magnetic field required to confine the plasma have been derived and found to be consistent with flares from pre-main sequence stars in the Orion and the Taurus-Auriga-Perseus region.  相似文献   

10.
We present temporal and spectral characteristics of X-ray flares observed from six late-type G–K active dwarfs (V368 Cep, XI Boo, IM Vir, V471 Tau, CC Eri and EP Eri) using data from observations with the XMM–Newton observatory. All the stars were found to be flaring frequently and altogether a total of 17 flares were detected above the 'quiescent' state X-ray emission which varied from 0.5 to  8.3 × 1029 erg s−1  . The largest flare was observed in a low-activity dwarf XI Boo with a decay time of 10 ks and ratio of peak flare luminosity to 'quiescent' state luminosity of 2. We have studied the spectral changes during the flares by using colour–colour diagram and by detailed spectral analysis during the temporal evolution of the flares. The exponential decay of the X-ray light curves, and time evolution of the plasma temperature and emission measure are similar to those observed in compact solar flares. We have derived the semiloop lengths of flares based on the hydrodynamic flare model. The size of the flaring loops is found to be less than the stellar radius. The hydrodynamic flare decay analysis indicates the presence of sustained heating during the decay of most flares.  相似文献   

11.
Wheatland  M.S.  Litvinenko  Y.E. 《Solar physics》2002,211(1-2):255-274
The observed distribution of waiting times t between X-ray solar flares of greater than C1 class listed in the Geostationary Operational Environmental Satellite (GOES) catalog exhibits a power-law tail (t) for large waiting times (t>10hours). It is shown that the power-law index varies with the solar cycle. For the minimum phase of the cycle the index is =–1.4±0.1, and for the maximum phase of the cycle the index is –3.2±0.2. For all years 1975–2001, the index is –2.2±0.1. We present a simple theory to account for the observed waiting-time distributions in terms of a Poisson process with a time-varying rate (t). A common approximation of slow variation of the rate with respect to a waiting time is examined, and found to be valid for the GOES catalog events. Subject to this approximation the observed waiting-time distribution is determined by f(), the time distribution of the rate . If f() has a power-law form for low rates, the waiting time-distribution is predicted to have a power-law tail (t)–(3+) (>–3). Distributions f() are constructed from the GOES data. For the entire catalog a power-law index =–0.9±0.1 is found in the time distribution of rates for low rates (<0.1hours –1). For the maximum and minimum phases power-law indices =–0.1±0.5 and =–1.7±0.2, respectively, are observed. Hence, the Poisson theory together with the observed time distributions of the rate predict power-law tails in the waiting-time distributions with indices –2.2±0.1 (1975–2001), –2.9±0.5 (maximum phase) and –1.3±0.2 (minimum phase), consistent with the observations. These results suggest that the flaring rate varies in an intrinsically different way at solar maximum by comparison with solar minimum. The implications of these results for a recent model for flare statistics (Craig, 2001) and more generally for our understanding of the flare process are discussed.  相似文献   

12.
Blazars are the subclass of active galactic nuclei (AGNs) which includes the Flat Spectrum Radio Quasars (FSRQ) and BL Lacertae (BL Lac) objects. Variability on the short- and long-time scale in all the wide energy ranges from radio up to gamma-ray emission is a special characteristic of blazars. Multi-wavelength studies of the flaring activity and variability of blazars can serve as a tool to probe the physical properties of the near the core regions and processes responsible for the observed features. 3C 454.3 is a bright FSRQ that is intensively studied through the wide range of electromagnetic spectrum. It has shown remarkably high activity since 2000. The long-term observations of 3C 454.3 at 800 GeV–100 TeV energies with the SHALON telescope were started in 1998 year. A number of activity periods were found. The most significant flaring state of 3C 454.3 at TeV energies was detected in the SHALON observational period of November–December 2010. This increase is correlated with the flares at a lower energy range in observations of Fermi-LAT. The direct association of the significant changes of gamma-ray flux with strong core radio flares are not clear but observed correlations and lags in multi-wavelength activity may point to the complexity of the emission processes in blazars connected with disturbance propagating in the jet.  相似文献   

13.
Wheatland  M.S. 《Solar physics》2002,208(1):33-42
A model is presented to explain the observed frequency distribution of flare energies, based on independent flaring at a number of distinct topological structures (separators) within active-region magnetic fields. The model is a modification and generalization of a recent model due to Craig (2001), and reconciles that model with the observed flare waiting-time distribution, and the observed absence of a flare waiting-time versus energy relationship. The basic assumptions of the model are that flares of energy E 2 occur at separators of length , and that the frequency of flaring at a separator is defined by the Alfvén transit time of the structure. To reproduce the observed distribution of flare energies the model requires a probability distribution P( ) –1 of separator lengths within active regions. This prediction of the model is in principle testable. A theoretical origin for this distribution is also discussed.  相似文献   

14.
Wheatland  M.S. 《Solar physics》2003,214(2):361-373
The distribution of times t between coronal mass ejections (CMEs) in the Large Angle and Spectrometric Coronagraph (LASCO) CME catalog for the years 1996–2001 is examined. The distribution exhibits a power-law tail (t) with an index –2.36±0.11 for large waiting times (t>10 hours). The power-law index of the waiting-time distribution varies with the solar cycle: for the years 1996–1998 (a period of low activity), the power-law index is –1.86±0.14, and for the years 1999–2001 (a period of higher activity), the index is –2.98±0.20. The observed CME waiting-time distribution, and its variation with the cycle, may be understood in terms of CMEs occurring as a time-dependent Poisson process. The CME waiting-time distribution is compared with that for greater than C1 class solar flares in the Geostationary Operational Environmental Satellite (GOES) catalog for the same years. The flare and CME waiting-time distributions exhibit power-law tails with very similar indices and time variation.  相似文献   

15.
It is shown that the chronology of flare star discoveries in the Pleiades cluster and the Orion association can be described satisfactorily by various distribution functions (gamma, binomial, decreasing exponential, and delta) for the mean frequencies of stellar flares. However, it has been found that this is due to the uncertainty in the observationally derived distribution function for the mean frequency of stellar flares. The most likely function is that derived by Ambartsumian, which has a physical basis.Translated fromAstrofizika, Vol. 38, No. 1, pp. 25–32, January–March, 1995.  相似文献   

16.
The frequency of flares is one of the basic characteristics of the activity of flare stars. Long-term variations in the flaring frequency are determined by comparing the distribution functions of the flaring frequency for systems of flare stars with different ages. __________ Translated from Astrofizika, Vol. 51, No. 1, pp. 63–74 (February 2008).  相似文献   

17.
Wheatland  M.S.  Uchida  Y. 《Solar physics》1999,189(1):163-172
In 1988, Uchida and Shibata proposed a model for compact loop flares as due to the collision of two large amplitude torsional Alfvén wave packets coming up along a coronal magnetic loop, leaking out from the subphotospheric convective layers of the solar atmosphere. We investigate the possibility that active region transient brightenings occur when a single torsional Alfvén wave packet transits a coronal loop. Assuming this related origin for flares and transient brightenings, the statistics of the two phenomena must also be closely related. It is shown that the observed power-law frequency-energy distributions of flares and transient brightenings may be accounted for in a natural way if the energy distribution of the underlying torsional Alfvén wave packets is itself a power law.  相似文献   

18.
We analyse warps in the nearby edge-on spiral galaxies observed in the Spitzer /Infrared Array Camera (IRAC) 4.5-μm band. In our sample of 24 galaxies, we find evidence of warp in 14 galaxies. We estimate the observed onset radii for the warps in a subsample of 10 galaxies. The dark matter distribution in each of these galaxies are calculated using the mass distribution derived from the observed light distribution and the observed rotation curves. The theoretical predictions of the onset radii for the warps are then derived by applying a self-consistent linear response theory to the obtained mass models for six galaxies with rotation curves in the literature. By comparing the observed onset radii to the theoretical ones, we find that discs with constant thickness can not explain the observations; moderately flaring discs are needed. The required flaring is consistent with the observations. Our analysis shows that the onset of warp is not symmetric in our sample of galaxies. We define a new quantity called the onset-asymmetry index and study its dependence on galaxy properties. The onset asymmetries in warps tend to be larger in galaxies with smaller disc scalelengths. We also define and quantify the global asymmetry in the stellar light distribution, that we call the edge-on asymmetry in edge-on galaxies. It is shown that in most cases the onset asymmetry in warp is actually anticorrelated with the measured edge-on asymmetry in our sample of edge-on galaxies and this could plausibly indicate that the surrounding dark matter distribution is asymmetric.  相似文献   

19.
The NOAA active region (AR) 11029 was a small but highly active sunspot region which produced 73 GOES soft X-ray flares during its transit of the disk in late October 2009. The flares appear to show a departure from the well-known power law frequency-size distribution. Specifically, too few GOES C-class and no M-class flares were observed by comparison with a power law distribution (Wheatland, Astrophys. J. 710, 1324, 2010). This was conjectured to be due to the region having insufficient magnetic energy to power the missing large events. We construct nonlinear force-free extrapolations of the coronal magnetic field of AR 11029 using data taken on 24 October by the SOLIS Vector SpectroMagnetograph (SOLIS/VSM) and data taken on 27 October by the Hinode Solar Optical Telescope SpectroPolarimeter (Hinode/SP). Force-free modeling with photospheric magnetogram data encounters problems, because the magnetogram data are inconsistent with a force-free model. We employ a recently developed “self-consistency” procedure which addresses this problem and accommodates uncertainties in the boundary data (Wheatland and Régnier, Astrophys. J. 700, L88, 2009). We calculate the total energy and free energy of the self-consistent solution, which provides a model for the coronal magnetic field of the active region. The free energy of the region was found to be ≈?4×1029?erg on 24 October and ≈?7×1031?erg on 27 October. An order of magnitude scaling between RHESSI non-thermal energy and GOES peak X-ray flux is established from a sample of flares from the literature and is used to estimate flare energies from the observed GOES peak X-ray flux. Based on the scaling, we conclude that the estimated free energy of AR 11029 on 27 October when the flaring rate peaked was sufficient to power M-class or X-class flares; hence, the modeling does not appear to support the hypothesis that the absence of large flares is due to the region having limited energy.  相似文献   

20.
The magnetic field structure of five flares observed by HINOTORI spacecraft is studied. The double source structure of impulsive flares seems to indicate hard X-ray emission from the two footpoints of a flaring loop, but the potential field computation does not reproduce a loop connecting the two sources. Therefore the magnetic field could be in a sheared configuration and the force-free field modeling would be the next step to examine. On the other hand gradual flares are characterized by hard X-ray sources located in the corona, 2–4 x 104 km above the photosphere. The potential field modeling is found to give a reasonable fitting in this type of flares, and the hard X-ray sources are located at the top of the magnetic loop or arcade. This configuration is consistent with the thick-target trap model of the hard X-ray bursts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号