首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A probabilistic model is presented to compute the probability density function (PDF) of the ultimate bearing capacity of a strip footing resting on a spatially varying soil. The soil cohesion and friction angle were considered as two anisotropic cross‐correlated non‐Gaussian random fields. The deterministic model was based on numerical simulations. An efficient uncertainty propagation methodology that makes use of a non‐intrusive approach to build up a sparse polynomial chaos expansion for the system response was employed. The probabilistic numerical results were presented in the case of a weightless soil. Sobol indices have shown that the variability of the ultimate bearing capacity is mainly due to the soil cohesion. An increase in the coefficient of variation of a soil parameter (c or φ) increases its Sobol index, this increase being more significant for the friction angle. The negative correlation between the soil shear strength parameters decreases the response variability. The variability of the ultimate bearing capacity increases with the increase in the coefficients of variation of the random fields, the increase being more significant for the cohesion parameter. The decrease in the autocorrelation distances may lead to a smaller variability of the ultimate bearing capacity. Finally, the probabilistic mean value of the ultimate bearing capacity presents a minimum. This minimum is obtained in the isotropic case when the autocorrelation distance is nearly equal to the footing breadth. However, for the anisotropic case, this minimum is obtained at a given value of the ratio between the horizontal and vertical autocorrelation distances. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Slopes are mainly naturally occurred deposits, so slope stability is highly affected by inherent uncertainty. In this paper, the influence of heterogeneity of undrained shear strength on the performance of a clay slope is investigated. A numerical procedure for a probabilistic slope stability analysis based on a Monte Carlo simulation that considers the spatial variability of the soil properties is presented to assess the influence of randomly distributed undrained shear strength and to compute reliability as a function of safety factor. In the proposed method, commercially available finite difference numerical code FLAC 5.0 is merged with random field theory. The results obtained in this study are useful to understand the effect of undrained shear strength variations in slope stability analysis under different slope conditions and material properties. Coefficient of variation and heterogeneity anisotropy of undrained shear strength were proven to have significant effect on the reliability of safety factor calculations. However, it is shown that anisotropy of the heterogeneity has a dual effect on reliability index depending on the level of safety factor adopted.  相似文献   

3.
The undrained bearing capacity of shallow circular piles in non-homogeneous and anisotropic clay is investigated by the lower bound (LB) finite element limit analysis (FELA) under two-dimensional (2D) axisymmetric condition using second-order cone programming, and the new solution of the problem is presented. Modified from the isotropic von Mises yield criterion, a cross-anisotropic undrained strength criterion of clays under the axisymmetric state of stress requiring three input shear strengths in triaxial compression, direct simple shear, and triaxial extension is employed in the 2D axisymmetric LB FELA. Parametric studies on the effects of pile embedment ratio, dimensionless strength gradient, anisotropic strength ratio, and pile roughness are investigated extensively, while the predicted failure mechanisms associated with these parameters are discussed and compared. Numerical results of undrained end bearing capacity of shallow circular piles are summarized in the form of design tables that are useful for design practice and represent a new contribution to the field of pile capacity considering the combined effects of undrained strength non-homogeneity and anisotropy.  相似文献   

4.
《地学前缘(英文版)》2018,9(6):1657-1664
A long slope consisting of spatially random soils is a common geographical feature. This paper examined the necessity of three-dimensional(3 D) analysis when dealing with slope with full randomness in soil properties. Although 3 D random finite element analysis can well reflect the spatial variability of soil properties, it is often time-consuming for probabilistic stability analysis. For this reason, we also examined the least advantageous(or most pessimistic) cross-section of the studied slope. The concept of"most pessimistic" refers to the minimal cross-sectional average of undrained shear strength. The selection of the most pessimistic section is achievable by simulating the undrained shear strength as a 3 D random field. Random finite element analysis results suggest that two-dimensional(2 D) plane strain analysis based the most pessimistic cross-section generally provides a more conservative result than the corresponding full 3 D analysis. The level of conservativeness is around 15% on average. This result may have engineering implications for slope design where computationally tractable 2 D analyses based on the procedure proposed in this study could ensure conservative results.  相似文献   

5.
边坡可靠度分析中通常假定采用平稳或准平稳随机场表征土体参数的空间变异性,然而大量现场试验数据表明,土体参数如不排水抗剪强度沿土体埋深常呈现明显的非平稳分布特征,即其均值和标准差均随埋深发生变化,因此亟需发展土体参数非平稳随机场模型及其模拟方法。针对目前不能有效单独模拟土体参数趋势分量和随机波动分量的不确定性,提出了一种有效的不排水抗剪强度参数非平稳随机场模型,并给出了土体参数二维非平稳随机场模拟方法计算流程,同时将新提出的模型与现有非平稳随机场模型及平稳随机场模型进行了系统比较。最后通过不排水饱和黏土边坡算例验证了提出模型的有效性,并揭示了不排水抗剪强度非平稳分布特征对边坡可靠度的影响规律。结果表明:提出模型能够有效地单独模拟土体参数趋势分量和随机波动分量的不确定性,考虑土体参数均值和标准差随埋深增加而增大的特性,可为表征土体参数非平稳分布特征提供了一条有效的途径。此外,与采用非平稳随机场模拟土体参数空间变异性相比,采用常用的平稳随机场模型会低估边坡失效概率,从而造成偏危险的边坡工程设计方案。  相似文献   

6.
复合加载情况下双层地基极限承载力研究   总被引:2,自引:0,他引:2  
张其一  栾茂田 《岩土力学》2009,30(4):1131-1136
在复合加载情况下精确求解层状非均质地基的极限承载力,具有很强的工程实用与理论参考价值。基于土体极限平衡理论与通用有限元软件ABAQUS,针对复合加载情况下上硬下软的双层不排水饱和软黏土地基的极限承载力,进行了大量的数值计算,得出了上层土临界深度Hcr的计算公式、竖向极限承载力Pv的计算公式以及复合加载情况下地基破坏时的破坏包络面方程。研究结果表明:上层土临界深度Hcr取决于土层间强度比Su1/Su2;竖向极限承载力Pv与破坏包络面取决于土层间强度比Su1/Su2、上层土深度H1与基础型式。  相似文献   

7.
The 2D random finite element method and the one-dimensional and 2D random limit equilibrium method are used to investigate the influence of spatial variability of soil strength parameters on the probability of failure of simple soil slopes with cohesive undrained shear strength. The combined influence of spatial variability of soil properties and cross-correlation between undrained soil strength and unit weight on the computed probability of failure is explored. The paper identifies conditions where numerical outcomes are similar and where they are not. The limitations of each analysis method are described and implications to analysis and design are identified.

Abbreviations: FEM: finite element method; LEM: limit equilibrium method; RFEM: random finite element method; RLEM: random limit equilibrium method  相似文献   

8.
约束随机场下的边坡可靠度随机有限元分析方法   总被引:2,自引:1,他引:1  
吴振君  王水林  葛修润 《岩土力学》2009,30(10):3086-3092
目前边坡可靠度中常用的简化分析方法,不考虑边坡土体的空间变异性,每次计算整个边坡都取用相同的强度参数,由离散点试样试验得到的土体参数统计特性只能反映点特性,而边坡的稳定性受滑面上平均抗剪强度特性控制,因此,需要考虑空间范围内的平均特性。描述空间变异性的随机场理论对变异性较高的土体,实际上高估了其空间变异性。把随机场理论和地质统计中的区域化变量理论结合起来,建立约束随机场,并在此基础上进行Monte-Carlo随机有限元分析。计算实例表明,在高变异性条件下约束随机场能有效降低完全随机场的模拟方差,得到更低的破坏概率。对比了随机有限元和简化法的计算结果表明,简化法在土体强度变异性很高时其结果并非偏于保守。另外也指出了可靠度分析中存在的边坡尺度效应和简化法的适用条件。  相似文献   

9.
A probabilistic 3-D slope stability analysis model (PTDSSAM) is developed to evaluate the stability of embankment dams and their foundations under conditions of staged construction taking into consideration uncertainty, spatial variabilities and correlations of shear strength parameters, as well as the uncertainties in pore water pressure. The model has the following capabilities: (1) conducting undrained shear strength analysis (USA) and effective stress analysis (ESA) slope stability analysis of staged construction, (2) incorporation of field monitored data of pore water pressure, and (3) incorporation of increase of undrained shear strength with depth, effective stress, and pore water pressure dissipation. The PTDSSAM model is incorporated in a computer program that can analyze slopes located in multilayered deposits, considering the total slope width.

The main outputs of the program are the geometric parameters of the most critical sliding surface (i.e., center of rotation/radius of rotation and critical width of failure), mean 2-D safety factor, mean 3-D safety factor, squared coefficient of variation of resisting moment, and the probability of slope failure. The program is applied to a case study, Karameh dam in Jordan. Monitored data of induced pore water pressure in the dam embankment and soft foundation were gathered during dam construction.

The stability of Karameh dam embankment and foundation was evaluated during staged construction using deterministic and probabilistic analysis. Foundation stability was evaluated based on the monitored data of pore water pressure.

The study showed that the mean values of the corrective factors which account for the discrepancies between the in situ and laboratory-measured values of soil properties and for the modeling errors have significant influence on the 2-D safety factor, 3-D safety factor, slope probability of failure, and on the expected failure width.

The degree of spatial correlation associated with shear strength parameters within a soil deposit also influences the probability of slope failure and the expected failure width. This correlation is quantified by scale of fluctuation. It is found that a larger scale of fluctuation gives an increase in the probability of slope failure and a reduction in the critical failure width.  相似文献   


10.
The evaluation of variability in ultimate pile capacity from the load-settlement data is useful in the context of code calibration and reliability based design in pile foundations. This paper examines the applicability of two non-linear analytical methods to calculate the load-settlement response of piles using actual test data in terms of percentage deviation from the measured capacity. The degree of agreement associated with each method with respect to field test data is quantified using two different failure criteria (FHWA and Eurocode) for determination of the ultimate load of pile. The analytical methods are used to quantify the variability associated with the soil-pile interface parameters and ultimate capacity using Monte Carlo simulations, which is useful in load-resistance factored/reliability design of pile foundations. Study reveals that variability depends on the method of analysis, percent deviation of prediction from measured values and failure criteria.  相似文献   

11.
岩土工程现场勘察试验通常只能获得有限的试验数据,据此难以真实地量化土体参数的空间变异性。提出了考虑土体参数空间变异性的概率反演和边坡可靠度更新方法,基于室内和现场两种不同来源的试验数据概率反演空间变异参数统计特征和更新边坡可靠度水平,并给出了计算流程。此外为合理地描述土体参数先验信息,发展了不排水抗剪强度非平稳随机场模型。最后通过不排水饱和黏土边坡算例验证了提出方法的有效性,并探讨了试验数据和钻孔位置对边坡后验失效概率的影响。结果表明:提出方法实现了空间变异土体参数概率反演与边坡可靠度更新的一体化,基于有限的多源试验数据概率反演得到的土体参数均值与试验数据非常吻合,明显降低了对参数不确定性的估计,更新的边坡可靠度水平显著增加。受土体参数空间自相关性的影响,试验数据对钻孔取样点附近区域土体参数统计特征更新的影响明显大于距离取样点较远区域。  相似文献   

12.
Presently, no displacement-based design methodology exists for helical anchors subjected to tensile or uplift loading. This study investigates the statistical and probabilistic aspects of the load-displacement uncertainty associated with a database of thirty-seven uplift loading tests of helical anchors founded within cohesive soils. Initially, an ultimate resistance model is identified, and the semi-empirical uplift breakout factor statistically characterized. A relationship between ultimate resistance and slope tangent capacity is established, and used to form the basis for normalizing the load-displacement response. Hyperbolic and power law models are statistically evaluated for use in serving as a reference load-displacement model; the hyperbolic curve was selected based on goodness-of-fit statistics. Monte Carlo reliability simulations are used to establish an equivalent-deterministic load factor that associates the selected load factor with a probability of exceeding a pre-determined allowable uplift displacement, given uncertainty in the undrained shear strength, ultimate resistance model, transformation uncertainty, uncertainty in the allowable displacement, and variability in uplift loading. A practical example is provided to show the intended use of this probabilistic helical anchor displacement model.  相似文献   

13.
由于静压桩沉桩后桩周土重塑,静压桩承载力表现出随着休止期的延长而增长的特性。本文从静压桩沉桩后桩周土体内孔隙水消散固结的角度出发,对静压桩承载力时间效应的理论和试验分别进行归纳,结合孔隙水消散路径及固结模型,对桩周土体初始超静孔隙水压力大小及其分布特征进行总结,分析承载力各种测试方法的优缺点,对静压桩承载力的时效性进行深化研究,并探讨了不同地质条件、不同桩的类型对休止期内静压桩承载力的影响,进一步对基于实测数据得出的经验公式进行总结。讨论了基于不同本构关系模型的应力场及位移场解答和沉桩后孔隙水压力消散解答,在此基础上总结了桩基极限承载力理论公式;探讨了黏性土、砂土条件下,考虑超固结比、不排水抗剪强度和塑性指数比对桩基极限承载力系数A的影响,在此基础上归纳了桩基极限承载力经验公式。建议在经验公式基础上设置多重参数,以提升经验公式的精确度,并完善对不同桩、土类型的参数解答;利用BP神经网络,导入静压桩承载力相关参数,以得到针对不同地质条件、桩型、休止期的承载力最优解。  相似文献   

14.
In most limit state design codes, the serviceability limit checks for drilled shafts still use deterministic approaches. Moreover, different limit states are usually considered separately. This paper develops a probabilistic framework to assess the serviceability performance with the consideration of soil spatial variability in reliability analysis. Specifically, the performance of a drilled shaft is defined in terms of the vertical settlement, lateral deflection, and angular distortion at the top of the shaft, corresponding to three limit states in the reliability analysis. Failure is defined as the event that the displacements exceed the corresponding tolerable displacements. The spatial variability of soil properties is considered using random field modeling. To illustrate the proposed framework, this study assesses the reliability of each limit state and the system reliability of a numerical example of a drilled shaft. The results show the system reliability should be considered for the serviceability performance. The importance measures of the random variables indicate that the external loads, the performance criteria, the model errors of load transfer curves and soil strength parameter are the most important factors in reliability analysis. Moreover, it is shown that the correlation length and coefficient of variation of soil strength can exert significant impacts on the calculated failure probability.  相似文献   

15.
For long earth embankments or levees, it is of interest to investigate the slope failure mode in the longitudinal direction. However, this is less commonly discussed in comparison to the plane-strain failure mode. In this paper, the longitudinal failure mode of a long embankment consisting of homogeneous soils is examined. A probabilistic approach using the first-order reliability method (FORM) is adopted to consider the uncertainty of soil properties. In particular, the spatial variability of the undrained shear strength of the soil is modelled in the probabilistic analysis. Parametric studies are subsequently conducted to examine the influence of this soil characteristic on the failure mode of the long embankment.  相似文献   

16.
Different models were developed for evaluating the probabilistic three-dimensional (3-D) stability analysis of earth slopes and embankments under earthquake loading. The 3-D slope stability model assumed is that of a simple cylindrical failure surface. The probabilistic models evaluate the probability of failure under seismic loading considering the randomness of earthquake occurrence, and earthquake induced acceleration and uncertainties stemming from the discrepancies between laboratory-measured and in-situ values of shear strength parameters. The models also takes into consideration the spatial variabilities and correlations of soil properties. The probabilistic analysis and design approach is capable of obtaining the 2-D and 3-D static and dynamic safety factors, the probability of slope failure, the earthquake induced acceleration coefficient, the yield acceleration coefficient, the earthquake induced displacement, and the probability of allowable displacement exceedance taking into account the local site effect. The approach is applied to a well known landslide case: Congress Street Landslide in Chicago. A sensitivity analysis was conducted on the different parameters involved in the models by applying those models to the Congress Street landslide considering different levels of seismic hazard. Also, a sensitivity analysis was carried out to study the sensitivity of computed results to input parameters of undrained shear strength, and corrective factors. A comparison was made between the different models of failure. The parametric study revealed that the hypocentral distance and earthquake magnitude have major influence on the earthquake induced displacement, probability of failure and dynamic 2-D and 3-D safety factors.  相似文献   

17.
李镜培  方睿  李林  唐剑华 《岩土力学》2016,37(3):679-696
以静压沉桩后桩周土体的应力状态为初始条件,根据桩周土体孔隙比、渗透系数和有效应力之间的相关性,在考虑固结系数随固结时间变化的条件下改进了轴对称条件下的太沙基固结控制方程。随后,采用分离变量法和离散化分析推导得出了桩周超孔隙水压力消散的半解析半数值解,并将解答与实测数据进行对比验证。在此基础上,采用空间滑动面理论改进的修正剑桥模型(SMP-MCC)定义土体三维不排水抗剪强度,研究了静压桩周土体强度、剪切模量随固结时间的变化规律。研究结果表明:由于解答考虑了固结系数随固结时间的变化,因而与实测结果吻合良好;土体压缩指数与渗透指数之比对土体固结系数和孔压消散速率影响较大;当土体压缩指数与渗透指数之比为1时,土体固结系数保持不变,解答退化为经典的太沙基轴对称固结方程;土体强度和剪切模量随固结时间的增长而逐步增加,固结完成后其值超越了土体原位强度和原位剪切模量。  相似文献   

18.
The present study deals with the reliability analysis of basal heave caused by excavation considering uncertainty in the soil properties. The case study considered in the present work has been analyzed deterministically by Hsieh et al. (Can Geotech J 45:788–799, 2008). Taiwan building code is adopted in the method for analyzing the basal heave failure. The random variables (undrained shear strength and total unit weight of clay) are assumed to be normally distributed and uncorrelated. A series of parametric studies have been conducted to calculate the reliability index on the basis of the matrix formulation for the second moment method by Hasofer and Lind (J Eng Mech ASCE 100(1):111–121, 1974) considering different coefficient of variation of undrained shear strength and total unit weight of clay layers. It has been found that for a particular value of coefficient of variation of total unit weight, the reliability index with respect to occurrence of basal heave failure decreases with increase in the coefficient of variation of undrained shear strength. Moreover, the reliability index also decreases when the coefficient of variation of total unit weight increases. It has also been found that the probability of basal heave failure is lower with respect to factor of safety equals to 1.2, as compared to factor of safety equals to 1.0. Sensitivity analysis shows that the undrained shear strength of the bottommost layer and total unit weight of the second layer are the most significant random variables affecting the reliability index. Guidelines are provided for reliability based design where, for ‘target’ reliability index of 2.5 and 3.0, the factor of safety can be chosen such that all the related uncertainties are taken into account, especially with regard to undrained shear strength of the bottommost layer and total unit weight of the second layer. Design guidelines have been provided for this purpose.  相似文献   

19.
Geotechnical engineering problems are characterized by many sources of uncertainty. Some of these sources are connected to the uncertainties of soil properties involved in the analysis. In this paper, a numerical procedure for a probabilistic analysis that considers the spatial variability of cross‐correlated soil properties is presented and applied to study the bearing capacity of spatially random soil with different autocorrelation distances in the vertical and horizontal directions. The approach integrates a commercial finite difference method and random field theory into the framework of a probabilistic analysis. Two‐dimensional cross‐correlated non‐Gaussian random fields are generated based on a Karhunen–Loève expansion in a manner consistent with a specified marginal distribution function, an autocorrelation function, and cross‐correlation coefficients. A Monte Carlo simulation is then used to determine the statistical response based on the random fields. A series of analyses was performed to study the effects of uncertainty due to the spatial heterogeneity on the bearing capacity of a rough strip footing. The simulations provide insight into the application of uncertainty treatment to geotechnical problems and show the importance of the spatial variability of soil properties with regard to the outcome of a probabilistic assessment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
赵阳  陈昌富  王纯子 《岩土力学》2016,37(6):1649-1656
基于塑性极限理论的上限分析法,借鉴已有数值分析和室内模型试验所揭示的带帽刚性桩破坏模式,构建了其运动许可速度场,并引入统一强度理论,根据能量平衡原理,推导了能考虑中主应力影响的带帽刚性桩极限承载力上限计算公式。同时通过参数分析,得到了带帽刚性桩极限承载力随桩帽尺寸、土的黏聚力和内摩擦角的变化规律。研究发现:考虑中主应力影响的带帽刚性桩的上限解较不考虑时有较大的提高,对于带帽刚性桩承载力计算时,实际统一强度理论中反映中主应力影响的参数取0.1~0.2附近较为合理。带帽刚性桩承载力随着桩帽尺寸的增大而增大,且桩帽直径与桩径之比 时,承载力增大趋势较为明显;承载力随着土体黏聚力和内摩擦角的增大而增大。通过与已有理论方法和试验结果对比分析发现,本文提出的方法不仅在理论上更严密,而且可得到更符合实际的计算结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号