首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Using an updated version of the QUASAR software package developed at the Institute of Applied Astronomy of the Russian Academy of Sciences, we have processed the VLBI observations within the international CONT14 program (May 6–20, 2014), in which a global network of 17 stations was involved (a total of ~250 000 observations). The package update concerned the optimization of data structure and the refinement of stochastic models for the random variations in wet tropospheric delay and atomic clock difference. The main goal of this paper is to compare the VLBI determinations of the tropospheric delay with its independent determinations using global navigation satellite systems (GNSS). We show that both these determinations agree well between themselves only in the case of a global analysis of the VLBI observations, where the VLBI station coordinates are also refined, along with the tropospheric delay and the clock synchronization and Earth orientation parameters. If, alternatively, the station coordinates are insufficiently accurate and are not refined from VLBI observations, then it is appropriate not to determine the tropospheric delay from these observations, but to take it from the publicly accessible independent GNSS data. However, this requires that the VLBI and GNSS techniques operate simultaneously at a common observing site. We have established the shortcomings of the universally accepted method of stabilizing the global solution associated with the absence of a criterion for choosing reference stations and radio sources. Two ways of their elimination are proposed: (i) introducing a coordinated list of weight factors for the errors in the coordinates of such stations and sources into the stabilization algorithm and (ii) adopting a coordinated list of stations and sources the refinement of whose coordinates is not required at all for a certain time.  相似文献   

2.
The vertical deformation rates (VDRs) and horizontal deformation rates (HDRs) of Shanghai VLBI station in China and Kashima and Kashima34 VLBI stations in Japan were re-analysed using the baseline length change rates from Shanghai to 13 global VLBI stations, and from Kashima to 27 stations and from Kashima34 to 12 stations, based on the NASA VLBI global solution glb1123 (Ma, 1999). The velocity vectors of the global VLBI stations were referred to the ITRF97 reference frame, and the Eulerian vectors of different models of plate motion were used for comparative solutions. The VDR of Shanghai station is estimated to be −1.91±0.56 mm/yr, and those of Kashima and Kashima34 stations, −3.72±0.74mm/yr and −8.81±0.84mm/yr, respectively. The difference between the last two was verified by further analysis. Similar estimates were also made for the Kokee, Kauai and MK_VLBA VLBI stations in mid-Pacific.  相似文献   

3.
The distribution of systematic errors in the coordinates of 1217 extragalactic radio sources included in the latest version of the ICRF2 (International Celestial Reference Frame) reference catalog has been mapped for the first time by processing VLBI observations from international astrometric and geodetic programs spanning the period 1980–2012. These errors are shown to reach ±1.0 mas (milliarcseconds). However, for a sample of 752 sources observed more than 100 times, these errors do not exceed ±0.2 mas, suggesting that ICRF2 is inhomogeneous. In addition, the individual stability of dozens of extragalactic radio sources and ground-based stations included in the latest version of the International Terrestrial Reference Frame, ITRF2005, has been investigated. Significant linear trends and anomalous shifts reaching ±20 µas (microarcseconds) have been detected for many of the sources. Significant systematic shifts have also been found for some of the reference stations. The results obtained stimulate a search for new methods of analyzing VLBI observations and ways of their global adjustment that would provide greater homogeneity and stability of the ICRF and ITRF. This is needed both to increase the accuracy of determining the astrometric, geodetic, and geodynamic parameters derived from these observations and to facilitate their physical interpretation. The work has been performed with the QUASAR multifunction software package developed at the Institute of Applied Astronomy of the Russian Academy of Sciences.  相似文献   

4.
We present the results of our processing of the first observations of extragalactic radio sources obtained with the eight-element International VLBI Network, which includes the Svetloe Russian Radio Astronomy Observatory equipped with a Mark 3A recording terminal. Our observations and their processing yielded highly accurate coordinates (in meters) of the Svetloe Observatory in the ITRF 2000 system: X = 2730173.854 ± 0.002, Y = 1562442.668 ± 0.004, Z = 5529969.069 ± 0.007. We also show that including the Svetloe Observatory in the International Network led to an appreciable improvement in the accuracy of determining the Earth’s rotation parameters (microarcseconds for the coordinates of the pole and nutation angles, microseconds for Universal Time): Xp = ?154683 ± 77, Yp = 361809 ± 59, UT1-UTC = ?325162.9 ± 2.5, Δψ = ?53147 ± 114, Δε = ?2286 ± 47.  相似文献   

5.
The aim of this article is to draw attention to the priority of the well-known astronomer and geophysicist, member of the Academy of Sciences of Ukraine A.Ya. Orlov (1880–1954) in the determination of the following parameters describing the secular motion of the earth’s poles: speed (4 mas/year) and direction (69° west). These results (1954) are based on the astronomical observations from 1900 to 1950 with zenith telescopes at international latitude stations. Orlov is well known in the world astronomical community as the founder of the Poltava Gravimetric Observatory, the Main Astronomical Observatory, and the national research school of global geodynamics. However, his pioneering work on secular polar motion is little known worldwide. At present, Orlov’s estimates for secular polar motion have been verified by century-long observations (1900–2012) obtained with different telescopes at many observatories worldwide and by different, both astronomical and space-based, methods (LLS, VLBI, GNSS, etc.).  相似文献   

6.
The spectroscopic red shifts of seven optical objects whose coordinates coincide with those of radio sources in the IVS (International VLBI Service for Geodesy and Astrometry) program list are determined from observations with the 6-m BTA telescope at the Special Astrophysical Observatory (SAO) of the Russian Academy of Sciences. A comparison of these spectra and red shifts with data in the radio frequency range shows that four of the objects discussed here are correctly identified, while the other three require further study. The distances to the radio sources derived from our measurements yield more accurate estimates of the cosmological model parameters than those based on the proper motions of these objects derived from geodesic VLBI observations.  相似文献   

7.
Using a new version of the QUASAR domestic multifunction software package, we have simultaneously processed all of the available VLBI observations performed on global networks of stations over the period 1979–2009. New improved and extended versions of the international reference systems of coordinates of extragalactic radio sources and ground-based VLBI stations and a new independent series of Earth orientation parameters have been obtained. Analysis of the accuracy of these results shows that they are at the level of the best determinations at national and international VLBI data analysis centers.  相似文献   

8.
利用国内VLBI网跟踪大椭圆轨道卫星   总被引:1,自引:0,他引:1  
2004年7月,昆明VLBI站经过改造,由上海、乌鲁木齐和昆明站组成的中国VLBI网(CVN)采用统一的MARK4格式编制器和CVN硬盘记录系统,对大椭圆轨道卫星“探测1号”的2圈轨道的共同可视弧段进行了跟踪观测.软件相关处理程序已成功地用于检测卫星遥测信号的干涉条纹和数据相关处理.采用基于条纹幅度的加权最小二乘条纹拟合方法,获得了卫星VLBI观测量及其精度估计,完成了卫星VLBI观测量的3基线闭合误差检验.应用河外射电源校准方法和多频点相位校正信号提取方法,进行了台站钟差和仪器延迟等系统误差改正.经系统差改正后的卫星VLBI观测量序列已用于“探测1号”卫星的轨道确定.  相似文献   

9.
介绍了国际测地/天体测量学甚长基线干涉测量服务(International Very Long Baseline Interferometry (VLBI) Service for Geodesy and Astrometry, IVS)组织机构及下属分析中心概况.系统归纳了目前IVS发布的地球定向参数(Earth Orientation Parameters, EOP)产品类型及不同观测类型的用途.利用2010—2019年公开发布的观测资料,对IVS不同分析中心的EOP日常监测和服务能力进行了评估.通过构造观测台站所构成的几何体积,分析了EOP精度与测站数量、测站网分布的关系,统计了IVS不同观测类型的EOP解算精度.此外,综合公开发布的美国、欧洲等区域网观测数据,分析了不同地区区域网的常规及加强观测结果与IVS结果的差异.结果表明:EOP的解算精度与观测台站的分布密切相关, IVS常规观测确定的极移分量的外符合精度优于0.2 mas,世界时(Universal Time, UT1)与协调世界时(Coordinated Universal Time,UTC)之差(UT1-UTC)的精度在0.015 ms左右,加强观测的UT1-UTC值与国际自转服务组织(International Earth Rotation Service, IERS)的C04之间存在0.02–0.03 ms的差异.区域观测网的精度受观测网形和基线长度制约,总体劣于IVS观测精度,其中,美国甚长基线干涉阵列(Very Long Baseline Array, VLBA)的常规及加强观测结果与IVS全球观测结果最接近.  相似文献   

10.
The results of observations of 46 radio stars carried out with the Repsold meridian circle of the Kyyiv University Observatory in 1984–1985 and 1989–1991 are presented. The main goal of these observations is to improve the optical positions of radio stars for determination of a relationship between the optical and VLBI reference frames. The standard errors of averaged positions in two catalogues amount to 0.2 arcsec. These results were compared with those obtained with the Bordeaux meridian circle.  相似文献   

11.
CVN硬盘系统和软件相关处理在e-VLBI试验中的应用   总被引:1,自引:0,他引:1  
介绍了中国VLBI网(CVN)的e-VLBI技术研究进展.CVN包括上海佘山、乌鲁木齐南山2个固定观测站和云南昆明的流动站,以及上海天文台的2台站硬件相关处理机。2003年上海天文台自行研制了基于PC技术的VLBI数据记录、回放系统,命名为CVN硬盘系统,并成功将其安置于CVN观测站和处理机系统。硬件处理机经过改造后,已能处理来自硬盘和原有磁带系统的数据.从2003年至今,中国VLBI网采用该硬盘系统进行了多次VLBI观测和e-VLBI试验。在CVN硬盘系统基础上,软件相关处理技术的研究也得以开展。软件相关处理原型程序已经被用于台站条纹检测、卫星条纹搜索和数据处理中。该软件获得的计算结果被成功用于国内第一个3台站卫星VLBI的延迟和延迟率闭合试验,以及国内首次利用VLBI数据进行的卫星定轨试验。除此之外,该软件还用作硬件处理机的条纹引导器。为适应未来“嫦娥”月球探测工程,CVN将扩展成含有4个观测站和2个相关处理机(硬件、软件)的实时VLBI网。今后,e-VLBI将被应用于月球卫星导航以及测地和天体物理的VLBI观测。  相似文献   

12.
基于NNR-NUVEL-1A地球板块运动模型和ITRF2000地球参考架的三维VLBI站速度矢量,采用实测的VLBI基线长度变化率作为约束,重新估计了部分国际VLBI站的局部或区域性地壳的垂直形变,并与国际地球参考架ITRFs解和VLBI全球解GLB2003,VTRF2003和VTRF2005的结果进行了比较。结果表明,欧亚板块的URUMQI站和太平洋板块的KWAJAL26站,南极OHIGGINS站的垂直形变率、ITRFs解和VLBI全球解存在6-15mm/a的差异,北美YUMA站可能有15-31mm/a 的垂直形变率,而美国西部太平洋板块的San Francisco(PRESIDIO)站的垂直形变率还有待进一步的研究。此外,SC-VLBA,CRIMEA和EFLSBERG站的垂直形变率、ITRFs解和VLBI全球解的差约为1-6mm/a。用不同方法得到的VLBI站的水平形变率解有较好的一致性。  相似文献   

13.
The Hartebeesthoek Radio Astronomy Observatory has played a key role in the development of very long baseline interferometry (VLBI) in the southern hemisphere since 1971. This paper describes how the VLBI programme evolved and the instrumentation used. Contributions to high resolution mapping of compact radio sources are described, for both the Southern Hemisphere VLBI Experiment, SHEVE, and for Global networks, where HartRAO has made significant improvements in the N-S resolution. The unique geographical location of the telescope has been used to establish the terrestrial reference frame in the southern hemisphere and to measure tectonic motions over the past nine years. The Observatory has also been a fundamental station in extending the celestial reference frame defined by extragalactic radio sources to the southern hemisphere, and results of these programmes are given.  相似文献   

14.
We consider a method of reconstructing the structure delay of extended radio sources without constructing their radio images. The residuals derived after the adjustment of geodetic VLBI observations are used for this purpose. We show that the simplest model of a radio source consisting of two point components can be represented by four parameters (the angular separation of the components, the mutual orientation relative to the poleward direction, the flux-density ratio, and the spectral index difference) that are determined for each baseline of a multi-baseline VLBI network. The efficiency of this approach is demonstrated by estimating the coordinates of the radio source 0014+813 observed during the two-week CONT14 program organized by the International VLBI Service (IVS) in May 2014. Large systematic deviations have been detected in the residuals of the observations for the radio source 0014+813. The averaged characteristics of the radio structure of 0014+813 at a frequency of 8.4 GHz can be calculated from these deviations. Our modeling using four parameters has confirmed that the source consists of two components at an angular separation of ~0.5 mas in the north–south direction. Using the structure delay when adjusting the CONT14 observations leads to a correction of the average declination estimate for the radio source 0014+813 by 0.070 mas.  相似文献   

15.
中国计划于2025年左右建立月球轨道VLBI (Very Long Baseline Interferometer)测站,将会搭载被动型星载氢钟作为时间频率标准.由于是首次在VLBI观测中使用星载氢钟,需要研究和验证其可行性.因此,利用星载氢钟作为频率基准开展了VLBI观测.实验时,分别使用主动型地面氢钟和被动型星载氢钟作为频率基准,利用上海天文台佘山25 m射电望远镜和其他测站对我国火星探测器天问一号进行了交替VLBI观测.数据处理分析结果表明,基于地面氢钟与星载氢钟的VLBI残余群时延标准差均在0.5 ns以内,表明星载氢钟可满足深空探测VLBI测定轨的精度要求,验证了其作为月球VLBI测站频率基准的可行性.  相似文献   

16.
In this paper the history and status of the IVS (International VLBI Service for Astrometry and Geodesy) UT1 Intensive observations are briefly re- viewed, and the deficiencies and error sources in the current Intensive observa- tions are investigated. An in-depth analysis of the IVS Intensive observation data from February 1984 to August 2011 with different observation networks is carried out, and the progress of the UT1 accuracy obtained by the Intensive observations during this period is discussed. By comparing the results from dif- ferent networks, a difference of some dozens of microseconds between different networks is found. The results of the IVS Intensive observations with Sheshan Station participated in are analyzed, it shows that the Sheshan Station perfor- mance as well as other stations. Finally, from the comparison and analysis of different UT1 series, it is concluded that there is an uncertainty with a level of 10 microseconds between the UT1 values obtained from the IVS Intensive observations and the values of the IERS (International Earth Rotation Service) C04.  相似文献   

17.
China plans to establish a lunar orbital VLBI (Very Long Baseline Interferometer) station around 2025, which will carry a space passive hydrogen maser as the time and frequency reference. Since it is the first time to use a space passive hydrogen maser for VLBI observation, its feasibility needs to be studied and verified. Therefore, we carried out VLBI observations using the space passive hydrogen maser as the frequency reference. In the experiment, the active hydrogen atomic clock and space passive hydrogen maser were used as the frequency standard, and the alternate VLBI observations of China’s Mars probe TW1 (Tianwen 1) were carried out using the 25 m radio telescope at Sheshan, Shanghai, and other VLBI stations. The results of data processing and analysis show that the standard deviation of VLBI residual group delay based on both active hydrogen atomic clock and space passive hydrogen maser are within 0.5 ns, which indicates that the space passive hydrogen maser can meet the accuracy requirements of VLBI measurement for deep space exploration, and verify its feasibility as the frequency standard of lunar orbital VLBI stations.  相似文献   

18.
In VLBI observations of Vstar, a subsatellite of the Japanese lunar mission SELENE, there were opportunities for lunar grazing occultation when Vstar was very close to the limb of the Moon. This kind of chance made it possible to probe the thin plasma layer above the Moon's surface as a meaningful by-product of VLBI,by using the radio occultation method with coherent radio waves from the S/X bands.The dual-frequency measurements were carried out at Earth-based VLBI stations. In the line-of-sight direction between the satellite and the ground-based tracking station where VLBI measurements were made, the effects of the terrestrial ionosphere, interplanetary plasma and the thin lunar ionosphere mixed together in the combined observables of dual-frequency Doppler shift and phase shift. To separate the variation of the ionospheric total electron content(TEC) near the surface of the Moon from the mixed signal, the influences of the terrestrial ionosphere and interplanetary plasma have been removed by using an extrapolation method based on a short-term trend. The lunar TEC is estimated from the dual-frequency observation for Vstar from UT 22:18to UT 22:20 on 2008 June 28 at several tracking stations. The TEC results obtained from VLBI sites are identical, however, they are not as remarkable as the result obtained at the Usuda deep space tracking station.  相似文献   

19.
《Experimental Astronomy》2009,23(1):221-244
Millimetron is a Russian-led 12 m diameter submillimeter and far-infrared space observatory which is included in the Space Plan of the Russian Federation for launch around 2017. With its large collecting area and state-of-the-art receivers, it will enable unique science and allow at least one order of magnitude improvement with respect to the Herschel Space Observatory. Millimetron will be operated in two basic observing modes: as a single-dish observatory, and as an element of a ground-space very long baseline interferometry (VLBI) system. As single-dish, angular resolutions on the order of 3 to 12 arc sec will be achieved and spectral resolutions of up to a million employing heterodyne techniques. As VLBI antenna, the chosen elliptical orbit will provide extremely large VLBI baselines (beyond 300,000 km) resulting in micro-arc second angular resolution.  相似文献   

20.
A model which includes the relativistic effect is derived that can be applied to space very long baseline interferometry(SVLBI) while taking observations of sources at infinite distance. In SVLBI,where one station is on a spacecraft,the length of the baseline and the orbiting station's maximum speed in an elliptical orbit around the Earth is much larger than the ground-based VLBI,which leads to a larger delay and higher delay rate. The delay models inside VLBI correlators are usually expressed as fifth-order polynomials during a limited time interval,which are evaluated by firmware in the correlator and track delays in the interferometer over the limited time interval. The higher SVLBI delay rate requires more accurate polynomial fitting and evaluation,as well as more frequent model updates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号