首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
长江源区不同植被覆盖下土壤水分对降水的响应   总被引:5,自引:0,他引:5  
土壤水分是连接气候变化和植被覆盖动态的关键因子,以长江源区北麓河一级支流左冒西孔曲典型小流域为研究对象,通过观测降水特征、植被覆盖情况、土壤特性、土壤水分变化、入渗过程以及蒸散发和凝结,分析了不同植被覆盖下土壤水分变化与降水之间的响应关系.结果表明:研究区内高寒草甸土壤水分对降水的响应存在十分明显的滞后现象,滞后时间较长;当植被退化较为严重时,20 cm深度范围内土壤水分对降水有一定响应,深层土壤比较干燥,对降水的响应微弱;在保持其原有植物建群和较高覆盖度时,土壤持水能力增强,深层土壤含水量明显提高,土壤水分变化剧烈,对降水的响应深度达到40 cm以下.较高的植被覆盖能有效改善土壤物理结构、提高土壤有机质含量,促进降水入渗.植物根系导致的较大孔隙优先流运动以及根系吸水作用影响了土壤水分对降水的响应和土壤水分的空间分布.不同植被覆盖度下,土壤水分的蒸散发与凝结具有明显差异,高覆盖度的高寒草甸土壤,蒸散发量较小,凝结水量较大.  相似文献   

2.
高寒冻土地区草甸草地生态系统的能量-水分平衡分析   总被引:9,自引:5,他引:4  
为了揭示青藏高原高寒地区土壤冻融过程对地表植被大气三者之间能量水分循环的影响, 在青藏高原风火山左冒孔流域(长江源)开展了不同植被盖度条件下冻土活动层水热状态的野外观测(在30%、 60%、 90%的草甸盖度下观测分层土壤水分及温度)和相关试验. 选取考虑了积雪、植被覆盖及枯枝落叶层对土壤冻融影响的水热盐分耦合模型SHAW为动力学约束模型, 进行参数率定及其模拟计算. 结果表明: 青藏高原地气间的能量交换主要受冻土、植被生长和地表土壤含水量的影响, 并且呈明显的季节性变化;未退化高寒草甸草地对青藏高原冻土具有明显的隔热保温作用, 可以降低冻土对气候变化的响应. 在土壤活动层冻结过程期间, 土壤水分具有向表层和深层两向分流汇聚的特征, 植被覆盖变化对水分运移通量有明显影响.  相似文献   

3.
徐学燕  吉植强  张晨熙 《岩土力学》2010,31(6):1705-1708
在季节冻土环境中使用人工冻结法时,由于季节冻土层与人工冻土共同存在,在前者影响下人工冻土墙的水平位移和制冷能量消耗与无季节冻土层时有显著不同。在改装的试验台上,通过使用水平冻结管形成季节冻土,用竖向冻结管形成冻土墙,施加水平荷载,模拟了6种季节冻土层温度条件下冻土墙的形成与开挖过程,以研究季节冻土层对冻土墙耗能、受力和变形性能的影响。结果显示,与无季节冻土层的情况相比,季节冻土层温度为-12 ℃时可减小冻土墙水平位移达8.79 mm,约占墙体总位移的52%,耗能量可减小40.4%。试验结果证明季节冻土层对冻土墙的影响不容忽视,在工程中应充分考虑季节冻土层的节能效应和变形约束能力。  相似文献   

4.
为从整体上认识多年冻土活动层土壤水文过程季节变异特性,以黄河源区巴颜喀拉山北坡冻土剖面为例,结合大气降水、冻土土壤水分、冻土层上水的野外观测,采用HYDRUS-1D软件冻融模块进行模拟分析,分析冻融作用对活动层土壤水文过程的影响,研究结果表明:(1)冻土层上水位与土壤水热之间存在着相互影响、相互作用的关系,依据活动层土壤温度变化,基于冻融过程,多年冻土活动层土壤水分与冻土层上水位可划分为冻结稳定、快速融化、融化稳定和快速冻结4个阶段。(2)降雨入渗是坡面尺度下活动层土壤水文过程的主要驱动力,活动层冻融锋面是主要限制性因素,受冻融过程影响,冻结期降雨减少,土壤冻结,土壤储水能力下降,土壤水分下渗停止,坡面侧向流动减弱,土壤水分和冻土层上水位处于下降趋势;融化期降雨增多,土壤融化,土壤储水能力上升,土壤水分下渗强烈,坡面侧向流动增强,土壤水分和冻土层上水位处于上升趋势。(3)受坡面地形影响,上坡活动层厚度大于下坡,上坡冻融锋面变化较下坡平缓,上坡土壤水分和冻土层上水位的变化幅度相对下坡较为平缓,而上坡土壤水分相对下坡含量较低,下坡冻土层上水位相对稳定。  相似文献   

5.
对青藏高原高寒草甸30%、60%和93%三种覆盖度下,多年冻土活动层的土壤水分随季节变化的观测研究,结果表明:多年冻土活动层土壤水分分布对植被覆盖变化响应强烈.年内不同时期,植被覆盖度为65%和30%的土壤表层20cm深度内水分含量及分布相似,每次降水后30%覆盖度土壤水分的变率略大于65%覆盖度的;而93%覆盖度土壤水分在年内解冻开始到冻结前均小于前两种覆盖类型;植被覆盖度越小,土壤冻结和融化响应时间越早,响应历时也越短;浅层土壤冻结和融化对植被覆盖度的响应程度较强,接近深层土壤冻结和融化对植被覆盖度的响应程度降低.覆盖度为30%和65%土壤水分在整个冻结过程的减少幅度比93%覆盖度土壤大10%~26%,而融化期水分增加幅度更大为1.5%~80%;土壤冻融的相变水量对植被覆盖度变化响应明显,植被覆盖度降低,土壤冻结和融化相变水量增大.由于受植被蒸腾与地表蒸散发和土壤温度梯度的影响,融化期土壤剖面的水分重新分配,总体上呈现水分向剖面上部和底部迁移,剖面中部60~80cm深度左右的土壤出现"干层".  相似文献   

6.
查明青藏高原高寒草甸区土壤水分运移机制,对正确理解土壤水分迁移过程、提高高寒草甸重建效率具有重要指导意义。通过开展土壤剖面负压、地温观测等原位试验,结合气象资料,对土壤剖面地温、含水率及总水头特征进行分析。结果表明,土壤的冻结期起始于10月,解冻期起始于4月;地温最高值出现在植物生长旺盛期8月,最低值出现在1月;1~3月土壤水分呈固态,6~10月土壤水分呈液态,处于稳定变化阶段,4~5月、11~12月土壤水分呈固液转化态,含水率变化幅度较大,处于过渡阶段。随着气温升高及降水量增加,6~8月水热同季有利于高寒草甸生长,属于高寒草甸主要生长阶段;春季土层由表及深土壤解冻,冻土层滞水性能保障了返青期春旱牧草生长的水分需求;深秋季节的由表及深的土壤冻结,深层土壤水分随水汽发生的表聚作用保障了牧草生长的水分需求,也是高原生态系统能够维持稳定的原因之一。  相似文献   

7.
多年冻土区活动层土壤水分对不同高寒生态系统的响应   总被引:2,自引:0,他引:2  
土地覆被变化对土壤水分的影响是生态水文学和流域水文学研究的关键问题,基于长江源典型多年冻土区不同高寒草地土壤水分的观测,结合降水、生物量(包括地上和地下)和土壤理化性质,研究了活动层土壤水分变化对不同高寒生态系统的响应. 结果表明:高寒草甸生物量、土壤养分含量均比高寒草原高,且对降水响应更为强烈,致使高寒草甸土壤水分变异性弱于高寒草原. 在土壤完全融化阶段,高寒草甸土壤活动层存在一个低含水层(50 cm左右)和两个相对高含水层(20 cm和120 cm),但高寒草原土壤水分在活动层剖面上有随深度逐渐增大的一致性趋势;在秋季冻结过程中,高寒草甸土冻结起始日滞后于高寒草原土3~15 d;在春季融化阶段,高寒草原土更高的含冰量需要更多的融化潜热. 此外,表层土壤中(0~20 cm),高寒草甸土比高寒草原土有更大的持水特性,而在活动层中下部则呈现完全相反的结果,不同高寒生态系统的演替改变了土壤的水热迁移过程.  相似文献   

8.
季节冻土地区人工冻土墙的冻结特性研究   总被引:2,自引:1,他引:1  
吉植强  徐学燕 《岩土力学》2009,30(4):971-975
季节冻土层中的地温呈非线性分布,改变了冻土墙形成时的初始温度条件以及形成后的结构形式。有季节冻土条件下形成深6 m、厚1.4 m的冻土墙较无季节冻土的情况可减少冻结时间15 d,减少冷能消耗60 %,经济上有极大优势。通过数值模拟,得到了能量消耗与时间关系曲线、冻结管热流密度与深度关系曲线、冻土墙的厚度与时间关系曲线、冻土墙的厚度与深度关系曲线等,可见季节冻土层的存在显著提高了冻土墙的厚度发展速度,减少了冻结时间,降低了冷能消耗。模拟了49种工况,对冻结管直径、冻结管间距、冻结时间、冻土墙平均温度、冻土墙厚度等数据进行了非线性回归分析,得到冻土墙厚度与时间成对数函数关系、平均温度与时间成反比例关系的相关表达式,为人工冻结技术的合理运用和推广提供了理论依据。  相似文献   

9.
植被退化对高寒土壤水文特征的影响   总被引:11,自引:6,他引:5  
在黄河源冻土严重退化地区,采用选择典型区域和样地进行实验和模型模拟的方法,对不同植被退化特征条件下高寒土壤的水分特征曲线、土壤饱和导水率、土壤入渗及土壤水分进行研究.结果表明:Gradner和Visser提出的经验方程θ=AS-B对该地区土壤水分特征曲线有良好的模拟性;不同植被盖度条件下土壤的饱和导水率和土壤入渗有明显的区别,表层0~10cm范围内,黑土滩的饱和导水率和入渗强度最强,30cm以下土层中土壤饱和导水率、入渗强度以及土壤含水量几乎不受植被的影响.随植被退化表层土壤含水量出现明显降低,退化越严重,水分流失越多,最多时能达到38.6%,植被根系最发达的10~20cm范围的土壤含水量流失对高寒草甸土壤环境影响最大,水分流失导致退化草甸恢复难度较大.通过比较研究,在黄河源地区考斯加科夫(Kostiakov)入渗公式f(t)=at-b更适用于该研究区域高寒草甸土壤水分入渗过程的研究.  相似文献   

10.
高寒草地植被覆盖变化对土壤水分循环影响研究   总被引:40,自引:8,他引:40  
土地覆盖变化对流域水平衡的影响是流域水学和生态水学研究的关键问题之一。以黄河源区两个典型小流域为研究对象,通过对流域不同植被类型与植被覆盖土壤的水分含量、入渗过程、蒸散发特征的测定,研究了高寒草地植被覆盖变化对土壤水分循环的影响.结果表明:广泛分布于青藏高原河源区的高寒草甸草地,植被覆盖度与土壤水分之间具有显的相关关系,尤其是20cm深度范围内土壤水分随植被盖度呈二次抛物线性趋势增加;在保持其原有的植物建群和较高覆盖度时,土壤上层具有较高持水能力,降水通过表层向深层土壤的渗透速度缓慢,且具有较均匀的土壤水分空间分布,水源涵养功能明显;高寒草甸草地退化后的高山草甸土壤趋于干燥,持水能力减弱,即使进行人工改良以后,土壤水分含量与持水能力也不会有明显改善.保护河源区原有高寒草甸草地对于河源区水过程意义重大。  相似文献   

11.
黄河源区冻土对植被的影响   总被引:8,自引:1,他引:7  
黄河源区由于近年来气候变化的影响,打破了高寒植被与冻土环境之间稳定的适应性关系,由此引发了一系列生态环境退化的现象.在黄河源区多年野外工作的基础上,定量分析了冻土与植被之间的关系.研究表明:多年冻土埋深通过影响浅层土壤含水量影响植被生长的,多年冻土的埋深与浅层土壤含水率和植被的覆盖率具有良好的相关性规律.冻土埋深<2 m时,冻土埋深决定浅层土壤含水率,成为影响植被的生长主要因素;埋深>2 m时,冻结层上水水位低、补给量少,冻结层上水水量小,毛细上升高度不能达到植被根系分布的浅层土壤中,植被生长环境干旱化,多数植被生长受限制,这时只有少量根系发达的耐旱植被存活,覆盖率小,一般不超过35%.因此,2 m的多年冻土埋深为“生态冻土埋深”.近20 a来,黄河源区地温长期处于增温状态,多年冻土出现表层融化,形成深埋的或少冰的冻土等现象;部分地带完全融化消失,连续多年冻土变成不连续冻土或岛状冻土.多年冻土退化后,土壤含水量减少,导致植被物种更替、“黑土滩”等退化现象.  相似文献   

12.
多年冻土活动层, 尤其是浅层土壤的水热传输机制, 以及冻融过程的时空异质性是研究地-气间能水交换的关键。利用位于青藏高原中部的唐古拉和通天河两个活动层观测场2013年的土壤温度和水分数据, 比较了不同下垫面浅层土壤日冻融循环过程的差异, 以及不同冻融阶段的地温日变化及热扩散率特征。结果表明: 根据一日之内地温的正负波动, 浅层土壤的冻融过程可以划分为解冻期、 完全融化期、 始冻期和完全冻结期四个时期, 其中解冻期和始冻期统称为日冻融循环发生期。解冻期的持续天数和深度明显高于始冻期, 高寒草原的日冻融循环天数和发生深度明显高于高寒草甸。浅层土壤(0 ~ 20 cm)日地温变化普遍呈现明显的正弦波动趋势, 且不同冻融阶段的振幅差异较大, 由于相变的缘故, 解冻期的日地温变化振幅最小。高寒草甸的日地温振幅显著低于高寒草原, 说明日地温动态与土壤质地和土壤水分密切相关, 植被作为热绝缘层, 减弱了地温对气温波动的响应。地表下5 ~ 10 cm的热扩散率显著大于10 ~ 20 cm深度, 且5 - 10月融化季的热扩散率显著大于冻结季。热传导对流方程可以描述多年冻土区典型下垫面在季节冻融循环周期内不同月份的水分迁移方向。  相似文献   

13.
The alpine ecosystem is very sensitive to environmental change due to global and local disturbances. The alpine ecosystem degradation, characterized by reducing vegetation coverage or biomass, has been occurring in the Qinghai–Tibet Plateau, which alters local energy balance, and water and biochemical cycles. However, detailed characterization of the ecosystem degradation effect is lack in literature. In this study, the impact of alpine ecosystem degradation on soil temperature for seasonal frozen soil and permafrost are examined. The vegetation coverage is used to indicate the degree of ecosystems degradation. Daily soil temperature is monitored at different depths for different vegetation coverage, for both permafrost and seasonal frozen soils. Results show that under the insulating effort of the vegetation, the freezing and thawing process become quicker and steeper, and the start of the freezing and thawing process moves up due to the insulating effort of the vegetation. The influence of vegetation coverage on the freezing process is more evident than the thawing process; with the decrease of vegetation coverage, the integral of frozen depth increases for seasonal frozen soil, but is vice versa for permafrost.  相似文献   

14.
黑河源区高山草甸的冻土及水文过程初步研究   总被引:10,自引:2,他引:8  
介绍了黑河源区野牛沟流域在试验点尺度和山坡尺度上所开展的冻土水文过程初步结果.冻土水文观测场建于最大冻结深度约为3.0 m的季节冻土区,近50 a来,该区降水量变化不大,器测蒸发量(Φ20)和风速呈明显的降低趋势,而气温和地表温度则分别上升约1.0℃和1.7℃.研究区季节冻土冻结上限和下限深度均与地表温度呈二次多项式关系,这表明地表温度与冻结或融化区地温变化之间有一个滞后过程.在地表融化季节,季节冻土存在两层现象.当融化深度接近最大冻结深度时,存在向上和向下的双向融化现象,但自下而上融化速率较慢.2005年9月-2006年9月,具有较高代表性的3个山坡径流场均没有观测到产流量,结合蒸散发观测和野外调查,发现夏季高山草甸具有明显的地表径流拦蓄和水源涵养作用.COUP模型能够较好的连续演算试验场生长季节高山草甸-季节冻土-大气-维水热传输和耦合过程,但因其土壤完全冻结临界温度阀值设置偏高,影响了非生长季节的计算精度.  相似文献   

15.
多年冻土区植物根系的地下分布格局是其适应高寒、反复冻融作用等特殊环境条件的重要体现.针对目前青藏高原高寒植物根系研究不足的现状,对青藏铁路沿线高寒草甸植物群落根系的分布特征及多年冻土活动层地温变化等进行调查观测.研究高寒植物群落根系在活动层土壤中的垂直分布特征,重点探讨多年冻土活动层温度变化对于高寒植物根系分布和格局的影响,揭示植物根系对冻土环境变化的响应特征及其对逆境条件的适应策略.研究结果表明:活动层季节性冻融对于高寒植物和地下根系分布格局具有深刻的影响,多年冻土表层最先具备适宜根系生长的温度和水分条件,导致高寒草甸根系分布浅层化,生物量大量累积在土壤表层,并随深度增加而减少.高寒草甸地下平均总根量为3.38 kg·m-2,0~10 cm土层根量密度平均为21.41 kg·m-3,约占地下根系总量的63.4%.高寒草甸植物群落具极高的根茎比,活动层长期的低温环境增加了根系的干物质总量和高寒植物总的生物产量.活动层0℃以上积温是根系分布的主要影响因子.  相似文献   

16.
青藏高原多年冻土区活动层土壤入渗特征及机理分析   总被引:1,自引:0,他引:1  
青藏高原多年冻土区活动层土壤的入渗规律研究是高寒区土壤水循环过程研究的主要内容。以青藏高原多年冻土区高寒沼泽草甸、高寒草甸和高寒草原的活动层土壤为研究对象,裸地为参照对象,分析了不同植被类型土壤的入渗规律及其主要影响因子。结果表明:不同植被类型土壤的入渗能力排序为高寒草原>裸地>高寒草甸>高寒沼泽草甸。高寒草甸土壤中致密的根系对土壤水分的运移具有强烈的阻滞作用,降低了土壤的入渗性能,而高寒草原土壤层根系较为稀疏,对土壤入渗的阻滞作用较弱,土壤水分向深层的渗漏速率较大。通过对比4种土壤入渗模型的模拟结果,发现Horton模型更适用于描述高寒草地土壤水分的入渗过程。另外,不同入渗模型对裸地入渗过程的模拟均优于其他植被类型草地,说明植被类型及植物的生长状况影响土壤入渗过程的模拟效果。全球变暖条件下,多年冻土区土壤入渗研究将为青藏高原多年冻土区陆地水文过程模型提供参数支持,为未来水资源变化研究提供基础数据。  相似文献   

17.
基于青藏高原北麓河地区高寒草原、高寒沼泽草甸和高寒草甸生态系统下多年冻土活动层水热过程的监测数据,对活动层水热过程特征开展了相关研究。研究结果显示,在活动层厚度、冻融时间、持续时间以及活动层土壤水分含水量分布方面,不同的高寒生态系统下活动层的上述属性特征差异明显。高寒草原下多年冻土活动层厚度最大,土体开始融化的时间最早,每年持续融化的日数也最长;高寒草甸最小,高寒沼泽草甸居中。高寒草原下活动层土壤含水率从上到下逐渐增加,水分基本集中在活动层的中下部分;高寒沼泽草甸下活动层土壤水分的分布情况相对比较均衡;高寒草甸下活动层土壤含水率分布呈现从上到下逐步减少的模式,越靠近地表土壤含水率越大。对监测数据的进一步分析发现,不同的高寒生态系统下,近地表地温与气温温差累计值、近地表土壤有机质含量、n因子特征以及近地表地温标准差统计特征都具有明显的区别。研究分析表明,多年冻土活动层水热过程特征与高寒生态系统类型具有明显的关联性,高寒生态系统会影响近地表能量通量,从而使地-气热量交换产生差异,这一差异又将改变活动层土壤温度、水分分布特征及其动力学过程。  相似文献   

18.
黄河源区多年冻土退化及其环境反映   总被引:66,自引:17,他引:49  
基于黄河源区多年冻土退化引起的生态环境地质问题与效应的实际资料, 明确了多年冻土的生态环境功能和多年冻土退化引起的危害. 提出多年冻土退化使赋存于高寒草地和维系高寒草地生长发育的多年冻土表部的冻结层地下水水位持续下降或消失, 从而引发和加剧了高寒草地的"三化"(草地退化、沙漠化和盐渍化)和水环境变异, 是导致黄河源区占主导地位的高寒草甸失水向沙漠化草地和"黑土滩"型次生裸地退化的主要地质原因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号