首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 183 毫秒
1.
曹文涛  何伟 《测绘通报》2017,(5):110-112
为了解决系列比例尺地形图缩编过程中高程点的抽稀问题,考虑到高程点分布的密度和地形起伏等因素,基于高程点构建了TIN,再结合平均高程面、高程梯度和局部高程最值点,对高程点进行了筛选抽稀。  相似文献   

2.
霍芃芃  王梓琪  闫旭 《北京测绘》2021,35(10):1272-1277
为进一步提升复杂地形条件下无人机激光雷达(Light Detection and Ranging,LiDAR)点云数据构建数字高程模型的效率与精度,以2022年北京冬奥会延庆赛区场馆建设用地为实验区,按照不同抽稀比例,对实验区原始无人机激光雷达点云中分类出的地面点数据进行抽稀处理,利用克里金插值算法对不同密度地面点数据进行插值处理,结合高程中误差、平均绝对误差对生成的数字高程模型进行双重精度评定,得出以下结论:对于复杂地形而言,随着点云数据密度的下降,数字高程模型建模效率明显提升,但地形特征逐渐模糊,数据精度级别逐级降低,其中高程中误差由0.381 m增大至1.914 m,平均绝对误差值由0.335 m增大至1.357 m.在满足精度要求的前提下,对LiDAR点云数据进行适度抽稀处理,可保障生产成本与时效.  相似文献   

3.
王道杰  陈倍  孙健辉 《测绘通报》2022,(5):140-144+169
机载激光雷达技术(LiDAR)作为一项先进的遥感技术,是植被覆盖区DEM获取的重要手段之一,而不同地形坡度条件及点云密度对DEM产品质量有重要影响。本文以辽宁省某市的机载LiDAR数据为基础,选取5种不同地形坡度的点云数据,通过随机、等间距及基于曲率3种不同的点云抽稀方法,按照点云保留率为80%、60%、40%、20%和10%共5个不同梯度的抽稀倍数对原始点云进行抽稀简化处理,生成与之对应的DEM并对其进行精度评价,以此研究地形坡度、点云抽稀方法、抽稀倍数对DEM精度的影响。结果表明,DEM精度与地形坡度呈负相关关系,即RMSE随地形坡度升高不断增加;基于曲率的抽稀方法在地形坡度>30°时,相较于其他两种方法RMSE较小,具有明显优势;40%的点云保留率是平衡DEM精度与数据存储效率的一个节点,当点云保留率<40%时,DEM的高程RMSE会迅速增大。该研究对于利用机载LiDAR进行大范围DEM生产具有一定的指导和借鉴意义。  相似文献   

4.
基于特征点的点云压缩方法研究   总被引:2,自引:0,他引:2  
针对现有点云数据,在VC++平台下,提出一种基于特征点的压缩方法,实现点云数据的抽稀,其中试验数据采用扫描数据以及美国斯坦福大学试验点云数据。经试验表明,该方法能够实现点云的抽稀,减少点云的数据量,提高点云后期处理的效率。  相似文献   

5.
随着科技的发展,高程点提取的自动化程度越来越高,但是自动提取点位的分布合理化和特征高程点的提取需要大量的人力、物力和时间进行修改和人工提取。本文以滕州市主城区1∶500地形图为基础,结合倾斜摄影和ArcMap部分功能,介绍一步式准确、快速、均匀提取高程点和特征点高程的方法,论证了新方法的可行性与有效性。  相似文献   

6.
在Inpho摄影测量工作站中,利用已确定内外方位元素的数码影像根据同名点匹配的方法可以生成高密度的DTM点云数据。本文将讨论如何利用立体采集特征点线的方法在TerraSolid中精化匹配点云的高程和改正植被高,并利用改正后的点云数据自动提取DLG高程点等高线成果。  相似文献   

7.
本文给出了推求网格点高程异常的方法,用它可以加密我国的高程异常数据,从而得到高分辨率的高程异常图。  相似文献   

8.
陈全喜  崔玉柱 《三晋测绘》2003,10(1):33-34,40
通过对GPS高程拟合原理及误差源的分析,并结合实际情况,提出了山区GPS高程起算点的合理布设方案,可以使GPS高程精度达到三角高程测量要求。  相似文献   

9.
讨论对LIDAR点云的高程值进行再次改正的必要性和改正方法,提出构建Delaunay三角网对LIDAR点云的高程值进行再次改正的方法,实例改正结果表明,改正后的LIDAR点云的高程精度能够大幅度提高。  相似文献   

10.
用于公路勘测设计的LiDAR点云抽稀算法   总被引:1,自引:0,他引:1  
传统的抽稀算法应用于公路点云数据抽稀时,往往存在不能很好地顾及地形特征,或者出现大面积点云空洞的缺陷。本文提出了一种改进的基于平均曲率算法,用于公路勘测设计中的点云数据的抽稀,该算法首先通过局部二次曲面拟合,依次求出所有点的平均曲率;然后根据平均曲率判断地形特征,并作为判别点云数据抽稀的主要准则;最后利用标记法解决了平坦路面出现大面积空洞的问题。通过试验与分析,证明了本文抽稀算法的可靠性和适用性。  相似文献   

11.
ICEsat-2/ATLAS是目前高程精度最高的星载激光数据,其数据覆盖全球,能够作为生产高精度全球地面参考高程的基础数据。基于ICESat-2/ATLAS全球激光数据产品ATL08,获取了全球ICESat-2陆地高程点,研究了基于参考高程数据和属性参数提取全球高程控制点的方法,并利用高精度参考高程数据验证了其精度。利用山东试验场和河南试验场30 cm高程精度的机载激光数据对所获取的激光点进行了验证,得到的均方根误差分别为1.11 m、1.39 m;经过参考DEM(digital elevation model)和属性参数限制筛选后的高程控制点的均方根误差分别为0.69 m、0.57 m,数据保留率分别为61.38%、60.00%,证明了该提取方法能够在保证数据保留率的同时有效提高高程精度。所提出的方法能够自动提取点位密度大、精度高的全球高程控制点数据,为国产高分辨率卫星进行无地面或少地面控制点的立体测绘和产品质量检验提供数据支持。  相似文献   

12.
在利用VirtuoZo全数字摄影测量系统立体测图采集1∶10000高程点时,常常受到植被覆盖的山地及高山地等地形困扰,导致产生高程采集不准、点线矛盾、高程点分布不均、采集工作量大等问题。为解决这一难题,本文通过实际生产经验,利用DEM重构的方法自动获取高程点,可完全达到预期效果,大大提高了生产效率。  相似文献   

13.
DTM法土方量计算是工程施工中较为常用的一种方法,选取不同的高程点将获得不同的DTM,进而会影响到工区内土方量计算的精度。本文对不同工区的多种高程点选取方式进行了实验及分析,从中总结了一种较为有效的并兼顾精度的工区边缘高程点选取方法。  相似文献   

14.
主要介绍了CASS环境下地形图生产中遇到的高程点Z值与高程值不一致问题的检查与修改的方法,并详细阐述了适用于程序代码快捷实现的有效算法。  相似文献   

15.
以宁波市鄞州中心城区1∶500数字地形图高程改正项目为例,介绍批量实现数字地形图高程改正的方法.结合测区情况,采用按不同区域建立不同的数学模型的方法进行改正.叙述从外业高程改正控制点的选择、施测和内业高程改正数据模型的建立、程序实现改正的全过程,并对改正结果的可靠性进行验证.实践证明,通过建立高程改正数学模型方法能达到...  相似文献   

16.
采用VB与Matlab编程语言,根据平均间隙法与单点位移分量法的基本原理,设计与实现了基准网点稳定性分析程序,并结合某工程的连续三期高程基准点实测数据,对程序进行了测试,取得了良好的效果。  相似文献   

17.
地球重力场模型在GPS高程测量中的应用   总被引:1,自引:0,他引:1  
原喜屯 《全球定位系统》2011,36(2):59-61,80
介绍了地球重力场模型(EGM2008)及其精度,对利用EGM2008模型进行GPS高程测量这一方法进行了探讨。在试验区内采用多种方案进行数据处理,结合试验区内的已有GPS水准点资料的情况进行了分析,通过对多种方案进行比较分析,得出了利用EGM2008模型进行GPS高程测量的精度与采用水准点的大致关系,为GPS高程测量提供一种新思路。  相似文献   

18.
本文利用某地共99个GPS水准点的大地高和正常高求取高程异常,使用DOG球面小波模型和多面函数,分别对高程异常进行拟合。拟合时剔除模型残差大于2倍中误差的点,并在剔除粗差后重新进行拟合。通过比较外部检核点的已知高程异常值和球面小波模型值、多面函数拟合值之间的均方差评价模型的精度。数据结果表明,以外部检核均方差最小为准则,球面小波模型拟合精度较优,其拟合精度为1.65 cm,多面函数拟合精度为2.35 cm。  相似文献   

19.
SRTM约束的无地面控制立体影像区域网平差   总被引:4,自引:2,他引:2  
周平  唐新明  曹宁  王霞  李国元  张恒 《测绘学报》2016,45(11):1318-1327
针对SRTM(shuttle radar topography mission)数据在平坦地形或局部区域的高程精度远远高于其标称精度的特点,研究设计了一种无地面控制条件下利用SRTM作为高程约束的立体区域网平差方法。通过构建一个较大范围区域网并匹配密集连接点,将SRTM作为连接点物方高程初值,并在平差解算过程中确保分布于地形平坦区域(根据经验,在该类区域SRTM精度较高)的连接点的物方高程严格趋近SRTM高程,最终实现大范围区域内影像高程精度的整体提升。通过以覆盖湖北省全境的资源三号卫星三线阵立体影像作为试验影像的试验验证表明,采用该平差方案,在无地面控制点条件下资源三号立体影像的高程中误差从7.2m提升到2.0m,其中地形平坦区域高程中误差1.44m,山地区域高程中误差3.0m,达到了我国1∶25 000比例尺测图应用的高程精度要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号