首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The Menard pressuremeter test is a relatively expensive in situ test, which generates useful information about the strength and deformation properties of any soil and weak rock, which is carried out in some projects. On the other hand, the SPT test is a rather inexpensive, simple and typical in situ test used to determine the engineering properties of silt, clay, sand, and fine gravel which is utilised in almost all projects.

In this study SPT blow counts (N60) were correlated with pressuremeter modulus (EPMT) and limit pressure (PL) and empirical equations were proposed to estimate PL and EPMT from N60 in silty sand and silty clay soils separately. These tests have been conducted during subway geotechnical investigation in Mashhad, Iran.

Moreover, in order to verify these empirical equations, they were compared with similar equations that have been proposed by other researchers. These comparisons display that in all equations a linear relationship exists between N60 - EPMT and N60 - PL. However, the line slopes are different so it can be concluded the line slopes are related to soil type and geological condition of an area. Thus, for each area a separate empirical equation must be presented.  相似文献   


2.
Standard Penetration Test(SPT) and Cone Penetration Test(CPT) are the most frequently used field tests to estimate soil parameters for geotechnical analysis and design.Numerous soil parameters are related to the SPT N-value.In contrast,CPT is becoming more popular for site investigation and geotechnical design.Correlation of CPT data with SPT N-value is very beneficial since most of the field parameters are related to SPT N-values.A back-propagation artificial neural network(ANN) model was developed to predict the N6o-value from CPT data.Data used in this study consisted of 109 CPT-SPT pairs for sand,sandy silt,and silty sand soils.The ANN model input variables are:CPT tip resistance(q_c),effective vertical stress(σ'_v),and CPT sleeve friction(f_s).A different set of SPT-CPT data was used to check the reliability of the developed ANN model.It was shown that ANN model either under-predicted the N_(60)-value by 7-16%or over-predicted it by 7-20%.It is concluded that back-propagation neural networks is a good tool to predict N_(60)-value from CPT data with acceptable accuracy.  相似文献   

3.
This paper presents side-by-side comparisons of blowcount values for the Texas cone penetration (TCP) test and the standard penetration test (SPT). The comparisons yielded statistically-significant regression models for both coarse-grained soils and fine-grained soils. Consistent with expected trends and published data, the TCP–SPT relationship is nonlinear, with weak to fair correlation strength (R2 = 23–44%). For TCP blowcounts (N60, TCP) varying from 25 to 200 blows/30 cm (1 ft), corresponding SPT blowcounts (N60, SPT) are typically 30–60% lower than N60, TCP in fine-grained soils. Likewise, corresponding N60, SPT blowcounts are 10–70% lower than N60, TCP in coarse-grained soils, all other things being equal. Comparative data were obtained from published sources and from project-specific field research sites used for full-scale deep foundation load tests. The final dataset consisted of 225 test pairs obtained in similar soils and geomaterials, at equivalent depths, with all blowcounts normalized to 30 cm (12 in.) penetration (i.e., blows/30 cm or blows/ft) within the bounds of typical test precision, and corrected to 60% hammer efficiency. The generally weak correlations do not support conversion of N60, TCP to N60, SPT (or vice versa) to compute foundation capacity for final design. But, engineers can certainly get an intuitive feel about site conditions and preliminary foundation capacity by using the correlation equations to translate their knowledge of one test to the other. This study extends previous work by formally comparing and contrasting the similar yet different SPT and TCP test methods in such a way as to make the results useful to users of both tests and to the broader geotechnical engineering community.  相似文献   

4.
This paper presents simplified dilatometer test (DMT)-based methods for evaluation of liquefaction resistance of soils, which is expressed in terms of cyclic resistance ratio (CRR). Two DMT parameters, horizontal stress index (KD) and dilatometer modulus (ED), are used as an index for assessing liquefaction resistance of soils. Specifically, CRR–KD and CRR–ED boundary curves are established based on the existing boundary curves that have already been developed based on standard penetration test (SPT) and cone penetration test (CPT). One key element in the development of CRR–KD and CRR–ED boundary curves is the correlations between KD (or ED) and the blow count (N) in the SPT or cone tip resistance (qc) from the CPT. In this study, these correlations are established through regression analysis of the test results of SPT, CPT, and DMT conducted side-by-side at each of five sites selected. The validity of the developed CRR–KD and CRR–ED curves for evaluating liquefaction resistance is examined with published liquefaction case histories. The results of the study show that the developed DMT-based models are quite promising as a tool for evaluating liquefaction resistance of soils.  相似文献   

5.
Pressuremeter modulus (\(E_{M}\)) and limit pressure (\(P_{L}\)) are used for the calculation of the settlement and bearing capacity of foundation respectively. As the determination of these parameters from pressuremeter test (PMT) is relatively time-consuming and expensive, various empirical correlations have been proposed to correlate the \(E_{M}\) and \(P_{L}\) to other soil parameters. For the existing equations are incapable of estimating these PMT parameters well, in present research group method of data handling type neural network is used to estimate the \(E_{M}\) and \(P_{L}\) of clayey soils. The \(E_{M}\) and \(P_{L}\) were modeled as a function of three variables including the moisture content (\(\omega\)), plasticity index and corrected SPT blow counts (\(N_{60}\)). A database containing 51 data sets have been used for training and testing of the models. The performances of proposed models are compared with those of existing empirical equations. The results demonstrate that appreciable improvement with respect to the other correlations has been achieved. At the end, sensitivity analysis of the obtained models has been performed to study the influence of input parameters on model outputs and shows that the \(N_{60}\) is the most influential parameter on the PMT parameters.  相似文献   

6.
7.
Electrical resistivity survey and the geotechnical SPT blow counts (N value) method were simultaneously analyzed to investigate the stability of a center-core type earth-fill dam against the seepage phenomenon. The coupling of these heterogeneous field methods provided a chance to understand the status of underground material by comparing the geophysical and geotechnical view. The analysis shows that the zones with low resistivity value generally have low N value, which means low stiffness. However, some zones with a high resistivity pattern are not accompanied by an increase of its N value, and are even showing a lower N value. These results imply that one should be careful to directly correlate resistivity value with the real status of the core material of a fill dam. And a highly resistive zone may be in poor status due to the effect of increase of resistivity value as a result of the piping condition. Additional laboratory tests show that there is a deficiency of fine soil particles believed as the clay at the troubled region, which means an increase in resistivity value. Therefore, multiple explorations should be planned to reduce the uncertainty in application of geophysical methods to dam safety evaluation in order to compensate the resistivity information of core material.  相似文献   

8.
Statistical learning algorithms provide a viable framework for geotechnical engineering modeling. This paper describes two statistical learning algorithms applied for site characterization modeling based on standard penetration test (SPT) data. More than 2700 field SPT values (N) have been collected from 766 boreholes spread over an area of 220 sqkm area in Bangalore. To get N corrected value (Nc), N values have been corrected (Nc) for different parameters such as overburden stress, size of borehole, type of sampler, length of connecting rod, etc. In three‐dimensional site characterization model, the function Nc=Nc (X, Y, Z), where X, Y and Z are the coordinates of a point corresponding to Nc value, is to be approximated in which Nc value at any half‐space point in Bangalore can be determined. The first algorithm uses least‐square support vector machine (LSSVM), which is related to a ridge regression type of support vector machine. The second algorithm uses relevance vector machine (RVM), which combines the strengths of kernel‐based methods and Bayesian theory to establish the relationships between a set of input vectors and a desired output. The paper also presents the comparative study between the developed LSSVM and RVM model for site characterization. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
The purpose of this study is to develop a geostatistical model to evaluate the spatial and depth variability of Standard Penetration Test (SPT) data from Bangalore, India. The database consists of 766 boreholes spread over a 220 km2 area, with several SPT values (N) in each of them. The geostatistical analysis is done for N corrected (N corrected) values. The N corrected value has been corrected for different parameters such as overburden stress, size of the bore hole, type of sampler, hammer energy and length of the connecting rod. The knowledge of the semivariogram of the SPT data is used with kriging theory to estimate the values at points in the subsurface of Bangalore where field measurements are not available. The model is used to compute the variance of estimated data. The model predicts reasonably well the SPT data. The geostatistical model provides valuable results that can be used for seismic hazard analysis, site response and liquefaction studies for the development of microzonation maps. The predicted N values from the developed model can also be used to estimate the subsurface information, allowable bearing pressure of soils and elastic modulus of soils.  相似文献   

10.
Geospatial contour mapping of shear wave velocity for Mumbai city   总被引:5,自引:3,他引:2  
Shear wave velocity is one of the most important input parameter in the analysis of geotechnical earthquake engineering problems, particularly to estimate site-specific amplification factor and ground response study. Dynamic in situ tests such as spectral analysis of surface waves (SASW) or multichannel analysis of surface waves (MASW) are very expensive. Also due to lack of specialized personnel, these tests are generally avoided in many soil investigation programs. Worldwide, several researchers have developed correlations between the SPT ‘N’ value and shear wave velocity ‘V s’, which are useful for determining the dynamic soil properties. In the present study, more than 400 numbers of soil borehole data were collected from various geotechnical investigation agencies, government engineering institutes and geotechnical laboratories from different parts of Mumbai city, which is financial capital of India with highest population density. In this paper, an attempt has been made to develop the correlation between the SPT ‘N’ value and shear wave velocity ‘V s’ for various soil profile of Mumbai city and compared with other existing correlations for different cities in India. Using Geographical Information System (GIS), a geospatial contour map of shear wave velocity profile for Mumbai city is prepared with contour intervals of 25 and 50 m/s. The scarcity of database or maps of shear wave velocity profile for Mumbai city will make the present geospatial contour maps extremely useful and beneficial to the designer, practitioners for seismic hazard study involved in geotechnical earthquake engineering.  相似文献   

11.
Cyclic mobility is a mechanism of ground failure due to lateral spreading of soils during an earthquake that usually occurs in soft or medium stiff saturated soils. The simplified procedures developed by the researchers give a factor of safety for judging the cyclic mobility potential. However, the simplified procedures do not take into account the uncertainty in the parameters required to estimate the cyclic stresses in the soil. In this study, a reliability framework based on the simplified procedure, considering the parameter uncertainty, has been proposed for computing the probability of cyclic mobility of clay deposits for a metro city of India, i.e., Mumbai city (latitudes 18°53′N–19°19′N and longitudes 72°47′E–72°58′E). Extensive geotechnical borehole data from 1028 boreholes across 50 locations in the city area of 390 km2 and laboratory test data are collected and analyzed thoroughly. A correlation between undrained shear strength (Su) and other parameters such as natural water content (w), SPT N value, liquid limit (LL) and plasticity index (PI) has been established for Mumbai city and has been used in the proposed approach. The sensitivity analysis of the proposed approach predicts that Su has significant influence in the evaluation of the cyclic mobility. Cyclic mobility hazard maps are prepared using the geo-statistical analysis tool in GIS, and it shows that the clayey soils at few locations have a 60–90 % probability of cyclic mobility for a moment magnitude (M w) of an earthquake of 7.5. These hazard maps can be used by the geotechnical engineers for the cyclic mobility hazard assessment of Mumbai city.  相似文献   

12.
This study analyzes blowcount data from instrumented Texas Cone Penetration (TCP) tests. TCP hammer efficiency, rod length influence on the hammer efficiency, and overburden pressure correction factors for the TCP blowcounts (NTCP) are explored. Results are compared to published correction factors for the standard penetration test (SPT). The final dataset analyzed for this study consisted of 293 TCP tests from which 135 tests were instrumented. TCP hammer efficiency values for automatic trip hammers ranged from 74 to 101% with an average of 89%. Analyses showed a statistically-significant relationship between the TCP hammer efficiency and the rod length below ground surface. Statistical models were developed for undifferentiated soils, and corresponding rod length correction factors for the TCP test (CR-TCP) were obtained ranging from 0.90 to 1.00. In a second analysis, the relationship between the overburden pressure and NTCP was explored and a mathematical expression for the overburden correction factor for the TCP blowcount value (CN-TCP) was determined. This work represents the first study where corrections to NTCP are explored, and the outcome of this research benefits the geotechnical engineering community using the TCP test and its associated foundation design method.  相似文献   

13.
Deterministic approaches are unable to account for the variations in soil’s strength properties, earthquake loads, as well as source of errors in evaluations of liquefaction potential in sandy soils which make them questionable against other reliability concepts. Furthermore, deterministic approaches are incapable of precisely relating the probability of liquefaction and the factor of safety (FS). Therefore, the use of probabilistic approaches and especially, reliability analysis is considered since a complementary solution is needed to reach better engineering decisions. In this study, Advanced First-Order Second-Moment (AFOSM) technique associated with genetic algorithm (GA) and its corresponding sophisticated optimization techniques have been used to calculate the reliability index and the probability of liquefaction. The use of GA provides a reliable mechanism suitable for computer programming and fast convergence. A new relation is developed here, by which the liquefaction potential can be directly calculated based on the estimated probability of liquefaction (P L ), cyclic stress ratio (CSR) and normalized standard penetration test (SPT) blow counts while containing a mean error of less than 10% from the observational data. The validity of the proposed concept is examined through comparison of the results obtained by the new relation and those predicted by other investigators. A further advantage of the proposed relation is that it relates P L and FS and hence it provides possibility of decision making based on the liquefaction risk and the use of deterministic approaches. This could be beneficial to geotechnical engineers who use the common methods of FS for evaluation of liquefaction. As an application, the city of Babolsar which is located on the southern coasts of Caspian Sea is investigated for liquefaction potential. The investigation is based primarily on in situ tests in which the results of SPT are analysed.  相似文献   

14.
The uniaxial compressive strength (UCS) of rocks is a critical parameter required for most geotechnical projects. However, it is not always possible for direct determination of the parameter. Since determination of such a parameter in the lab is not always cost and time effective, the aim of this study is to assess and estimate the general correlation trend between the UCS and indirect tests or indexes used to estimate the value of UCS for some granitoid rocks in KwaZulu-Natal. These tests include the point load index test, Schmidt hammer rebound, P-wave velocity (Vp) and Brazilian tensile strength (σt). Furthermore, it aims to assess the reliability of empirical equations developed towards estimating the value of UCS and propose useful empirical equations to estimate the value of UCS for granitoid rocks. According to the current study, the variations in mineralogy, as well as the textural characteristics of granitoid rocks play an important role in influencing the strength of the rock. Simple regression analyses exhibit good results, with all regression coefficients R2 being greater than 0.80, the highest R2 of 0.92 being obtained from UCS versus σt. Comparison of equations produced in the current study as well as empirical equations derived by several researchers serves as a validation. Also illustrate that the reliability of such empirical equations are dependent on the rock type as well as the type of index tests employed, where variation in rock type and index tests produces different values of UCS. These equations provide a practical tool for estimating the value of UCS, and also gives further insight into the controlling factors of the strength of the granitoid rocks, where the strength of a rock is a multidimensional parameter.  相似文献   

15.
A methodology to model seismic microzonation maps is required in the hazard mitigation decision plans of the earthquake prone areas. The stage of disaster preparedness for new residential places is of great importance for detailed seismic microzonation models. The effects of local geological and geotechnical site conditions were considered in order to establish site characterization as the initial stage of the models in this study. Dynamic soil properties based on the empirical correlations between shear wave velocity (V s) and standard penetration test blow counts were taken into account in order to define representative soil profiles extending down to the engineering bedrock. One-dimensional site response analyses were performed to analyze earthquake characteristics on the ground surface. The layers for soil classification, geology, depth to groundwater level, amplification, distance to fault, slope and aspect, and liquefaction-induced ground deformation potential of the study area were prepared in seismic microzonation models. The study area, Erbaa, is placed along the seismically active North Anatolian Fault Zone. Final seismic microzonation map of the study area was evaluated applying different GIS-based Multi-Criteria Decision Analysis (MCDA) techniques. Two of the MCDA techniques, simple additive weighting and analytical hierarchical process (AHP), are considered during the evaluation step of the final seismic microzonation map. The comparison is made in order to distinguish two different maps based on these MCDA techniques. Eventually, AHP-based seismic microzonation map is more preferable for the seismic design purposes in this study.  相似文献   

16.
The undrained shear strength (s u) of cohesive soils is a crucial parameter for many geotechnical engineering applications. Due to the complexities and uncertainties associated with laboratory and in situ tests, it is a challenging task to obtain the undrained shear strength in a reliable and economical manner. In this study, a probabilistic model for the s u of moderately overconsolidated clays is developed using the Bayesian model class selection approach. The model is based on a comprehensive geotechnical database compiled for this study with field measurements of field vane strength (s u), plastic limit (PL), natural water content (W n), liquid limit (LL), vertical effective overburden stress (\(\sigma_{\nu }^{\prime }\)), preconsolidation pressure (\(\sigma_{\text{p}}^{\prime }\)) and overconsolidated ratio (OCR). Comparison study shows that the proposed model is superior to some well-known empirical relationships for OC clays. The proposed probabilistic model not only provides reliable and economical estimation of s u but also facilitates reliability-based analysis and design for performance-based engineering applications.  相似文献   

17.
The incorporation of heat exchangers in geostructures changes the temperature of the adjacent soil, raising important issues concerning the effect of temperature variations on hydro-mechanical soil behaviour. The objective of this paper is to improve the understanding and quantification of the impact of temperature variation on the bearing capacity of thermo-active piles. Currently, the design of deep foundations is based on the results of in situ penetrometer or pressuremeter tests. However, there are no published data on the effect of temperature on in situ soil parameters, preventing the specific assessment of the behaviour of thermo-active piles. In this study, an experimental device is developed to perform mini-pressuremeter tests under controlled laboratory conditions. Mini-pressuremeter tests are performed on an illitic soil in a thermo-regulated metre-scale container subjected to temperatures from 1 to 40 °C. The results reveal a slight decrease in the pressuremeter modulus (E p) and a significant decrease in the creep pressure (p f) and limit pressure (p l) with increasing temperature. The results also reveal the reversibility of this effect during a heating–cooling cycle throughout the investigated temperature range, whereas the effect of a cooling–heating cycle was only partially reversible. In the case of several thermal cycles, the effect of the first cycle on the soil parameters is decisive.  相似文献   

18.

The detrimental effects of an earthquake are strongly influenced by the response of soils subjected to dynamic loading. The behavior of soils under dynamic loading is governed by the dynamic soil properties such as shear wave velocity, damping characteristics and shear modulus. Worldwide, it is a common practice to obtain shear wave velocity (V s in m/s) using the correlation with field standard penetration test (SPT) N values in the absence of sophisticated dynamic field test data. In this paper, a similar but modified advanced approach has been proposed for a major metro city of eastern India, i.e., Kolkata city (latitudes 22°20′N–23°00′N and longitudes 88°04′E–88°33′E), to obtain shear wave velocity profile and soil site classification using regression and sensitivity analyses. Extensive geotechnical borehole data from 434 boreholes located across 75 sites in the city area of 185 km2 and laboratory test data providing information on the thickness of subsoil strata, SPT N values, consistency indices and percentage of fines are collected and analyzed thoroughly. A correlation between shear wave velocity (V s) and SPT N value for various soil profiles of Kolkata city has been established by using power model of nonlinear regression analysis and compared with existing correlations for other Indian cities. The present correlations, having regression coefficients (R 2) in excess of 0.96, indicated good prediction capability. Sensitivity analysis predicts that significant influence of soil type exists in determining V s values, for example, typical silty sand shows 30.4 % increase in magnitude of V s as compared to silt of Kolkata city. Moreover, the soil site classification shows Class D and Class E category of soil that exists typically in Kolkata city as per NEHRP (Recommended provisions for seismic regulations for new buildings and other structures—Part 1: Provisions. Prepared by the Building Seismic Safety Council for the Federal Emergency Management Agency (Report FEMA 450), Washington, DC, 2003) guidelines and thereby highlighting the seismic vulnerability of the city. The results presented in this study can be utilized for seismic microzonation, ground response analysis and hazard assessment for Kolkata city.

  相似文献   

19.
Soil liquefaction studies at Mumbai city   总被引:1,自引:0,他引:1  
Mumbai city is the economical capital of India and is situated about midway on the western coast of stable continental region of Peninsular India. Major part of the city being of reclaimed land, the soil type is of alluvium, sand, and recent conglomerate. There are some bigger water bodies within the city range. In this study, an attempt has been made to study the susceptibility of soil liquefaction using simplified empirical procedure based on number of blow counts (N values) of the soil layers from standard penetration test. The liquefaction susceptibility is quantified in terms of factor of safety along the borehole depths at available borehole locations using earthquake-induced cyclic stress on the soil and the cyclic resistance of the soil to withstand the load. The factor of safety against liquefaction is evaluated at different sites for two peak ground acceleration (PGA) levels pertaining to 10 and 2?% probability of exceedance in 50?years corresponding to uniform hazard response spectra for Mumbai city with 475- and 2,475-year return period, respectively. Contour maps are prepared that display the factor of safety at different depths for earthquake magnitude of M w 6.5. These contour maps show the liquefaction vulnerability at different sites in the city.  相似文献   

20.
Shear wave velocity (V s) is one of the most important input parameter to represent the stiffness of the soil layers. It is preferable to measure V s by in situ wave propagation tests, however it is often not economically feasible to perform the tests at all locations. Hence, a reliable correlation between V s and standard penetration test blow counts (SPT-N) would be a considerable advantage. This paper presents the development of empirical correlations between V s and SPT-N value for different categories of soil in Chennai city characterized by complex variation of soil conditions. The extensive shear wave velocity measurement was carried out using Multichannel Analysis of Surface Waves (MASW) technique at the sites where the SPT-N values are available. The bender element test is performed to compare the field MASW test results for clayey soils. The correlations between shear wave velocity and SPT-N with and without energy corrections were developed for three categories of soil: all soils, sand and clay. The proposed correlations between uncorrected and energy corrected SPT-N were compared with regression equations proposed by various other investigators and found that the developed correlations exhibit good prediction performance. The proposed uncorrected and energy corrected SPT-N relationships show a slight variation in the statistical analysis indicating that both the uncorrected and energy corrected correlations can predict shear wave velocity with equal accuracy. It is also found that the soil type has a little effect on these correlations below SPT-N value of about 10.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号