首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Analysis of New Zealand geology using a fore-arc model (Crook, 1980a) leads to the recognition of four arc terrains. The west facing Tuhua volcanic arc was active from the Late Proterozoic until the Middle or Late Cambrian. Post-subduction sediments, neritic in the east and flysch in the west, accumulated on the Tuhua accretionary prism from the Late Cambrian until the Early Devonian. Thermal equilibration, metamorphism, granitoid plutonism and penetrative deformation occurred in the Middle to Late Devonian. A small area of Permian platform cover has escaped later erosion. The east-facing Rangitata Terrain records subduction from Early Permian to late Early Cretaceous. Much of its accretionary prism consists of a submarine fan complex derived from Western Antarctica and carried sideways into the trench. The accretionary prism is thick and completely kratonized in southern New Zealand, but the thickness is more variable northwards. There the overlying Upper Cretaceous to Upper Oligocene post-subduction sequence comprises shelf sediments (implying an intermediate-thickness prism) or flysch followed by shelf sediments (implying a thin prism). During the accumulation of this sequence the Rangitata Terrain was a passive continental margin. The south-facing Jurassic-late Oligocene Northland Terrain collided with this passive margin in northern New Zealand at the end of the Oligocene, forming the Northland Allochthon. Subduction then flipped and the oldest part of the Kaikoura Terrain volcanic arc formed on the outer part of the Northland Terrain. Originally this terrain faced northeast and consumed the southwestern part of the South Fiji Basin crust, but during the Miocene the arc migrated clockwise to assume its present northeastern orientation. The fore-arc model employed here satisfactorily explains most first-order and many second-order features of New Zealand geology without requiring modification, thus attesting to the model's versatility and robustness. New Zealand provides a basis for elaborating some aspects of the model, particularly the transition from the syn- to post-subduction phases of fore-arc evolution. Combination of this study with a similar study of the southeastern Australian Paleozoic yields insights into the Phanerozoic evolution of the Australian: Pacific Plates' active margin.  相似文献   

2.
新疆西准噶尔地区是古生代经过俯冲-增生形成的复合造山带,该地区分布有多条蛇绿岩带,其中之一的西准噶尔达拉布特蛇绿岩被认为是最大的一条蛇绿岩带,可能代表了古亚洲洋壳的残余。本文的资料显示蛇绿岩带内的镁铁质岩呈现出N-MORB、E-MORB和似OIB的地球化学特征,通过对阿克巴斯套岩体中的浅色辉长岩LA-ICP-MS锆石年龄测定,获得达拉布特蛇绿岩E-MORB型镁铁质岩的年龄为302±1.7Ma。鉴于达拉布特蛇绿岩中E-MORB和似OIB型镁铁质岩成因的复杂性,结合前人研究成果,对辉长岩锆石U-Pb年龄所代表的意义存在两种可能性:(1)E-MORB型和似OIB型镁铁质岩可能是弧后盆地扩张后期的产物,代表蛇绿岩的年龄,其表明西准噶尔地区可能晚石炭纪还有洋盆存在;(2)E-MORB型镁铁质岩是蛇绿岩消亡阶段由于扩张脊和俯冲带碰撞作用而形成的弧前海山,形成时代晚于达拉布特主体蛇绿岩,但其成因与蛇绿岩的演化密切相关。本文侵向于第二种可能性,认为新疆北部晚石炭-早二叠可能仍存在活动陆缘,俯冲作用仍然存在,扩张脊俯冲形成的板片窗效应导致地幔楔、俯冲板片和沉积物等熔融促使基性岩浆向长英质酸性岩浆转变,从而引发了二叠纪大规模玄武质岩浆底侵,导致了该时期的构造-岩浆-成矿-造山作用的发生。  相似文献   

3.
The high-pressure/low-temperature Maksyutov Complex is situated in the southern Urals between the Silurian/Devonian Magnitogorsk island arc and the East European Platform. The elongated N-S-trending complex is made up of two contrasting tectono-metamorphic units. Unit 1 consists of a thick pile of Proterozoic clastic sediments suggested to represent the passive margin of the East European Platform. The overlying unit 2, composed of Paleozoic sediments, volcanic rocks, and a serpentinite mélange with rodingites, is interpreted as a remnant of the Uralian Paleo-ocean. Devonian eastward subduction of oceanic crust beneath the Magnitogorsk island arc resulted in an incipient blueschist-facies metamorphism of unit 2 indicated by lawsonite pseudomorphs in the rodingites. While unit 2 was accreted to the upper plate, subduction of the continental passive margin caused the high-pressure metamorphism of unit 1. Buoyancy-driven exhumation of unit 1 into the forearc region led to its juxtaposition with unit 2 along a retrograde top-to-the-ENE shear zone. Further exhumation of the Maksyutov Complex into its present tectonic position was accomplished by later shear zones that were active as normal faults and are exposed along the margins of the complex. At the western margin a top-to-the-west shear zone juxtaposed a low-grade remnant of a Paleozoic accretionary prism (Suvanyak Complex) above the Maksyutov Complex. Along the eastern margin a top-to-the-east shear zone and the brittle Main Uralian Normal Fault emplaced the Maksyutov Complex against the Magnitogorsk island arc in the hanging wall.  相似文献   

4.
The Charysh–Terekta–Ulagan–Sayan suture zone was regarded as a tectonic boundary separating two distinct subduction–accretion systems in the Central Asian Orogenic Belt (CAOB). In the north, magmatic arcs, such as the Gorny Altai terrane, formed in the southwestern periphery of the Siberian continent, whereas in the south, arc-prism systems, such as the Altai–Mongolian terrane, formed around the so-called Kazakhstan–Baikal composite continent with Gondwana affinity. When did these two systems amalgamate and whether the metamorphic complexes in the suture zone represent Precambrian micro-continental slivers are critical for our understanding of the accretionary orogenesis and crustal growth rate in the CAOB. A combined geochemical and detrital zircon U–Pb–Hf isotopic study was conducted on the meta-sedimentary rocks from the Ulagan (also referred to Bashkaus) and Teletsk Complexes in the suture zone. The results indicate that the protoliths of these rocks were dominated by immature sediments deposited in a time period between 500 and 420 Ma. Thus, Precambrian micro-continental slivers may not exist in the suture zone and even in the whole Altai Orogen.The meta-sedimentary rocks from the Ulagan Complex yield geochemical compositions between those of common intermediate and felsic igneous rocks, implying that these kinds of rocks possibly served as dominant sources. Detrital zircons from this complex consist of a major population of ca. 620–500 Ma, a subordinate one of ca. 931–671 Ma and rare grains of ca. 2899–1428 Ma. This age spectrum is compatible with the magmatic records of the western Mongolia. We propose that the Ulagan Complex possibly represents part of a subduction–accretion complex built upon an active continental margin of the western Mongolia in the early Paleozoic. The remarkable similarities in source nature, provenance, and depositional setting to the early Paleozoic meta-sedimentary rocks from the northern Altai–Mongolian terrane imply that the Ulagan Complex was possibly fragmented from this terrane.The meta-sedimentary rocks from the Teletsk Complex show similar detrital zircon populations but contain higher proportions of mafic sediments and have more depleted whole-rock Nd isotopic compositions. Our data suggest that the detritus mostly came from the same source as that for the Ulagan Complex but those from the Gorny Altai terrane also contributed. This implies that the Gorny Altai and Altai-Mongolian terranes possibly amalgamated prior to the early Devonian rather than in the middle Devonian to early Carboniferous as previously thought. Thus, the widespread Devonian to early Carboniferous magmatism within these two terranes was possibly generated in a similar tectonic setting. Moreover, the dominant Neoproterozoic to early Paleozoic detrital zircons from the Teletsk Complex yield largely varied ɛHf(t) values of − 23.8 to 12.4, indicating that crustal growth and reworking are both important in the accretionary orogenesis.  相似文献   

5.
The chemical composition of metamorphosed siliciclastic rocks in the Orlica-?nie?nik Dome (Bohemian Massif) identifies the main sources for the Neoproterozoic [the M?ynowiec Formation (MF)], Early Cambrian [the Stronie Formation (SF)] and Late Cambrian/Early Ordovician [the Goszów quartzites (GQ)] sediments. The MF developed from erosion of a Cadomian magmatic arc along the northern Gondwana margin. The variegated SF, with supra-subduction affinities, shows chemical characteristics pointing to erosion of the freshly exhumed Cadomian orogen and detritus deposition in the back-arc basin. The very different chemical features of the GQ indicate deposition in a basin sited on a passive continental margin. The explanation proposed for the observed changes in chemical composition involves three main stages: (1) The pre ~540 Ma evolution of an active continental margin and related back-arc basin ceased with the collision and accretion of the magmatic arc to the Gondwana margin; (2) Early Cambrian rift to drift transition (540–500 Ma) and development of a depositional basin filled with detritus derived from remnants of the magmatic arc; (3) Peri-Gondwana break-up leading to the formation of shallow-water passive margin depositional basins filled with quartz-rich detritus resembling Early Ordovician Armorican quartzites known from other parts of the Variscan Belt.  相似文献   

6.
蛇绿岩就位机制及时限   总被引:3,自引:0,他引:3       下载免费PDF全文
蛇绿岩就位机制可以划分出4种:1)碰撞仰冲型:被动大陆边缘或岛弧与洋壳碰撞时,俯冲到一定深度的硅铝质物质在浮力作用下折返,并上驮相对完整的大洋岩石圈残片到达地表;2)增生底垫型:洋底、海沟沉积物及海底较高地形的上层物质从俯冲板块上刮削下来,持续底垫到上覆板块之下,使大洋岩石圈残片逐渐被动抬高;3)俯冲剥离型:断裂发育相...  相似文献   

7.
The eastern pari of the Xing-Meng Orogenic Belt( XMOB )consists of the Lesser Xing'an-Zhangguangcai Range Orogenic belt, the Bureya-Jiamusi-khanka Block and the Sikhote-Alin accretionary belt. This area is located between the Paleo-Asian oceanic and Paleo-Pacific tectonic regimes. Recent researches imply that the Paleo-Pacific subduction might have begun since early Permian and influenced the both sides of the Mudanjiang Fault during Triassic, which generated a N-S trending magmatic belt and accretionary complexes, such as the Heilongjiang Complex. In Late Jurassic to Early Cretaceous, some tectono st rati graph ic terranes were produced in Sikhote-Alin, which were then dismembered and migrated northwards in late Early Cretaceous by sinistral strike-slip faults. The continental margin parallel transportion weakened subduction-related magmatism in NE China which was under an extensional setting. However, in Lite Cretaceous, the Paleo-Pacific subduction was re-Activated in the eastern XMOB, which contributed to the magmatism in Sikhote-Alin.  相似文献   

8.
大别山南北两侧的浅变质岩是碰撞造山以前洋壳俯冲造山阶段的重要组成部分。木兰山片岩或张八岭群是俯冲的洋壳;苏家河群、信阳群和佛子岭群是由洋壳俯冲形成的海沟沉积,并因俯冲过程中的前进变形而形成增生楔;杨山煤系和梅山群是石炭纪弧前盆地沉积,并因俯冲过程中的前进变形而被增生楔逆掩。宿松群是扬子大陆被动边缘沉积,不是俯冲造山带的成员。因洋壳俯冲形成的弧和弧后盆地可能已被新生界沉积物掩盖。高压-超高压变质带是碰撞造山后期从深部折返的外来体。高压-超高压变质带正好处于洋壳和增生楔之间,破坏了早期洋壳俯冲造山带的完整性,使得洋壳俯冲造山阶段的特征被破坏,因而不易辨别。俯冲造山阶段应为奥陶纪到泥盆纪,碰撞造山阶段应从二叠纪开始。  相似文献   

9.
大别山南北两侧的浅变质岩是碰撞造山以前洋壳俯冲造山阶段的重要组成部分。木兰山片岩或张八岭群是俯冲的洋壳;苏家河群、信阳群和佛子岭群是由洋壳俯冲形成的海沟沉积,并因俯冲过程中的前进变形而形成增生楔;杨山煤系和梅山群是石炭纪弧前盆地沉积,并因俯冲过程中的前进变形而被增生楔逆掩。宿松群是扬子大陆被动边缘沉积,不是俯冲造山带的成员。因洋壳俯冲形成的弧和弧后盆地可能已被新生界沉积物掩盖。高压—超高压变质带是碰撞造山后期从深部折返的外来体。高压—超高压变质带正好处于洋壳和增生楔之间,破坏了早期洋壳俯冲造山带的完整性,使得洋壳俯冲造山阶段的特征被破坏,因而不易辨别。俯冲造山阶段应为奥陶纪到泥盆纪,碰撞造山阶段应从二叠纪开始。  相似文献   

10.
The paper reviews previous and recently obtained geological, stratigraphic and geochronological data on the Russian-Kazakh Altai orogen, which is located in the western Central Asian Orogenic Belt (CAOB), between the Kazakhstan and Siberian continental blocks. The Russian-Kazakh Altai is a typical Pacific-type orogen, which represents a collage of oceanic, accretionary, fore-arc, island-arc and continental margin terranes of different ages separated by strike-slip faults and thrusts. Evidence for this comes from key indicative rock associations, such as boninite- and turbidite (graywacke)-bearing volcanogenic-sedimentary units, accreted pelagic chert, oceanic islands and plateaus, MORB-OIB-protolith blueschists. The three major tectonic domains of the Russian-Kazakh Altai are: (1) Altai-Mongolian terrane (AMT); (2) subduction-accretionary (Rudny Altai, Gorny Altai) and collisional (Kalba-Narym) terranes; (3) Kurai, Charysh-Terekta, North-East, Irtysh and Char suture-shear zones (SSZ). The evolution of this orogen proceeded in five major stages: (i) late Neoproterozoic-early Paleozoic subduction-accretion in the Paleo-Asian Ocean; (ii) Ordovician-Silurian passive margin; (iii) Devonian-Carboniferous active margin and collision of AMT with the Siberian conti- nent; (iv) late Paleozoic closure of the PAO and coeval collisional magmatism; (v) Mesozoic post-collisional deformation and anarogenic magmatism, which created the modern structural collage of the Russian- Kazakh Altai orogen. The major still unsolved problem of Altai geology is origin of the Altai-Mongolian terrane (continental versus active margin), age of Altai basement, proportion of juvenile and recycled crust and origin of the middle Paleozoic units of the Gorny Altai and Rudny Altai terranes.  相似文献   

11.
The studied Carboniferous units comprise metasedimentary (Guaraco Norte Formation), pyroclastic (Arroyo del Torreón Formation), and sedimentary (Huaraco Formation) rocks that crop out in the northwestern Neuquén province, Argentina. They form part of the basement of the Neuquén Basin and are mostly coeval with the Late Paleozoic accretionary prism complex of the Coastal Cordillera, south-central Chile. U–Pb SHRIMP dating of detrital zircon yielded a maximum depositional age of 374?Ma (Upper Devonian) for the Guaraco Norte Formation and 389?Ma for the Arroyo del Torreón Formation. Detrital magmatic zircon from the Guaraco Norte Formation are grouped into two main populations of Devonian and Ordovician (Famatinian) ages. In the Arroyo del Torreón Formation, zircon populations are also of Devonian and Ordovician (Famatinian), as well as of Late Neoproterozoic and Mesoproterozoic ages. In both units, there is a conspicuous population of Devonian magmatic zircon grains (from 406?±?4?Ma to 369?±?5?Ma), indicative of active magmatism at that time range. The εHf values of this population range between ?2.84 and ?0.7, and the TDM-(Hf) are mostly Mesoproterozoic, suggesting that the primary sources of the Devonian magmatism contained small amounts of Mesoproterozoic recycled crustal components. The chemical composition of the Guaraco Norte Formation corresponds to recycled, mature polycyclic sediment of mature continental provenance, pointing to a passive margin with minor inputs from continental margin magmatic rocks. The chemical signature of the Huaraco Formation indicates that a magmatic arc was the main provenance for sediments of this unit, which is consistent with the occurrence of tuff—mostly in the Arroyo del Torreón Formation and very scarcely in the Huaraco Formation—with a volcanic-arc signature, jointly indicating the occurrence of a Carboniferous active arc magmatism during the deposition of the two units. The Guaraco Norte Formation is interpreted to represent passive margin deposits of mostly Lower Carboniferous age (younger than 374?Ma and older than 326?Ma) that precede the onset of the accretionary prism in Chile and extend into the earliest stage of the accretion, in a retrowedge position. The Arroyo del Torreón and Huaraco formations are considered to be retrowedge basin deposits to the early frontal accretionary prism (Eastern Series) of Chile. The presence of volcanism with arc signature in the units provides evidence of a Mississippian magmatic arc that can be correlated with limited exposures of the same age in the Frontal Cordillera (Argentina). The arc would have migrated to the West (Coastal Batholith) during Pennsylvanian–Permian times (coevally with the later basal accretionary prism/Western Series). The source of a conspicuous population of Devonian detrital zircon interpreted to be of magmatic origin in the studied units is discussed in various possible geotectonic scenarios, the preferred model being a magmatic arc developed in the Chilenia block, related to a west-dipping subduction beneath Chilenia before and shortly after its collision against Cuyania/Gondwana, at around 390?Ma and not linked to the independent, Devonian–Mississippian arc, developed to the south, in Patagonia.  相似文献   

12.
The Palaeozoic orogenic process in the North Tianshan of the southern Central Asian Orogenic Belt is controversial. Systematic field study indicates that the ophiolitic fragments of the North Tianshan are mainly thrust slices and blocks of a late Palaeozoic accretionary complex, which was intruded by granitoids. U-Pb zircon dating of plagiogranites from the North Tianshan ophiolite yielded a mean age of 343.1 ± 2.7 Ma. These are typical oceanic plagiogranites but with a supra-subduction zone (SSZ) signature. Ophiolitic basalts display N-MORB, E-MORB, and OIB compositions. One gabbro with an age of 301.9 ± 2.2 Ma shows E-MORB geochemistry mixed with N-MORB and OIB. Some andesites show clear island arc characters indicated by enrichment of LILEs relative to HFSEs. Mean ages of 344.9 ± 4.2 and 298.7 ± 2.4 Ma were obtained for a granite porphyry and a mylonitic granite, respectively. The two granitoids display an island arc geochemical signature evidenced by enrichment of LILEs and depletion of HFSEs. Combined with an eastward migration of Late Devonian to Carboniferous arc magmatism and related Cu-Au-Mo deposits, we propose that trench retreat and slab roll-back took place during subduction of the Junggar Ocean spreading ridge beneath the North Tianshan arc, and that the accretion may have lasted into early Permian time, an important late stage of the long-lived accretionary orogenesis in the southern Central Asian Orogenic Belt.  相似文献   

13.
三叠纪是秦岭造山带全面碰撞造山的关键时期,随着扬子、秦岭和华北板块分别沿勉略、商丹缝合带的汇聚拼合, 秦岭造山带逐渐形成并从板块构造体制向陆内造山体制转化,同时强烈的造山作用控制着周缘盆地的形成与演化。文章通 过研究区的碎屑岩元素地球化学分析,对河南南召盆地上三叠统的物源区及构造背景特征进行探讨。结果表明,上三叠统 源岩成分主要为上地壳长英质火山岩;源岩经历了中等的化学风化强度,校正后CIA值指示其形成于温暖潮湿的气候和相 对较强的构造活动环境;太山庙组源区构造背景主要为大陆岛弧与活动大陆边缘,太子山组源区构造背景主要为大陆岛弧 与被动大陆边缘。根据南召盆地近源沉积特征和秦岭造山带构造演化过程推断,秦岭造山带和华北南缘是南召盆地晚三叠 世的重要物源区,前期太山庙组物源主要由北秦岭隆升基底提供,后期太子山组物源可能来自南秦岭、北秦岭和华北南缘 沉积再循环。南召盆地上三叠统物源区的转变是晚三叠世秦岭造山带逆冲推覆作用逐渐增强的体现,对研究恢复秦岭构造 带造山隆升过程和周缘盆地盆山系统演化具有重要的意义。  相似文献   

14.
The northwestern corner of New South Wales consists of the paratectonic Late Proterozoic to Early Cambrian Adelaide Fold Belt and older rocks, which represent basement inliers in this fold belt. The rest of the state is built by the composite Late Proterozoic to Triassic Tasman Fold Belt System or Tasmanides.In New South Wales the Tasman Fold Belt System includes three fold belts: (1) the Late Proterozoic to Early Palaeozoic Kanmantoo Fold Belt; (2) the Early to Middle Palaeozoic Lachlan Fold Belt; and (3) the Early Palaeozoic to Triassic New England Fold Belt. The Late Palaeozoic to Triassic Sydney—Bowen Basin represents the foredeep of the New England Fold Belt.The Tasmanides developed in an active plate margin setting through the interaction of East Gondwanaland with the Ur-(Precambrian) and Palaeo-Pacific plates. The Tasmanides are characterized by a polyphase terrane accretion history: during the Late Proterozoic to Triassic the Tasmanides experienced three major episodes of terrane dispersal (Late Proterozoic—Cambrian, Silurian—Devonian, and Late Carboniferous—Permian) and six terrane accretionary events (Cambrian—Ordovician, Late Ordovician—Early Silurian, Middle Devonian, Carboniferous, Middle-Late Permian, and Triassic). The individual fold belts resulted from one or more accretionary events.The Kanmantoo Fold Belt has a very restricted range of mineralization and is characterized by stratabound copper deposits, whereas the Lachlan and New England Fold Belts have a great variety of metallogenic environments associated with both accretionary and dispersive tectonic episodes.The earliest deposits in the Lachlan Fold Belt are stratabound Cu and Mn deposits of Cambro-Ordovician age. In the Ordovician Cu deposits were formed in a volcanic are. In the Silurian porphyry Cu---Au deposits were formed during the late stages of development of the same volcanic are. Post-accretionary porphyry Cu---Au deposits were emplaced in the Early Devonian on the sites of the accreted volcanic arc. In the Middle to Late Silurian and Early Devonian a large number of base metal deposits originated as a result of rifting and felsic volcanism. In the Silurian and Early Devonian numerous Sn---W, Mo and base metal—Au granitoid related deposits were formed. A younger group of Mo---W and Sn deposits resulted from Early—Middle Carboniferous granitic plutonism in the eastern part of the Lachlan Fold Belt. In the Middle Devonian epithermal Au was associated with rifting and bimodal volcanism in the extreme eastern part of the Lachlan Fold Belt.In the New England Fold Belt pre-accretionary deposits comprise stratabound Cu and Mn deposits (pre-Early Devonian): stratabound Cu and Mn and ?exhalite Au deposits (Late Devonian to Early Carboniferous); and stratabound Cu, exhalite Au, and quartz—magnetite (?Late Carboniferous). S-type magmatism in the Late Carboniferous—Early Permian was responsible for vein Sn and possibly Au---As---Ag---Sb deposits. Volcanogenic base metals, when compared with the Lachlan Fold Belt, are only poorly represented, and were formed in the Early Permian. The metallogenesis of the New England Fold Belt is dominated by granitoid-related mineralization of Middle Permian to Triassic age, including Sn---W, Mo---W, and Au---Ag---As Sb deposits. Also in the Middle Permian epithermal Au---Ag mineralization was developed. During the above period of post-orogenic magmatism sizeable metahydrothermal Sb---Au(---W) and Au deposits were emplaced in major fracture and shear zones in central and eastern New England. The occurrence of antimony provides an additional distinguishing factor between the New England and Lachlan Fold Belts. In the New England Fold Belt antimony deposits are abundant whereas they are rare in the Lachlan Fold Belt. This may suggest fundamental crustal differences.  相似文献   

15.
蛇绿岩与产于增生楔中的蛇绿岩碎片记录了大洋岩石圈形成、俯冲、消亡等造山作用的全过程信息;是解剖造山带与探讨造山作用的重要研究对象.本文重点阐述蛇绿岩的继承性构造(形成于大洋岩石圈形成阶段:洋?陆过渡带型(ocean-continental transition,简称OCT)、洋中脊型(快速扩张脊的Penrose型与慢速扩张的洋底核杂岩型)、supra-subduction-zone(SSZ)型三个基本端元)与造山就位构造(构造就位于造山带阶段:仰冲就位与俯冲刮铲)的特征、区别及其地质意义.强调蛇绿岩形成的“生而不同”与构造就位的“死也有别”;讨论了蛇绿岩两阶段的特征、时代的大地构造配置,呼吁关注蛇绿岩构造就位阶段俯冲流体的叠加作用,其可能导致最终就位在造山带中的蛇绿岩大部分都具有SSZ型特征.最后,结合中亚造山带南部主要蛇绿岩的特征,对未来中亚造山带蛇绿岩研究提出一些思考与展望;指出未来研究应注重对有限洋盆或小洋盆的厘定,关注OCT成因蛇绿岩的识别与研究,重视山弯构造与走滑断裂对蛇绿岩带现今产出的控制与改造作用.   相似文献   

16.
The southern Chilean convergent margin, between 50° and 57° S, is shaped by the interaction of the three main plates: Antarctic, South America and Scotia. North of 53° S, the convergence between Antarctic and South America plates is close to orthogonal to the continental margin strike. Here, the deformational style of the accretionary prism is mainly characterized by seaward-verging thrusts and locally by normal faults and fractures, a very limited lateral extension of prism, a very shallow dip ( 6°) décollement, and subduction of a thick and relatively undeformed trench sedimentary sequence. South of 53° S, convergence is oblique to the margin, locally, the trench sediments are proto-deformed by double vergence thrusting and the front of the prism grows through landward-verging thrusting. The décollement is sub-horizontal and deep, involving most of the sediment over the oceanic crust in the accretionary process, building a comparatively wide and thicker prism. A Bottom Simulating Reflector is present across the whole prism to the abyssal plan, suggesting the presence of gas in the sediments.The analysis of P- and S-wave velocity reflectivity sections, derived by amplitude versus offset technique (AVO), detailed velocity information and the velocity-derived sediment porosity have been integrated with the structural analysis of the accretionary prism of two selected pre-stack depth migrated seismic lines, aiming to explain the relation between fluid circulation and tectonics.Accretion along double vergence thrust faults may be associated with the presence of overpressured fluid, which decreases the effective shear stress coefficient along the main décollement and within the sediments, and modify the rheolgical properties of rocks. The presence of an adequate drainage network, represented by interconnected faults and fractures affecting the entire sedimentary sequence, can favour the escape of pore fluid toward the sea bottom, while, less permeable and not faulted sediments can favour fluid accumulations. Gravitational and tectonic dewatering, and stratigraphy could control the consolidation and the pore overpressure of sediments involved in subduction along the trench. The results of our analysis suggest the existence of a feedback between tectonic style and fluid circulation.  相似文献   

17.
Contention surrounds the Ediacaran–Cambrian geodynamic evolution of the palaeo-Pacific margin of Gondwana as it underwent a transition from passive to active margin tectonics. In Australia, disagreement stems from conflicting geodynamic models for the Delamerian Orogen, which differ in the polarity of subduction and the state of the subduction hinge (i.e., stationary or retreating). This study tests competing models of the Delamerian Orogen through reconstructing Ediacaran–Cambrian basin evolution in the Koonenberry Belt, Australia. This was done through characterising the mineral and U–Pb detrital zircon age provenance of sediments deposited during postulated passive and active margin stages. Based on these data, we present a new basin evolution model for the Koonenberry Belt, which also impacts palaeogeographic models of Australia and East Gondwana. Our basin evolution and palaeogeographic model is composed of four main stages, namely: (i) Ediacaran passive margin stage with sediments derived from the Musgrave Province; (ii) Middle Cambrian (517–500 Ma) convergent margin stage with sediments derived from collisional orogens in central Gondwana (i.e., the Maud Belt of East Antarctica) and deposited in a backarc setting; (iii) crustal shortening during the c. 500 Ma Delamerian Orogeny, and; (iv) Middle to Late Cambrian–Ordovician stage with sediments sourced from the local basement and 520–490 Ma igneous rocks and deposited into post-orogenic pull-apart basins. Based on this new basin evolution model we propose a new geodynamic model for the Cambrian evolution of the Koonenberry Belt where: (i) the initiation of a west-dipping subduction zone at c. 517 Ma was associated with incipient calc-alkaline magmatism (Mount Wright Volcanics) and deposition of the Teltawongee and Ponto groups; (ii) immediate east-directed retreat of the subduction zone positioned the Koonenberry Belt in a backarc basin setting (517 to 500 Ma), which became a depocentre for continued deposition of the Teltawongee and Ponto groups; (iii) inversion of the backarc basin during the c. 500 Delamerian Orogeny was driven by increased upper and low plate coupling caused by the arrival of a lower plate asperity to the subduction hinge, and; (iv) subduction of the asperity resulted in renewed rollback and upper plate extension, leading to the development of small, post-orogenic pull-apart basins that received locally derived detritus.  相似文献   

18.
40Ar/39Ar age data from the boundary between the Delamerian and Lachlan Fold Belts identify the Moornambool Metamorphic Complex as a Cambrian metamorphic belt in the western Stawell Zone of the Palaeozoic Tasmanide System of southeastern Australia. A reworked orogenic zone exists between the Lachlan and Delamerian Fold Belts that contains the eastern section of the Cambrian Delamerian Fold Belt and the western limit of orogenesis associated with the formation of an Ordovician to Silurian accretionary wedge (Lachlan Fold Belt). Delamerian thrusting is craton-verging and occurred at the same time as the final consolidation of Gondwana. 40Ar/39Ar age data indicate rapid cooling of the Moornambool Metamorphic Complex at about 500 Ma at a rate of 20 – 30°C per million years, temporally associated with calc-alkaline volcanism followed by clastic sedimentation. Extension in the overriding plate of a subduction zone is interpreted to have exhumed the metamorphic rocks within the Moornambool Metamorphic Complex. The Delamerian system varies from a high geothermal gradient with syntectonic plutonism in the west to lower geothermal gradients in the east (no syntectonic plutonism). This metamorphic zonation is consistent with a west-dipping subduction zone. Contrary to some previous models involving a reversal in subduction polarity, the Ross and Delamerian systems of Antarctica and Australia are inferred to reflect deformation processes associated with a Cambrian subduction zone that dipped towards the Gondwana supercontinent. Western Lachlan Fold Belt orogenesis occurred about 40 million years after the Delamerian Orogeny and deformed older, colder, and denser oceanic crust, with metamorphism indicative of a low geothermal gradient. This orogenesis closed a marginal ocean basin by west-directed underthrusting of oceanic crust that produced an accretionary wedge with west-dipping faults that verge away from the major craton. The western Lachlan Fold Belt was not associated with arc-related volcanism and plutonism occurred 40 – 60 million years after initial deformation. The revised orogenic boundaries have implications for the location of world-class 440 Ma orogenic gold deposits. The structural complexity of the 440 Ma Stawell gold deposit reflects its location in a reworked part of the Cambrian Delamerian Fold Belt, while the structurally simpler 440 Ma Bendigo deposit is hosted by younger Ordovician turbidites solely deformed by Lachlan orogenesis.  相似文献   

19.
Recent mapping projects undertaken in Central Mongolia have revealed the widespread occurrence of radiolarian chert within a Paleozoic accretionary complex. We present the results of the first detailed tectonostratigraphic and radiolarian biostratigraphic investigations of the Gorkhi Formation in the Khangai–Khentei belt of the Central Asian Orogenic Belt.The Gorkhi Formation consists of sandstone shale, alternating sandstone and shale of turbidite affinity and chert with small amounts of siliceous shale, basalt, limestone, and clast-bearing mudstone. Radiolarian chert that is completely devoid of terrigenous clastic material is commonly associated with underlying basalt (sedimentary contact) and with conformably overlying siliceous shale and turbidite deposits. The tectonic stacking of basalt–chert and chert–turbidite successions is the most remarkable structural feature of the formation.The recovery of moderately well-preserved radiolarians and conodonts from red chert led to the recognition of four radiolarian assemblages that have a combined age range from the latest Silurian (Pridolian) to the Late Devonian (Frasnian). No age control exists for the siliceous shale, shale, and sandstone, although they are considered to be latest Devonian or slightly younger on the basis of stratigraphic relationships with underlying chert.The Gorkhi Formation has previously been interpreted as a thick sedimentary basin deposit overlying an unexposed Archean–Neoproterozoic basement; however, the stratigraphy within individual tectonic slices clearly corresponds to that of an ocean plate stratigraphy of an accretionary complex generated by the trenchward movement of an oceanic plate. From the lowermost to uppermost units, the stratigraphy comprises ocean floor basalt, pelagic deep-water radiolarian chert, hemipelagic siliceous shale, and terrigenous turbidite deposits. The biostratigraphic data obtained in the present study provide corroborating evidence for the existence of an extensive deep-water ocean that enabled the continuous sedimentation of pelagic chert over a period of nearly 50 million years. These data, together with structural data characterized by tectonic repetition of the stratigraphy, indicate that these rocks formed as an accretionary wedge along an active continental margin, possibly that of the Angara Craton. The mid-oceanic chert was probably deposited in the Northern Hemisphere portion of the Paleo–Pacific Ocean that faced the Angara Craton and the North China–Tarim blocks. Thus, we propose that subduction–accretion processes along the Paleo–Pacific rim played an important role in the accretionary growth of the active continental margin of the Angara Craton, directly influencing the evolution of the Central Asian Orogenic Belt.  相似文献   

20.
《Gondwana Research》2014,26(4):1429-1444
The architecture of accretionary orogens is a key to understand continental growth. Here we present an overview of the orogenic components and their amalgamation in the western Central Asian Orogenic Belt (CAOB). The CAOB records the convergence and interactions among various types of orogenic components including the Japan-type, Mariana-type, and Alaska–Aleutian-type arc systems, as well as the active marginal sequences of the Siberia Craton, which incorporated wide accretionary complexes and accreted arcs and terranes. During construction of the CAOB, the Kazakhstan arc chain was characterized by multiple subduction, whereas the northern fringe of the Tarim Craton remained mostly as a passive margin. The multiple convergence and accretions among these various orogenic components generated huge orogenic collages in the late Paleozoic and even in the early Triassic, involving parallel amalgamation, circum-microcontinent amalgamation and oroclinal bending. The preservation of trapped basins played a significant role in orogenesis with some parts of the oceanic plate being subducted and others behaving as rigid units. The orogenesis in the CAOB was long-lived, lasting for more than 800 m.y., involving multiple-subduction and long, continuous accretion, and featuring the complexity of accretionary orogenesis and continent growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号