首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
生油古湖泊生产力的估算方法及应用实例   总被引:9,自引:2,他引:9  
刘传联  徐金鲤 《沉积学报》2002,20(1):144-150
文中综述了生油古湖泊生产力估算的常用方法,并以山东东营凹陷早第三纪生油湖为例进行了应用尝试。结果表明,无论是定性分析还是定量计算,均以沙三中、下亚段、沙四上亚段和沙一段沉积时期的古湖泊生产力最高,其次是沙三上亚段沉积时期,沙二段沉积时期古生产力最低。把东营湖古生产力定量计算的结果与现代不同营养类型湖泊生产力的值相比较,可以发现沙三中、下亚段、沙四上亚段和沙一段沉积时期的东营湖是超养湖,沙三上亚段沉积时期是富养湖,沙二段沉积时期是中养湖。所以沙三中、下亚段、沙四上亚段和沙一段沉积时期古湖泊最有利于生成石油,这与油气勘探的实际结果极为吻合。  相似文献   

2.
谭先锋  王佳  雷丽丹  况昊  高红灿  王伟庆 《地球科学》2016,41(11):1893-1908
古近纪早期,地球上发生了古新世-始新世极热气候(PETM)事件,严重影响全球碳循环过程和海陆生态环境系统.依据普通薄片、元素分析、碳同位素、TOC等实验结果.研究了渤海湾盆地济阳断陷湖盆古新世-始新世时期的湖泊环境时空波动变化及其对PETM事件的响应,发现济阳断陷湖盆早期经历了多旋回的演化过程,湖盆中碎屑物质和化学物质的分异作用同时发生,陆地风化作用和化学沉积物质分异指示了极热气候的变化过程;该时期湖水为逐渐咸化的盐湖环境,具有空间的分带性和时间的阶段演化性,湖水咸化是热气候事件发生的直接响应;湖泊的时空波动演化经历了古新世-始新世时期的极热气候(PETM)事件,该事件早期湖泊尚未完全咸化,浮游生物比较繁盛,早期浮游植物对12CO2的吸收,会导致短暂的湖泊古生产力较高,但是随着湖盆逐渐咸化,生物的活动存活较难,主要以旱生植物为主,古生产力降到最低.由于过量的12C吸收沉淀,造成湖泊沉积记录中的δ13C明显负偏,最大可达5×10-3.由此证实全球PETM事件影响了古新世-始新世之交济阳断陷湖盆的时空演化和物质分异过程.   相似文献   

3.
叠合断陷盆地沉积体系分析--以东海丽水-椒江凹陷为例   总被引:3,自引:0,他引:3  
田兵  李小燕  庞国印  唐俊  唐丽  王琪 《沉积学报》2012,30(4):696-705
 丽水-椒江凹陷是我国近海海域典型的叠合断陷盆地。综合分析岩芯、地震、录井、测井等资料,对东海丽水-椒江凹陷沉积体系开展了重点研究。分析认为,古新世研究区主要发育5种沉积体系:扇三角洲体系、三角洲体系、湖泊体系、海洋体系及重力流体系。在此基础上对古新统各组的沉积体系展布进行了深入探讨,其中,断陷初期月桂峰组为湖泊沉积环境,而后断陷继续,海侵发生,沉积环境转变为海洋环境;古新统沉积期三角洲体系主要发育于凹陷西缓坡,以闽浙隆起为物源,扇三角洲主要发育于同沉积断裂控制的东侧陡坡带,在月桂峰及灵峰组沉积期,灵峰潜山出露水面,其两侧形成多个扇三角洲(近岸水下扇)沉积。基于以上研究,预测出研究区的两个有利勘探相带:灵峰潜山两侧扇三角洲(近岸水下扇)及滨浅海(湖)砂体、丽水西次凹西斜坡南部与断块有利构造相匹配的三角洲前缘及滑塌重力流砂体。  相似文献   

4.
松辽盆地松科1井晚白垩世沉积时期古湖泊生产力   总被引:1,自引:0,他引:1  
通过对松科1井不同层位泥岩样品的地球化学分析,利用有机碳法计算古海洋生产力公式定量恢复了白垩纪时期松辽古湖泊生产力,探讨了湖泊演化过程中生物发育、水体环境的变化及生产力与优质烃源岩关系.结果显示:青山口组一段和嫩江组一段时期生产力最高,最大值达到3 000g/(m2·a),生物标志化合物指标反映了该时期以藻类为主要贡献,水体具有盐度分层,湖底为厌氧环境,可能与海侵作用有关,此时湖泊为超富营养或富营养湖,反映出高生产力与湖泊中藻类勃发、水体分层、湖底厌氧等条件有关;青二、三段早期继承了青一段时期湖泊特点,具有相对较高的生产力,为中至富养湖;之后生产力逐渐下降,到晚期时生产力又有增大,为中养湖.姚家组一段沉积时期湖泊生产力平均为365 g/(m2·a),为中养湖;姚家组二、三段沉积早期和晚期时生产力均较低,一般低于100 g/(m2·a),属贫养湖;而在沉积中期生产力有明显增大,为中养湖.生产力、泥岩中生物标志物的变化反映了湖泊在白垩纪沉积时期生物发育、水体环境出现振荡变化.超养湖和富养湖的高生产力是形成优质源岩的基础.  相似文献   

5.
古湖泊学研究——以桦甸断陷盆地为例   总被引:1,自引:0,他引:1  
古湖泊学是研究湖泊系统历史演变的科学,是一门综合性很强的地球科学。本文综述了古湖泊学的定义、研究现状及常用的研究方法,并以吉林桦甸古近纪断陷含油页岩湖盆为例进行了应用。桦甸盆地为小型半地堑盆地,盆地南缘F1断裂控制了古近系湖泊演化特征。桦甸盆地富含油页岩资源,具有开展古湖泊学研究的优势条件。桦甸油页岩具明显的黑白相间的双层结构特征,有机质条带和陆源碎屑颗粒呈现良好的韵律互层,有机质呈现褐色或黑色条带,夹杂石英、长石颗粒的粘土矿物呈白色条带。根据泥岩和油页岩的有机碳含量垂向变化特征,桦甸组古湖泊生产力演化趋势为:中部含油页岩段>上部含煤段>下部含黄铁矿段,反映油页岩沉积时,湖盆古湖泊生产力最高。根据油页岩岩石学特征、V/(V+Ni)、Sr/Ba和B/Ga等元素比值分析,中部含油页岩段时期,表现出一种淡水与半咸水—咸水交替变化的沉积演变过程,可以形成一定程度的盐度分层,使底层水处于缺氧环境,有利于有机质的保存。随着古湖泊学的不断发展,它已经在油气资源勘探开发及全球环境与气候变化等领域发挥了重要作用,但仍存在一些理论及方法问题需要湖泊地质工作者的不断努力与探索。  相似文献   

6.
青海湖沉积物中的长链不饱和脂肪酮(长链烯酮)   总被引:4,自引:0,他引:4  
在青海湖沉积物中检出了含有2~4个双键的长链(C37-C40)甲基和乙基脂肪酮。这是世界沉积于碱性环境和各种不同盐度条件下(耳海,淡水;青海湖,半咸水;尕海,咸水)的近代湖泊沉积物中的长链不饱和脂肪酮的首次详细报导。许多地球化学家广泛用这些化合物经过计算公式来估算海洋沉积物的古温度。如果对这些化合物估算海洋沉积物古温度的计算公式进行适当校正,那么也可用这些化合物来推知湖泊沉积物的古温度。  相似文献   

7.
塔南凹陷早白垩世经历了断陷初期冲积一滨浅湖盆层序、强烈断陷期半深湖一深湖湖盆层序及断坳期三角洲.湖泊盆型层序的沉积演化序列。受盆地整体格架的控制,凹陷内可划分出5个次级构造单元,各次级构造单元古构造格架决定了沉积相带展布、砂体的发育和分布。  相似文献   

8.
程宇龙  万世明 《沉积学报》2023,(6):1714-1738
【意义】海洋表层初级生产力及其生物泵过程是海洋碳循环的关键环节。日本海作为西北太平洋一个主要的边缘海,其晚新生代古生产力演化与区域构造/火山活动、东亚季风/西风、洋流演变、全球气候和海平面变化等密切相关,是探寻地球系统科学的极佳窗口。【进展和结论】得益于一系列国际大洋钻探计划(DSDP 31、ODP 127/128和IODP 346)等航次的相关研究,有关日本海古海洋演化,尤其是古生产力演化重建方面取得了许多重要认识。日本海古生产力的常用代用指标包括沉积物的微量元素组成、生物标志物、生源组分含量及同位素组成、微体古生物化石种属特征等。在地质时间尺度,日本海表层初级生产力主要取决于浮游生物必需的主要营养盐(氮、磷和硅)和微量营养盐(铁、锰、钴、锌、铜等),而日本海的营养盐主要通过风尘输入、火山活动、表层和深层洋流携带过来。在构造时间尺度,日本海古生产力的长期演化及其驱动机制(如风尘、火山铁肥和洋流贡献)尚不清楚,区域构造演化与海道开合、全球气候和海平面变化、火山活动及亚洲风尘输入演化等可能是关键驱动因素。在轨道—千年尺度,日本海沉积了深—浅色的韵律层,表层生产力大体表现出冰期降低而间冰期...  相似文献   

9.
水下扇是断陷湖泊中一种重要沉积类型,近年来受到关注度越来越高。海洋和湖泊中与重力流有关的各类扇体的术语很多,诸如深水扇、盆底扇、湖底扇、斜坡扇、滑塌扇和浊积扇等,而它们都是不同类型的水下扇。国内沉积学界对湖泊水下扇这一术语的合理性一直有争议,与之相关的术语有水下冲积扇、近岸水下扇和远岸浊积岸等。文中梳理了有关水下扇的一些术语的含义异同,进而明确了断陷湖泊水下扇的基本类型;明确提出了湖泊外部物源体系与内部物源体系,并由此建立了湖泊水下扇的沉积分布模式;最后讨论对比了水下扇、冲积扇及扇三角洲之间的沉积差异,以期为今后深入研究这一类型沉积体提供借鉴。  相似文献   

10.
水下扇是断陷湖泊中一种重要沉积类型,近年来受到关注度越来越高。海洋和湖泊中与重力流有关的各类扇体的术语很多,诸如深水扇、盆底扇、湖底扇、斜坡扇、滑塌扇和浊积扇等,而它们都是不同类型的水下扇。国内沉积学界对湖泊水下扇这一术语的合理性一直有争议,与之相关的术语有水下冲积扇、近岸水下扇和远岸浊积岸等。文中梳理了有关水下扇的一些术语的含义异同,进而明确了断陷湖泊水下扇的基本类型;明确提出了湖泊外部物源体系与内部物源体系,并由此建立了湖泊水下扇的沉积分布模式;最后讨论对比了水下扇、冲积扇及扇三角洲之间的沉积差异,以期为今后深入研究这一类型沉积体提供借鉴。  相似文献   

11.
赣东北地区不同时代硅质岩的地球化学特征及其地质意义   总被引:4,自引:1,他引:3  
赣东北地区硅质岩各时代均有不同程度的发育,各时代硅质岩的SiO2含量变化范围为74.90%~97.19%,Si/Al为10.84~93.21,与Al2O3呈较好的负相关关系,表明它们含有较高比例的陆源泥质沉积物,硅质岩样品的Al2O3/(Al2O3+F2O3)=0.60~0.99,Ce/Ce=0.99~1.22,(La/Ce)N=0.91~1.83,V/Y<5.78,Ti/V>17。上述特征表明本区硅质岩形成于大陆边缘构造环境,而与大洋盆地及洋中脊构造环境无关。自古生代以来,该地区没有出现深海大洋盆地环境。  相似文献   

12.
报道了赣东北蛇绿岩中西湾钠长花岗岩的地球化学和Nd同位素研究结果,它的许多特征与现代环太平洋地区的埃达克岩(Adakite)极为相似,包括高Al2O3(15%~17%),Sr(383×10^-6~920×10^-6)和Sr/Y(166~444),低HREE(Yb=0.14×10^-6~0.21×10^-6)和Y(1.66×10^-6~2.81×10^-6)以及高εNd(t)值(+4.9~+6.9)。与现代典型埃达克岩的差异仅在西湾钠长花岗岩具有异常高的Na2O/K2O(12~37),Na2O/CaO(2.7~3.6)比值和异常低的MREE(Sm=0.6×10^-6~1.2×10^-6)和HREE含量。上述地球化学特征表明,西湾钠长花岗岩为俯冲的细碧岩化的洋壳玄武岩(MORB)在高压条件下小比例部分熔融形成,源区残留矿物相有较大比例的角闪石和石榴石,而缺少斜长石。这种形成过程类似于现代的埃达克岩的成因。  相似文献   

13.
The Ccarb masses per time unit was determined for separate oceanic basins and for the entire World Ocean using lithological–facies mapping of the Neo– and Eopleistocene age sections of the Pleistocene pelagic zones in the World Ocean. These parameters are compared with those of continents, continental shelves and slopes, and oceans, which were recalculated using data by Ronov (1993) for the Upper Jurassic–Pliocene. At the Mesozoic–Cenozoic boundary, carbonate accumulation was shifted from continents to oceans. The accumulation of carbonate sediments on continents is determined by areas of epicontinental seas. Significant role in the history of oceanic carbonate sedimentation is played by the nutrient fluxes from continents into the World Ocean. Subduction and evolution of the carbonate compensation depth (CCD) play significant role in calculating the quantitative parameters of carbonate accumulation in ocean.  相似文献   

14.
海相优质烃源岩发育的主要影响因素及沉积环境   总被引:7,自引:1,他引:6  
对海洋生物、现代海洋沉积和古代海相地层中有机质含量分布特征和实验室模拟实验的结果表明,水体中高生物生产率是海相环境形成富有机质沉积的关键因素;沉积和早期成岩作用期间水体的相对还原环境是有机质富集保存的有利条件;海底深部流体的活动是造成富有机质沉积的不可忽视的因素;沉积速率是影响海相沉积有机质富集的主要因素。现有研究表明,在海相盆地中最有利形成优质烃源岩的沉积环境主要有欠补偿浅水—深水盆地、台缘斜坡、半闭塞—闭塞欠补偿海湾和蒸发潟湖。  相似文献   

15.
Most present-day petroliferous basins are localized in one of the five global oil and gas accumulation belts confined to continent—ocean transition zones that existed in the Mesozoic and Cenozoic. The Gondwana belt is formed by basins developed on continental margins of the Indian Ocean and South Atlantic (Konyukhov, 2009). All of them are riftogenic in nature and were formed during either the Late Paleozoic (basins on continental margins of the Indian Ocean) or the Late Mesozoic (basins in peripheral zones of the South Atlantic). During the most part of geological history, they were located in zones dominated by the humid climate, which determined the prevalent role of terrigenous rocks in their sedimentary cover.  相似文献   

16.
Chronological succession in the formation of spreading basins is considered in the context of reconstruction of breakdown of Wegener’s Pangea and the development of the geodynamic system of the Arctic Ocean. This study made it possible to indentify three temporally and spatially isolated generations of spreading basins: Late Jurassic-Early Cretaceous, Late Cretaceous-Early Cenozoic, and Cenozoic. The first generation is determined by the formation, evolution, and extinction of the spreading center in the Canada Basin as a tectonic element of the Amerasia Basin. The second generation is connected to the development of the Labrador-Baffin-Makarov spreading branch that ceased to function in the Eocene. The third generation pertains to the formation of the spreading system of interrelated ultraslow Mohna, Knipovich, and Gakkel mid-ocean ridges that has functioned until now in the Norwegian-Greenland and Eurasia basins. The interpretation of the available geological and geophysical data shows that after the formation of the Canada Basin, the Arctic region escaped the geodynamic influence of the Paleopacific, characterized by spreading, subduction, formation of backarc basins, collision-related processes, etc. The origination of the Makarov Basin marks the onset of the oceanic regime characteristic of the North Atlantic (intercontinental rifting, slow and ultraslow spreading, separation of continental blocks (microcontinents), extinction of spreading centers of primary basins, spreading jumps, formation of young spreading ridges and centers, etc., are typical) along with retention of northward propagation of spreading systems both from the Pacific and Atlantic sides. The aforesaid indicates that the Arctic Ocean is in fact a hybrid basin or, in other words, a composite heterogeneous ocean in respect to its architectonics. The Arctic Ocean was formed as a result of spatial juxtaposition of two geodynamic systems different in age and geodynamic style: the Paleopacific system of the Canada Basin that finished its evolution in the Late Cretaceous and the North Atlantic system of the Makarov and Eurasia basins that came to take the place of the Paleopacific system. In contrast to traditional views, it has been suggested that asymmetry of the northern Norwegian-Greenland Basin is explained by two-stage development of this Atlantic segment with formation of primary and secondary spreading centers. The secondary spreading center of the Knipovich Ridge started to evolve approximately at the Oligocene-Miocene transition. This process resulted in the breaking off of the Hovgard continental block from the Barents Sea margin. Thus, the breakdown of Wegener’s Pangea and its Laurasian fragments with the formation of young spreading basins was a staged process that developed nearly from opposite sides. Before the Late Cretaceous (the first stage), the Pangea broke down from the side of Paleopacific to form the Canada Basin, an element of the Amerasia Basin (first phase of ocean formation). Since the Late Cretaceous, destructive pulses came from the side of the North Atlantic and resulted in the separation of Greenland from North America and the development of the Labrador-Baffin-Makarov spreading system (second phase of ocean formation). The Cenozoic was marked by the development of the second spreading branch and the formation of the Norwegian-Greenland and Eurasia oceanic basins (third phase of ocean formation). Spreading centers of this branch are functioning currently but at an extremely low rate.  相似文献   

17.
依据吉林省新生代沉积盆地的演化、岩石地层序列中区域性不整合接触关系的确认,结合区域火山岩的同位素年代学资料,初步确定喜山构造旋回经历了伊普尔期/路特期、普里亚本期/吕珀尔期、夏特期/阿基坦期、赛拉瓦勒期/托尔托纳期、墨西拿期/赞克尔期和皮亚琴察期/格拉斯期等6个构造运动幕,而后进入新构造运动发展期。其中普里亚本期/吕珀尔期幕为构造主幕,波及了整个中国东部,乃致改变了滨西太平洋大陆边缘的构造样式。  相似文献   

18.
Characteristics of the organic material in Green River Formation shale suggest that this material was derived from algae that grew in ancient Eocene lakes. The basin depressions for these nonmarine lakes were formed by the uplifting of the Rocky Mountain ranges. Large quantities of soluble salts flowed into these basins from the mountain streams, increasing the salinity of the lake waters until they became chemically stratified. In the upper, relatively fresh-water section of the lakes, abundant quantities of microscopic algae and other biota grew. Lesser amounts of terrestrial plant life remains were supplied in the form of wind- or water-borne spores and in the form of water-soluble organic materials entering the in-flowing waters. The lower section of the lake waters became highly reducing and stagnant because of lack of seasonal oxidative turnovers, thus providing ideal conditions for the accumulation and preservation of the organic debris from the lake biota.Precipitation of mineral carbonates and silicates from the highly saline waters provided most of the minerals that were co-deposited with the organic matter. Carbon dioxide, which evolved from the aquatic plant life, probably influenced mineral carbonate precipitation. During the life span of a few million of years the characteristics of the lake waters varied considerably and had significant effect upon the composition of both the inorganic and organic constituents of the Green River shale.Sixty to seventy-five core samples from each of three basins of the Green River Formation were analyzed for changes in both the organic and inorganic constituents. Considerable differences in the organic components of the soluble bitumen and of the insoluble kerogen were evident. Some of these differences appeared to be related to depth of burial and some to source material and the environment of the lake waters. Compositional differences relative to lithologic differences in the sediments of the three basins were found.  相似文献   

19.
Most of recent oil- and gas-bearing basins are incorporated in the group of five belts of oil-and-gas accumulation. They are confined to continent/ocean transition zones, which existed in the Cenozoic. Three belts (Tethyan, Gondwanan, and Laurasian) are latitudinal structures that include continental margins in the Atlantic, Indian, and Arctic oceans. The other two belts are elongated in the N-S direction and located in the western and eastern peripheral parts of the Pacific Ocean. Taken together, they unite basins with 75 to 80% of oil reserves discovered to date in our planet.  相似文献   

20.
Available data on synthesis, input, and decomposition of organic matter (OM) in the water column and recent bottom sediments of the World Ocean are generalized. The most reliable values of OM production and masses in the ocean, the total supply of organic carbon, and the input of terrigenous OM with coastal erosion, river runoff, and eolian matter are estimated. Maps of fossilization coefficients, distribution, and accumulation of OM in recent bottom sediments of the World Ocean are presented. A numerical expression is proposed for the main circumcontinental pattern of OM accumulation in the ocean. The group and elemental compositions of living matter of the ocean, land, and the Earth as a whole and the organic composition of bottom sediments are briefly considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号