首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 790 毫秒
1.
The Central Patagonian Andes is a particular segment of the Andean Cordillera that has been subjected to the subduction of two spreading ridges during Eocene and Neogene times. In order to understand the Cenozoic geologic evolution of the Central Patagonian Andes, we carried out geochronologic(U-Pb and40Ar/39Ar), provenance, stratigraphic, sedimentologic, and geochemical studies on the sedimentary and volcanic Cenozoic deposits that crop out in the Meseta Guadal and Chile Chico areas(~47°S). Our data indicate the presence of a nearly complete Cenozoic record, which refutes previous interpretations of a hiatus during the middle Eocene-late Oligocene in the Central Patagonian Andes. Our study suggests that the fluvial strata of the Ligorio Marquez Formation and the flood basalts of the Basaltos Inferiores de la Meseta Chile Chico Formation were deposited in an extensional setting related to the subduction of the Aluk-Farallon spreading ridge during the late Paleocene-Eocene. Geochemical data on volcanic rocks interbedded with fluvial strata of the San Jose Formation suggest that this unit was deposited in an extensional setting during the middle Eocene to late Oligocene. Progressive crustal thinning allowed the transgression of marine waters of Atlantic origin and deposition of the upper Oligocene-lower Miocene Guadal Formation. The fluvial synorogenic strata of the Santa Cruz Formation were deposited as a consequence of an important phase of compressive deformation and Andean uplift during the early-middle Miocene. Finally, alkali flood basalts of the late middle to late Miocene Basaltos Superiores de la Meseta Chile Chico Formation were extruded in the area in response to the suduction of the Chile Ridge under an extensional regime. Our studies indicate that the tectonic evolution of the Central Patagonian Andes is similar to that of the North Patagonian Andes and appears to differ from that of the Southern Patagonian Andes, which is thought to have been the subject of continuous compressive deformation since the late Early Cretaceous.  相似文献   

2.
对佳木斯隆起周缘的勃利盆地和鸡西盆地中的早白垩世穆棱组和滴道组砂岩样品进行了系统的碎屑锆石U-Pb同位素年代学和碎屑白云母40Ar/39Ar同位素年代学研究。结果表明,滴道组和穆棱组沉积时期,没有500Ma或大于500Ma的来自佳木斯地块基底的年龄纪录,暗示佳木斯隆起在早白垩世穆棱组沉积时期尚未隆起。黑龙江东部盆地群为统一的原型盆地,结合对该区白垩纪砂岩的矿物组成和砾石统计的研究成果,认为早白垩世末东山组沉积以后佳木斯隆起开始隆升,猴石沟组沉积时期佳木斯隆起已经隆升到一定高度并为其周缘盆地提供物源,同时随着佳木斯隆起的隆升,原来早白垩世的统一盆地遭到分割破坏,形成诸多相对独立的盆地。  相似文献   

3.
北秦岭宽坪岩群变质沉积岩年代学及地质意义   总被引:2,自引:1,他引:1       下载免费PDF全文
宽坪岩群位于北秦岭造山带,主要由广东坪岩组斜长角闪岩、四岔口岩组云母石英片岩及谢湾岩组的大理岩组成。通过LA-MC-ICPMS锆石U-Pb测年研究,宽坪岩群谢湾岩组碎屑锆石年龄为400~3502 Ma,其中最年轻一组的206Pb/238U年龄在380~418 Ma,结合黑云母40Ar/39Ar(370.9±2.0)Ma的变质年龄,表明谢湾岩组形成在晚泥盆世。四岔口岩组碎屑锆石年龄介于512~3598 Ma,最年轻的一组锆石206Pb/238U年龄在512~549 Ma,其黑云母40Ar/39Ar变质年龄为(370.4±1.8)Ma,表明该组形成于512 Ma(早寒武世)之后,晚泥盆世之前,主体很可能形成于早古生代。宽坪岩群是由不同时代的地层和岩片构成,应该进一步解体。宽坪岩群物源来自华北陆块、秦岭造山带和扬子陆块。其变形变质时代为晚泥盆世,代表了北秦岭造山带碰撞造山的结束时代。  相似文献   

4.
New thermochronological analyses of granites from the Malay Peninsula record the region’s thermal history during the Late Mesozoic and Cenozoic. 40Ar/39Ar and (U–Th–Sm)/He analyses are combined with existing fission track data to provide a comprehensive set of temperature and time data. Fully and partially reset K-feldspar and biotite mica 40Ar/39Ar analyses indicate a significant period of thermal perturbation between ∼100 and ∼90 Ma, and a second lesser perturbation between ∼51 and ∼43 Ma. Zircon (U–Th–Sm)/He analyses and existing fission track data indicate exhumation of the Malay Peninsula in the Cretaceous, and renewed, localised exhumation in the early Paleogene. Apatite (U–Th–Sm)/He and fission track data indicate rapid exhumation of the region in the Late Eocene and Oligocene. Late Cretaceous tectonism is linked to the reversal of a regional dynamic topographic low following the cessation of subduction along the Sundaland margin in the Late Cretaceous, causing regional uplift and exhumation and the addition of significant heat into the crust via mantle upwelling. Early Paleogene exhumation may reflect the continuation of Cretaceous tectonism or a discrete phase of Paleocene exhumation linked to localised transpressional tectonics. Eocene tectonism is coincident with major subsidence offshore of the Malay Peninsula, interpreted to reflect regional block faulting in response to north–south compression driven by the resumption of subduction along the southern margin of Sundaland in the Eocene.  相似文献   

5.
江西冷水坑矿区构造-岩浆活动的年代学约束   总被引:6,自引:3,他引:3  
江西省冷水坑矿区火成岩-构造演化一直缺少系统的年代学制约.作者运用LA-ICP-MS锆石U-Pb和40Ar/39Ar测年技术,对冷水坑矿区两套火山岩地层(打鼓顶组和鹅湖岭组)、含矿花岗斑岩和主推覆断层F2进行了年代学测试,结果表明,打鼓顶组流纹质含角砾熔结凝灰岩形成于160.8±1.9Ma,鹅湖岭组合角砾熔结凝灰岩则具有间歇性和多期喷发特点,其最初活动时间为159Ma,而主体形成于146.6±2.2Ma;矿区含矿花岗斑岩与打鼓顶组、鹅湖岭组几乎同期形成,年龄介于163.6 ±2.1Ma~154.3±3.0Ma之间;研究区构造活动起始时间不晚于加里东期,推覆断层F2中保留有40Ar/39Ar年龄为398.5±2.6Ma的构造活动痕迹,中生代重新复活,导致震旦系叠覆于鹅湖岭组之上,年龄晚于146.6Ma,可能对含矿斑岩体起破坏作用.  相似文献   

6.
Quantitative techniques that link sediments to their sources are needed to understand a range of tectonic, climate, and anthropogenic driven Earth surface processes. Many provenance techniques exist for sand-sized material but fewer are available for fine-grained sediment archives. In this respect, bulk 40Ar/39Ar ages from silt-sized sediment show potential, but many questions remain about the significance of a bulk sediment 40Ar/39Ar age. We interrogate bulk sediment 40Ar/39Ar ages by step heating mixtures of well-constrained 40Ar/39Ar mineral standards crushed to silt-sized. Silt-sized end member components Alder Creek Sanidine, Taylor Creek Sanidine and Heidelberg Biotite all yield plateau ages within uncertainty of their coarse-grained counterparts. High-resolution step heating (as many as 43 steps) of the mineral mixtures shows that biotite degasses first at lower temperatures compared to the two sanidines that degas generally in concert. Concordant age steps develop at both low and high temperatures and the transition from the isotope signal being dominated by one mineral phase to another is clearly observed. We show that age spectra for the mineral standard mixtures can be modeled and predicted for all mixtures by assuming a (simplistic) Gaussian distributed release of Ar, and by using the degassing maxima, variance, K concentration, and 40Ar/39Ar age of each monitor mineral. Thus, bulk sediment 40Ar/39Ar ages can be robust indicators of the average cooling/crystallization age of all contributing K-bearing minerals to a depositional center. Furthermore, we discuss the potential to deconvolve individual mineral age populations by model inversion. The application of this bulk sediment provenance technique should not be considered a replacement for single grain analyses. It should be applied to environments that do not provide sand-sized sediment archives (e.g., distal terrigenous sedimentary archives) when information about source changes through time are more important than precise sediment source identification.  相似文献   

7.
The Salvan-Dorénaz intramontane basin formed between ca. 308–293 Ma as an asymmetric graben along crustal-scale transtensional fracture zones within the Aiguilles-Rouges crystalline massif (Western Alps) and represents a feature of the post-collisional evolution of the Variscan orogens. It contains 1.5–1.7 km of continental clastic deposits which were eroded from granitic, volcanic, and metamorphic rocks. Textural and compositional immaturity of the sandstones, and the numerous lithic fragments with low chemical and physical stability suggest only short-range transport. 40Ar/39Ar analyses of detrital muscovite are interpreted to represent cooling of the crystalline basement below the respective closure temperatures. Ages from detrital muscovite range between ca. 280–330 Ma. 40Ar/39Ar white mica plateau ages from granitic boulders range between 301–312 Ma and suggest rapid cooling. The very short time interval recorded between the 40Ar/39Ar cooling ages and the stratigraphic age of the host sediment suggests that considerable portions of the upper crust were removed prior to the formation of the basin. Late Variscan granitic boulders document surface exposure and erosion of Late Carboniferous granites during early stages of the infilling of the basin. Therefore, unroofing of basement units, magmatic activity, and formation of the fault bounded Salvan-Dorénaz basin were acting concomitantly, and are highly suggestive of extensional tectonics. When compared with other orogens, this situation seems specific to the Variscan, especially the exclusively young ages of detrital material, however, modern analogous may exist.Electronic Supplementary Material Supplementary material is available for this article if you access the article at . A link in the frame on the left on that page takes you directly to the supplementary material.  相似文献   

8.
Vertical displacements on the SW–NE Têt fault (Eastern Pyrenees Axial Zone, France), which separates the Variscan Canigou-Carança and Mont-Louis massifs, were constrained using a thermochronologic multi-method approach. 40Ar/39Ar data from the granitic Mont-Louis massif record its Variscan cooling history and reveal no ages younger than Early Cretaceous, while the Canigou-Carança gneiss massif records systematically younger 40Ar/39Ar ages. These younger 40Ar/39Ar ages in the Canigou-Carança gneiss massif are the result of partial to total rejuvenation of argon isotopic systems related to a thermal flow coeval with the Cretaceous HT-BP metamorphism in the North Pyrenean Zone. Only the deepest rocks from the Canigou-Carança suffered this extensive Mid-Cretaceous thermal overprint probably due to differential burial around 4 km at that time. The post Mid-Cretaceous vertical displacements along the Têt fault are recorded by “low” temperature thermochronology using K-feldspar 40Ar/39Ar, zircon and apatite fission track and (U–Th)/He datings. The Mont-Louis granite samples experienced a long period of protracted cooling reflecting a lack of thermo-tectonic activity in this area from Late Palaeozoic to Early Cenozoic, followed by cooling from 55–60 Ma to Late Eocene at a mean rate of 15–20°C/Ma in the final stage. This cooling stage corresponds to Têt fault reactivation with a reversed component, promoting exhumation of the Mont-Louis roof zone contemporaneously with the south-vergent Pyrenean thrusting. In the Canigou-Carança massif, the main cooling event occurred from 32 to 18 Ma at a maximum rate of 30°C/Ma during Early Oligocene followed by a more moderate rate of 3°C/Ma from Late Oligocene to Early Burdigalian, coeval with the normal reactivation of the Têt fault in brittle conditions that accommodated the final exhumation of the massif during the opening of the Gulf of Lion.  相似文献   

9.
The Permian Cape Fold Belt (CFB) of South Africa forms part of a major orogenic belt that originally extended from Argentina, across southern Africa and into Antarctica. The CFB is dominated by complexly folded and faulted rocks of the siliciclastic Cape Supergroup that were deposited in the Cape Basin. The provenance of the Cape Supergroup, timing of deformation and tectonic setting are poorly constrained. U-Pb detrital zircon provenance studies suggest that the Cape Basin received sedimentary detritus from the African Mesoproterozoic Namaqua-Natal Metamorphic Belt, Neoproterozoic-Cambrian Pan-African Belts and the Brasiliano orogenic belts of South America, Africa and Antarctica. However, as zircon is able to survive multiple orogenic and sedimentary transport cycles, complementary provenance tools are required to confirm Cape Supergroup provenance. Previous studies have suggested both uni-modal and multi-modal models for the timing of CFB orogenesis. In the current study, structurally controlled, muscovite-bearing samples were collected along several north-south traverses across the CFB. Detailed textural and mineral chemistry analyses identified multiple muscovite populations, commonly with complex intergrowth features. High precision 40Ar/39Ar analyses reveal a dominant 490–465 Ma detrital muscovite population, lending support to a largely South American provenance for the Cape Supergroup. Lesser detrital muscovite populations in the range 650–500 Ma and >730 Ma, corroborate previous zircon provenance studies suggesting Pan-African/Brasiliano terranes and the Namaqua-Natal Metamorphic Belt as significant sediment sources, respectively. Detailed 40Ar/39Ar analyses of multiple neo-crystallised muscovite samples are consistent with a single major phase of CFB deformation occurring between 253.4 and 249.6 Ma. This age is interpreted to represent either the peak or final dominant phase of CFB deformation.  相似文献   

10.
The Salar de Atacama basin, the largest “pre-Andean” basin in Northern Chile, was formed in the early Late Cretaceous as a consequence of the tectonic closure and inversion of the Jurassic–Early Cretaceous Tarapacá back arc basin. Inversion led to uplift of the Cordillera de Domeyko (CD), a thick-skinned basement range bounded by a system of reverse faults and blind thrusts with alternating vergence along strike. The almost 6000-m-thick, upper Cretaceous to lower Paleocene sequences (Purilactis Group) infilling the Salar de Atacama basin reflects rapid local subsidence to the east of the CD. Its oldest outcropping unit (Tonel Formation) comprises more than 1000 m of continental red sandstones and evaporites, which began to accumulate as syntectonic growth strata during the initial stages of CD uplift. Tonel strata are capped by almost 3000 m of sandstones and conglomerates of western provenance, representing the sedimentary response to renewed pulses of tectonic shortening, which were deposited in alluvial fan, fluvial and eolian settings together with minor lacustrine mudstone (Purilactis Formation). These are covered by 500 m of coarse, proximal alluvial fan conglomerates (Barros Arana Formation). The top of the Purilactis Group consists of Maastrichtian-Danian alkaline lava and minor welded tuffs and red beds (Cerro Totola Formation: 70–64 Ma K/Ar) deposited during an interval of tectonic quiescence when the El Molino–Yacoraite Late Cretaceous sea covered large tracts of the nearby Altiplano-Puna domain. Limestones interbedded with the Totola volcanics indicate that this marine incursion advanced westwards to reach the eastern CD slope. CD shortening in the Late Cretaceous was accompanied by volcanism and continental sedimentation in fault bounded basins associated to strike slip along the north Chilean magmatic arc to the west of the CD domain, indicating that oblique plate convergence prevailed during the Late Cretaceous. Oblique convergence seems to have been resolved into a highly partitioned strain system where margin-parallel displacements along the thermally weakened arc coexisted with margin-orthogonal shortening associated with syntectonic sedimentation in the Salar de Atacama basin. A regionally important Early Paleocene compressional event is echoed, in the Salar de Atacama basin by a, distinctive, angular unconformity which separates Paleocene continental sediments from Purilactis Group strata. The basin also records the Eocene–Early Oligocene Incaic transpressional episode, which produced, renewed uplift in the Cordillera de Domeyko and triggered the accumulation of a thick blanket of syntectonic gravels (Loma Amarilla Formation).  相似文献   

11.
The Prepiedmont domain succession of the Ligurian Alps is formed by a thick Mesozoic sedimentary cover tectonically detached from its substratum. The Arnasco–Castelbianco unit preserves the most complete record of the Ligurian Prepiedmont, although completely overturned and deformed due to Alpine tectonics. It is composed of carbonate and clastic rocks deposited during the Upper Triassic to Lower Cretaceous interval. This paper is focused on the stratigraphy of the Jurassic series and its relationships to the Tethyan rifting. Each term of the sedimentary record is seen as a witness of the several phases through which the rifting took place. An early rifting phase (Late Hettangian to Early Sinemurian) brought to the formation of a normal fault system affecting the carbonate platform and favoured the development of condensed sedimentation on pelagic highs. The rapid transition from open-platform carbonates to slope-basin cherty limestones testifies the increased subsidence of the margin in the Late Sinemurian, during which moderate fault activity is recorded (intraformational breccia horizons). Until the Early Pliensbachian, a tectonic pause brought to the sedimentation of a succession of pelagic carbonates, occasionally interrupted by clastic flows. During the Late Pliensbachian (?) to Toarcian, the rifting phase followed, evidenced by the large amount of clastics and generated by renewed fault activity. Clastics flowed down into the basin as fluxoturbidites first, and then passed to breccias during the maximum tectonic pulse. In the Late Toarcian to Aalenian (?), the thermal uplift of the Briançonnais shoulder generated a basin fill of fine clastics. The following thermal subsidence (Aalenian to Tithonian) favoured the restoration of quiet basinal conditions evidenced by the deposition of radiolarites.  相似文献   

12.
Sediment provenance analysis remains a powerful method for testing hypotheses on the temporal and spatial evolution of uplifted source regions, but issues such as recycling, nonunique sources, and pre- and post-depositional modifications may complicate interpretation of results from individual provenance techniques. Convergent retroarc systems commonly contain sediment sources that are sufficiently diverse (continental magmatic arc, fold–thrust belt, and stable craton) to enable explicit provenance assessments. In this paper, we combine detrital zircon U–Pb geochronology, heavy mineral identification, Nd isotopic analyses, conventional sandstone petrography, and paleocurrent measurements to reconstruct the clastic provenance history of a long-lived sedimentary basin now exposed in an intermontane zone of the northern Andean hinterland of Colombia. The Middle Magdalena Valley basin, situated between the Central Cordillera and Eastern Cordillera, contains a 5–10 km-thick succession of Upper Cretaceous to Quaternary fill. The integrated techniques show a pronounced change in provenance during the Paleocene transition from the lower to upper Lisama Formation. We interpret this as a shift from an eastern cratonic source to a western Andean source composed of magmatic-arc rocks uplifted during initial shortening of the Central Cordillera. The appearance of detrital chloritoid and a shift to more negative εNd(t=0) values in middle Eocene strata of the middle La Paz Formation are attributed to shortening-related exhumation of a continental basement block (La Cira–Infantas paleohigh), now buried, along the axis of the Magdalena Valley. The diverse provenance proxies also show distinct changes during middle to late Eocene deposition of the Esmeraldas Formation that likely reflect initial rock uplift and exhumation of the fold–thrust belt defining the Eastern Cordillera. Upsection, detrital zircon U–Pb ages and heavy mineral assemblages for Oligocene and younger clastic deposits indicate that the Mesozoic sedimentary cover of the Eastern Cordillera was recycled during continued Cenozoic shortening. Our multidisciplinary provenance study refines the tectonic history of the Colombian Andes and demonstrates that uncertainties related to sediment recycling, nonunique sources, source heterogeneity, and climate in interpreting provenance data can be minimized via an integrated approach.  相似文献   

13.
Large isolated gravity flows (debrites) are widely present in the stratigraphic record of the northern Apennines foreland-basin system. These strata may be useful for provenance signals and dispersal pathways during foreland evolution. This paper examines a cohesive debris flow bed interbedded with turbidite strata of the Macigno Formation (Late Oligocene, Tuscany, Italy), in order to obtain new data on the provenance of the clastic material. Clasts in the debris flow are predominantly plutonic (granodiorite, tonalite, and S-granite) and subordinately metamorphic (gneiss and schist) and sedimentary calcareous clasts. The composition of the clasts within the debris flow is similar to the clastic composition of the interbedded turbidite sandstones of the "Macigno costiero." The depositional features of the debris flow suggest that it traveled for a short distance within the basin before it was deposited not far from the slope. The absence of a high-pressure/low-temperature (HP/LT) paragenesis in the plutonic and metamorphic clasts of the debris flow indicates a provenance from a crystalline basement not involved in the high-pressure phases of the Alpine Orogenesis. Previous studies have indicated the Central-Western Alps as potential source areas for the Macigno Formation sediments. The lack of HP/LT metamorphic signatures in our studied samples excludes the Pennidic and Austroalpine nappes of the Western Alps as possible sources for the debris flows of the "Macigno costiero." These new data (sedimentological, petrographical, and microstructural) suggest that the Corsica-Sardinia Hercynian basement, lacking a HP/LT paragenesis, is the more accredited source area of the debris flow and of the related turbidite sandstones of the "Macigno costiero" succession. These foredeep-feeding sediments were probably before deposited within an episutural basin developed close to the northern Apennines orogenic wedge.  相似文献   

14.
 Ultra-high pressure eclogite/amphibolite grade metamorphism of the Dora Maira Massif in the western Alps is a well established and intensively studied event. However, the age of peak metamorphism and early cooling remains controversial. The 40Ar-39Ar step-heating and laser spot ages from high pressure phengites yield plateau ages as old as 110 Ma which have been interpreted as the time of early cooling after the high pressure event. Recent U/Pb and Sm/Nd results challenge this assertion, indicating a much younger age for the event, around 45 Ma, and hence a radically different timing for the tectonic evolution of the western Alps. In a new approach to the problem, samples from the undeformed Hercynian metagranite, Brossasco, were studied using an ultra-violet laser ablation microprobe technique for 40Ar-39Ar dating. The new technique allowed selective in situ analysis, at a spatial resolution of 50 μm, of quartz, phengite, biotite and K-feldspar. The results demonstrate the frequent occurrence of excess argon with high 40Ar-36Ar ratios (1000–10000) and a strong relationship between apparent ages and metamorphic textures. The highest excess argon ratios are always associated with high closure temperature minerals or large diffusion domains within single mineral phases. The best interpretation of this relationship seems to be that excess argon was incorporated in all phases during the high pressure event, then mixed with an atmospheric component during rapid cooling and retrogression, producing a wide range of argon concentrations and 40Ar/36Ar ratios. Step-heating analysis of minerals with this mixture would produce linear arrays on a 36Ar/40Ar versus 39Ar/40Ar correlation diagram, leading to geologically meaningless plateau ages, older than the true closure age. In the present case, some ages in the range 60–110 Ma could be explained by the presence of excess argon incorporated around 40–50 Ma ago. Similar results found in other high pressure terrains in the Alps may reconcile the argon geochronometer with other systems such as Rb/Sr, U/Pb or Sm/Nd. This study therefore calls for an increasing use of high resolution in situ sampling techniques to clarify the meaning of 40Ar/39Ar ages in many high pressure terrains. Received: 6 January 1994/Accepted: 4 April 1995  相似文献   

15.
苏北盆地三垛组新探   总被引:2,自引:0,他引:2  
钱勤 《地层学杂志》1997,21(4):275-280
本文的主要目的是依靠玄武岩同位素年龄确定地层时代。应用40Ar-39Ar法和K-Ar法测定了6个三垛组玄武岩样品的年龄值,分析了三垛组玄武岩的形成时间,从而推测了三垛组的顶、底界年龄,认为三垛组地质时代与国际地层对比表中晚始新世—早渐新世相当,本区缺失晚渐新世地层,并以古生物、古气候等方面资料验证了该认识的正确性。  相似文献   

16.
藏北改则地区鱼鳞山组火山岩同位素年代学   总被引:8,自引:7,他引:8  
李才  朱志勇等 《地质通报》2002,21(11):732-734
鱼鳞山组火山岩是青藏高原隆升过程中一次重要的碱性钾质火山活动的产物,自发现之日起时代一直定为上新世末至早更新世,对比范围跨羌塘南部到冈底斯地区。通过对鱼鳞山组火山岩同位素测年研究,鱼鳞山组白榴石响岩^40Ar-^39Ar积分年龄为27.8Ma、K-Ar法年龄为30-18Ma,确定鱼鳞山组时代为渐新世至中新世,其分布仅限于班公湖-怒江缝合带以北地区。  相似文献   

17.
Fault rocks from various segments of the Periadriatic fault system (PAF; Alps) have been directly dated using texturally controlled Rb-Sr microsampling dating applied to mylonites, and both stepwise-heating and laser-ablation 40Ar/39Ar dating applied to pseudotachylytes. The new fault ages place better constraints on tectonic models proposed for the PAF, particularly in its central sector. Along the North Giudicarie fault, Oligocene (E)SE-directed thrusting (29-32 Ma) is currently best explained as accommodation across a cogenetic restraining bend within the Oligocene dextral Tonale-Pustertal fault system. In this case, the limited jump in metamorphic grade observed across the North Giudicarie fault restricts the dextral displacement along the kinematically linked Tonale fault to ~30 km. Dextral displacement between the Tonale and Pustertal faults cannot be transferred via the Peio fault because of both Late Cretaceous fault ages (74-67 Ma) and sinistral transtensive fault kinematics. In combination with other pseudotachylyte ages (62-58 Ma), widespread Late Cretaceous-Paleocene extension is established within the Austroalpine unit, coeval with sedimentation of Gosau Group sediments. Early Miocene pseudotachylyte ages (22-16 Ma) from the Tonale, Pustertal, Jaufen and Passeier faults argue for a period of enhanced fault activity contemporaneous with lateral extrusion of the Eastern Alps. This event coincides with exhumation of the Penninic units and contemporaneous sedimentation within fault-bound basins.  相似文献   

18.
西秦岭关家沟组地层时代、物源及其构造响应   总被引:1,自引:0,他引:1  
在西秦岭关家沟组贾昌沟砂板岩所夹的硅质岩层中发现晚石炭世和晚二叠世的古生物化石;在关家沟组砾岩中所采的花岗质和火山质砾石,利用氩-氩(40Ar/39Ar)法测年所获得的年龄为晚三叠世。对关家沟组物源及其古水流分析,其古水流方向230°~356°,其物源主要来自南东侧活动大陆边缘的碧口岛弧,且秦岭全面碰撞造山期为早中生代。由此,初步推测关家沟组形成时代可能与秦岭全面碰撞造山为同期——早中生代。  相似文献   

19.
The newly discovered Chaqupacha Mississippi Valley-type (MVT) Pb–Zn deposit in central Tibet has been found to be helpful for understanding MVT ore formation relative to tectonic evolution of a foreland fold and thrust belt. The deposit lies in the Tuotuohe area of the western Fenghuo Shan-Nangqian fold and thrust belt of the India–Asia continental collision zone. It contains NNW-striking and folded Late Permian strata including an upper clastic unit and an underlying limestone unit. The strata overlie late Oligocene clastic rocks through a south-dipping reverse fault that is associated with regional northward thrusting during the Paleogene. The Late Permian and late Oligocene strata are unconformably overlain by flat-lying early Miocene marl and mudstone of the Wudaoliang Formation. Lead and zinc ores are mainly hosted by pre-ore dissolution and collapse breccias in the Late Permian limestone. The style of mineralization is epigenetic, as shown by replacement of the pre-ore dissolution breccia matrix and open-space-fill by galena, sphalerite, calcite, and minor barite and pyrite. δ34S values of the main sulfide galena range from − 27.5‰ to + 12.6‰. These features, together with the lack of magmatic activity during the mineralization, suggest that Chaqupacha is an MVT deposit. Subordinate mineralization is also present in the early Miocene Wudaoliang Formation marl and the paleokarst breccia which contains matrix compositionally equivalent to strata of the Wudaoliang Formation. The mineralization shares similar mineral associations and textures with the pre-ore dissolution breccia-hosted mineralization. Thus, the Pb and Zn mineralization in the entire deposit probably resulted from the same mineralizing event, which is younger than the youngest ore-hosting rocks (i.e., the early Miocene Wudaoliang Formation). Considering that thrusting in the Tuotuohe area had ceased prior to deposition of the Wudaoliang Formation host rocks, the mineralization at Chaqupacha post-dated the regional deformation. The Chaqupacha deposit thus provides a good example of MVT mineralization in a foreland fold and thrust belt that post-dates regional thrusting.  相似文献   

20.
An40Ar/39Ar age of 85.81 Ma±0.22 my was obtained on sanidine from a volcanic procellanite bed near the top of the 2135+m-thick Upper Cretaceous Frontier Formation in the Lima Peaks area of southwestern Montana. This early Santonian age, combined with previously determined age data including a palynological age of Cenomanian for the lower Frontier at Lima Peaks, and a U-Pb isotopic date of about 95 Ma for the base of the Frontier Formation in the eastern Pioneer Mountains north of the Lima Peaks area, provides an age range for the nonmarine formation. In the Madison Range, farther east in southweastern Montana, this age range corresponds to marine strata of not only the Frontier Formation, but also the overlying Cody Shale and Telegraph Creek Formation, a sequence that totals less than 760 m thick.The Upper Cretaceous marine formations of the madison Range are closely zoned by molluscan faunas that are well constrained with radiometric dates. The40Ar/39Ar age of 85.81 Ma±0.22 my at Lima Peaks is bracketed by radiometric dates for theScaphites depressus—Protexanites bourgeoisianusbiozone and the overlyingClioscaphites saxitonianus—Inoceramus undulatopilcatusbiozone of the Western Interior. Fossils of both of these biozones are present in the Cody Shale and the Telegraph Creek Formation in the Madison Range. The Telegraph Creek contains two units of volcanic ash that are approximate time equivalents of the volcanic procellanite of the Lima Peaks area. Clasts in the conglomerate of the upper part of the Frontier in the Lima Peaks area were shed during the initial stages of uplift of the Blacktail-Snowcrest Highlands which rose to the north. The dated porcellanite lies above the conglomerates and indicates that the uplift was initiated by middle or late Coniacian, 87–88 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号