首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aftershock sequence of the September 30th, 1993 Killari earthquake in the Latur district of Maharashtra state, India, recorded by 41 temporary seismograph stations are used for estimating 3-D velocity structure in the epicentral area. The local earthquake tomography (LET) method of Thurber (1983) is used. About 1500P and 1200S wave travel-times are inverted. TheP andS wave velocities as well asV P/VSratio vary more rapidly in the vertical as well as in the horizontal directions in the source region compared to the adjacent areas. The main shock hypocentre is located at the junction of a high velocity and a low velocity zone, representing a fault zone at 6–7 km depth. The estimated average errors ofP velocity andV P/VSratio are ±0.07 km/s and ±0.016, respectively. The best resolution ofP and S-wave velocities is obtained in the aftershock zone. The 3-D velocity structure and precise locations of the aftershocks suggest a ‘stationary concept’ of the Killari earthquake sequence.  相似文献   

2.
During the 1st decade of the 21st century, the study area of Talala, Saurashtra of western India witnessed three damaging earthquakes of moderate magnitude, year 2007 [Mw 5.0; Mw 4.8] and in the year 2011 [Mw 5.1] that generated public panic in the region. The last damaging moderate earthquake of the 20th October 2011 in Talala region (21.09°N;70.45°E), located at about 200 km south to the devastating 2001 Bhuj (23.412°N, 70.232°E) mainshock (Mw 7.6), jolted the entire Saurashtra region of Gujarat. A long series of aftershocks followed hereafter, recorded at nine seismograph/accelerograph stations. Hypocenters of aftershocks were relocated accurately using absolute and relative travel time (double-difference) method. In this study, we, for the first time, determined 3-D tomographic images of the upper crust beneath the 2011 Talala earthquake source zone by inverting about 1135 P and 1125 S wave arrival time data. Estimates of seismic velocities (Vp, Vs) and Poisson’s ratio (σ) structures offer a reliable interpretation of crustal heterogeneities and their bearing on geneses of moderate earthquakes and their aftershock sequences beneath the source zone. It is found that the 2011 Talala mainshock hypocenter depth (6 km) is located near the boundary of the low and high velocity (Vp, Vs) and the source zone is associated with low-σ anomalies guarded by the prominent high-σ anomalies along the active fault zone having strike-slip motion beneath the earthquake source zone. The pattern of distribution of (Vp, Vs, σ) and its association with occurrences of aftershocks provide seismological evidence for the neo-tectonics in the region having left lateral strike-slip motion of the fault.  相似文献   

3.
A regional time and magnitude predictable model has been applied to estimate the recurrence intervals for large earthquakes in the vicinity of 8 October 2005 Kashmir Himalaya earthquake (25°–40°N and 65°–85°E), which includes India, Pakistan, Afghanistan, Hindukush, Pamirs, Mangolia and Tien-Shan. This region has been divided into 17 seismogenic sources on the basis of certain seismotectonics and geomorphological criteria. A complete earthquake catalogue (historical and instrumental) of magnitude Ms ≥ 5.5 during the period 1853–2005 has been used in the analysis. According to this model, the magnitude of preceding earthquake governs the time of occurrence and magnitude of future mainshock in the sequence. The interevent time between successive mainshocks with magnitude equal to or greater than a minimum magnitude threshold were considered and used for long-term earthquake prediction in each of seismogenic sources. The interevent times and magnitudes of mainshocks have been used to determine the following predictive relations: logT t = 0.05 M min + 0.09 M p − 0.01 log M 0 + 01.14; and M f = 0.21 M min − 0.01 M p + 0.03 log M 0 + 7.21 where, T t is the interevent time of successive mainshocks, M min is minimum magnitude threshold considered, M p is magnitude of preceding mainshock, M f is magnitude of following mainshock and M 0 is the seismic moment released per year in each seismogenic source. It was found that the magnitude of following mainshock (M f) does not depend on the interevent time (T t), which indicates the ability to predict the time of occurrence of future mainshock. A negative correlation between magnitude of following mainshock (M f) and preceding mainshock (M p) indicates that the larger earthquake is followed by smaller one and vice versa. The above equations have been used for the seismic hazard assessment in the considered region. Based on the model applicability in the studied region and taking into account the occurrence time and magnitude of last mainshock in each seismogenic source, the time-dependent conditional probabilities (PC) for the occurrence of next shallow large mainshocks (Ms ≥ 6.5), during next 20 years as well as the expected magnitudes have been estimated.  相似文献   

4.
Three-dimensional P and S wave velocity models of the crust under the Granada Basin in Southern Spain are obtained with a spatial resolution of 5 km in the horizontal direction and 2 to 4 km in depth. We used a total of 15407 P and 13704 S wave high-quality arrival times from 2889 local earthquakes recorded by both permanent seismic networks and portable stations deployed in the area. The computed P and S wave velocities were used to obtain three-dimensional distributions of Poisson's ratio (σ) and the porosity parameter (Vp×Vs). The 3-D velocity images show strong lateral heterogeneities in the region. Significant velocity variations up to ±7% in P and S velocities are revealed in the crust below the Granada Basin. At shallow depth, high-velocity anomalies are generally associated with Mesozoic basement, while the low-velocity anomalies are related to the neogene sedimentary rocks. The south–southeastern part of the Granada Basin exhibits high σ values in the shallowest layers, which may be associated with saturated and unconsolidated sediments. In the same area, Vp×Vs is high outside the basin, indicating low porosity of the mesozoic basement. A low-velocity zone at 18-km depth is found and interpreted as a weak–ductile crust transition that is related to the cut-off depth of the seismic activity. In the lower crust, at 34-km depth, a clear slow Vp and Vs anomalous zone may indicate variations in lithology and/or with the rigidity of the lower crust rocks.  相似文献   

5.
A large earthquake of magnitude MW = 6.3 occurred on 14 August 2003 NW of the Lefkada Island, which is situated at the Ionian Sea (western Greece). The source parameters of this event are determined using body-wave modeling. The focal depth was found equal to 9 km, the constrained focal mechanism revealed dextral strike–slip motion (φ = 15°, Δ = 80° and λ = 170°), the duration of the source time function was 8 s and the seismic moment 2.9 × 1025 dyn cm. The earthquake occurred close to the northern end of the Kefallinia transform fault, where the 1994 moderate event and its aftershock sequence were also located. The epicentral distribution of the 2003 aftershock sequence revealed the existence of two clusters. The first one is located close to the epicentral area of the mainshock, while the second southern, close to the northwestern coast of the Kefallinia Island. A gap of seismicity is observed between the two clusters. The length of the activated zone is approximately 60 km. The analysis of data revealed that the northern cluster is directly related to the mainshock, while the southern one was triggered by stress transfer caused by the main event.  相似文献   

6.
The Ou Backbone Range strikes northwards through the central northeastern Japan arc and is bounded on both sides by the active reverse Uwandaira and Sen'ya faults. We have applied a traveltime inversion method (seismic tomography) with spatial velocity correlation to active and passive seismic data in order to investigate a three-dimensional (3-D) velocity structure. The data set contains 33,993 P- and 18,483 S-wave arrivals from 706 natural sources and 40 blasts, as well as 2803 P-wave traveltime data from 10 explosions detonated during the 1997 controlled source experiment. The traveltime inversion reveals a zone beneath the Ou Backbone Range in which P-wave velocities (VP) are approximately 6–8% lower than the average velocity at equivalent depths. The low VP and a low VP to S-wave velocity (VS) ratio (VP/VS) of about 1.65 suggest the presence of aqueous fluids in the middle crust.  相似文献   

7.
High-resolution seismic-reflection/refraction data were acquired on the ground surface at six locations to compare with near-surface seismic-velocity downhole measurements. Measurement sites were in Seattle, WA, the San Francisco Bay Area, CA, and the San Fernando Valley, CA. We quantitatively compared the data in terms of the average shear-wave velocity to 30-m depth (Vs30), and by the ratio of the relative site amplification produced by the velocity profiles of each data type over a specified set of quarter-wavelength frequencies. In terms of Vs30, similar values were determined from the two methods. There is <15% difference at four of the six sites. The Vs30 values at the other two sites differ by 21% and 48%. The relative site amplification factors differ generally by less than 10% for both P- and S-wave velocities. We also found that S-wave reflections and first-arrival phase delays are essential for identifying velocity inversions. The results suggest that seismic reflection/refraction data are a fast, non-invasive, and less expensive alternative to downhole data for determining Vs30. In addition, we emphasize that some P- and S-wave reflection travel times can directly indicate the frequencies of potentially damaging earthquake site resonances. A strong correlation between the simple S-wave first-arrival travel time/apparent velocity on the ground surface at 100 m offset from the seismic source and the Vs30 value for that site is an additional unique feature of the reflection/refraction data that could greatly simplify Vs30 determinations.  相似文献   

8.
Vp and Vs values have been measured experimentally and calculated for granulite-facies lower crustal xenoliths from central Ireland close to the Caledonian Iapetus suture zone. The xenoliths are predominantly foliated and lineated metapelitic (garnet–sillimanite–K-feldspar) granulites. Their metapelitic composition is unusual compared with the mostly mafic composition of lower crustal xenoliths world-wide. Based on thermobarometry, the metapelitic xenoliths were entrained from depths of c. 20–25 ± 3.5 km and rare mafic granulites from depths of 31–33 ± 3.4 km. The xenoliths were emplaced during Lower Carboniferous volcanism and are considered to represent samples of the present day lower crust.Vp values for the metapelitic granulites range between 6.26 and 7.99 km s− 1 with a mean value of 7.09 ± 0.4 km s− 1. Psammite and granitic orthogneiss samples have calculated Vp values of 6.51 and 6.23 km s− 1, respectively. Vs values for the metapelites are between 3.86 and 4.34 km s− 1, with a mean value of 4.1 ± 0.15 km s− 1. The psammite and orthogneiss have calculated Vs values of 3.95 and 3.97 km s− 1, respectively.The measured seismic velocities correlate with density and with modal mineralogy, especially the high content of sillimanite and garnet. Vp anisotropy is between 0.15% and 13.97%, and a clear compositional control is evident, mainly in relation to sillimanite abundance. Overall Vs anisotropy ranges from 1% to 11%. Poisson's ratio (σ) lies between 0.25 and 0.35 for the metapelitic granulites, mainly reflecting a high Vp value due to abundant sillimanite in the sample with the highest σ. Anisotropy is probably a function of deformation associated with the closure of the Iapetus ocean in the Silurian as well as later extension in the Devonian. The orientation of the bulk strain ellipsoid in the lower crust is difficult to constrain, but lineation is likely to be NE–SW, given the strike-slip nature of the late Caledonian and subsequent Acadian deformation.When corrected for present-day lower crustal temperature, the experimentally determined Vp values correspond well with velocities from the ICSSP, COOLE I and VARNET seismic refraction lines. Near the xenolith localities, the COOLE I line displays two lower crustal layers with in situ Vp values of 6.85–6.9 and 6.9–8.0 km s− 1, respectively. The upper (lower velocity) layer corresponds well with the metapelitic granulite xenoliths while the lower (higher velocity) layer matches that of the basic granulite xenoliths, though their metamorphic pressures suggest derivation from depths corresponding to the present-day upper mantle.  相似文献   

9.
A total of 13 regional Ocean Bottom Seismograph (OBS) profiles with an accumulated length of 2207 km acquired on the Vøring Margin, NE Atlantic have been travel time modelled with regards to S-waves. The Vp/Vs ratios are found to decrease with depth through the Tertiary layers, which is attributed to increased compaction and consolidation of the rocks. The Vp/Vs ratio in the intra-Campanian to mid-Campanian layer (1.75–1.8) in the central Vøring Basin is significantly lower than for the layers above and beneath, suggesting higher sand/shale ratio. This layer was confirmed by drilling to represent a layer of sandstone. This mid-Cretaceous ‘anomaly’ is also present in the northern Vøring Basin, as well as on the southern Lofoten Margin further north. The Vp/Vs ratio in the extrusive rocks on the Vøring Plateau is estimated to be 1.85, conformable with mafic (basaltic) rocks. Landward of the continent/ocean transition (COT), the Vp/Vs ratio in the layer beneath the volcanics is estimated to be 1.67–1.75. These low values suggest that this layer represents sedimentary rocks, and that the sand/shale ratio might be relatively high here. The Vp/Vs ratio in the crystalline basement is estimated to be 1.67–1.75 in the basin and on the landward part of the Vøring Plateau, indicating the presence of granitic/granodioritic continental crust. In the lower crust, the Vp/Vs ratio in the basin decreases uniformly from southwest to northeast, from 1.85–1.9 to 1.68–1.73, suggesting a gradual change from mafic (gabbroic) to felsic (granodioritic) lower crust. Significant (3–5%) azimuthal S-wave anisotropy is observed for several sedimentary layers, as well as in the lower crust. All these observations can be explained by invoking the presence of liquid-filled microcracks aligned vertically along the direction of the present day maximum compressive stress (NW–SE).  相似文献   

10.
To understand the generation mechanism of the Bam earthquake (Mw 6.6), we studied three-dimensional VP, VS and Poisson's ratio (σ) structures in the Bam area by using the seismic tomography method. We inverted accurate arrival times of 19490 P waves and 19015 S waves from 2396 aftershocks recorded by a temporal high-sensitivity seismic network. The 3-D velocity structure of the seismogenic region was well resolved to a depth of 14 km with significant velocity variations of up to 5%. The general pattern of aftershock distribution was relocated by using the 3-D structure to delineate a source fault for a length of approximately 20 km along a line 4.5 km west of the known geological Bam fault; this source fault dips steeply westward and strikes a nearly north–south line. The main shallow cluster of aftershocks south of the city of Bam is distributed just under the minor surface ruptures in the desert. The 3-D velocity structure shows a thick layer of high VS and low σ (minimum: 0.20) at a depth range of 2–6 km. The deeper layer, with a thickness of about 2 km, appears to have a low VS and high σ (maximum: 0.28) from 6 km depth beneath Bam to a depth of 9 km south of the city. The inferred increase of Poisson's ratio from 2 to 10 km in depth may be associated with a change from rigid and SiO2-rich rock to more mafic rock, including the probable existence of fluids. The main seismic gap of aftershock distribution at the depth range of 2 to 7 km coincides well with the large slip zone in the shallow thick layer of high VS and low σ. The large slip propagating mainly in the shallow rigid layer may be one of the main reasons why the Bam area suffered heavy damage.  相似文献   

11.
E.A. Hetland  F.T. Wu  J.L Song   《Tectonophysics》2004,386(3-4):157-175
During 1998–1999, we installed a temporary broadband seismic network in the Changbaishan volcanic region, NE China. We estimated crustal structure using teleseismic seismograms collected at the network. We detected a near surface region of strong anisotropy directly under the main volcanic edifice of the volcanic area. We modeled 109 receiver functions from 19 broadband stations using three techniques. First we used a “slant-stacking” method to model the principal crustal P reverberation phases to estimate crustal thickness and the average crustal P to S speed ratio (vp/vs), assuming an average P-wave velocity in the crust. We then estimated crustal S-wave velocity (vs) and vp/vs profiles by modeling stacked receiver functions using a direct search. Finally, we inverted several receiver functions recorded at stations closest to the main volcanic edifice using least squares to estimate vs velocity profiles, assuming a vp/vs value. The results from the three estimation techniques were consistent, and generally we found that the receiver functions constrained estimates of changes in wave speeds better than absolute values. We resolved that the crust is 30–39 km thick under the volcanic region and 28–32 km thick away from the volcanic region, with a midcrust velocity transition at about 10–15 km depth. We estimated that the average crust P-wave velocity is about 6.0–6.2 km/s surrounding the main volcanic region, while it is slightly lower in the vicinity of the main volcanic edifice. The estimates of vp/vs were more ambiguous, but we inferred that the bulk crustal Poisson's ratio (which is related to vp/vs) ranges between 0.20 and 0.30, with a suggestion that the Poisson's ratio is lower under the central volcanic region compared to the surrounding areas. We resolved low S-wave velocities (down to about 3 km/s) in the middle crust in the region of the main volcanic edifice. The low velocity anomaly extends from about 5–10 to 15–25 km below the surface, probably indicating a region of elevated temperatures. We were unable to determine if partial melt is present with the data we considered in this paper.  相似文献   

12.
In situ stress measurements by hydraulic fracturing were carried out in the 617 m deep borehole specially drilled in the epicentral zone of the 1993 Latur earthquake for the purpose of research. The stress measurements carried out at 592 m depth in this borehole are the deepest of all such measurements made so far in the Indian shield. The maximum and minimum principal horizontal stresses (S H max andS h min) have been derived from the hydrofracture data using the classical method. TheS H max andS h min are found to be 16.5 and 9.6 MPa at 373 m depth, and 25.0 and 14.1 MPa at 592 m depth, indicating that the vertical gradients ofS hmax andS hmin in the epicentral zone are 39 MPa/km and 21 MPa/km respectively. The principal horizontal stresses in the epicentral zone are comparable with those at Hyderabad and 30% higher than in most other comparable intra-continental regions. Analysis of the results indicate that the stresses in the focal region of the 1993 Latur earthquake have not undergone any significant change following its occurrence and this is in agreement with a similar inference drawn from the seismic data analysis. It appears that the Latur earthquake was caused due to rupturing of the overpressured fault segment at the base of the seismogenic zone.  相似文献   

13.
We investigate spatial clustering of 2414 aftershocks along the Izmit Mw = 7.4 August 17, 1999 earthquake rupture zone. 25 days prior to the Düzce earthquake Mw = 7.2 (November 12, 1999), we analyze two spatial clusters, namely Sakarya (SC) and Karadere–Düzce (KDC). We determine the earthquake frequency–magnitude distribution (b-value) for both clusters. We find two high b-value zones in SC and one high b-value zone in KDC which are in agreement with large coseismic surface displacements along the Izmit rupture. The b-values are significantly lower at the eastern end of the Izmit rupture where the Düzce mainshock occurred. These low b-values at depth are correlated with low postseismic slip rate and positive Coloumb stress change along KDC. Since low b-values are hypothesized with high stress levels, we propose that at the depth of the Düzce hypocenter (12.5 km), earthquakes are triggered at higher stresses compared to shallower crustal earthquake. The decrease in b-value from the Karadere segment towards the Düzce Basin supports this low b-value high stress hypothesis at the eastern end of the Izmit rupture. Consequently, we detect three asperity regions which are correlated with high b-value zones along the Izmit rupture. According to aftershock distribution the half of the Düzce fault segment was active before the 12 November 1999 Düzce mainshock. This part is correlated with low b-values which mean high stress concentration in the Düzce Basin. This high density aftershock activity presumably helped to trigger the Düzce event (Mw = 7.2) after the Izmit Mw 7.4 mainshock.  相似文献   

14.
In the early morning hours on Wednesday November 08, 2006 at 04:32:10(GMT) a small earthquake of ML 4.1 has occurred at southeast Beni-Suef, approximately 160 km SEE of Cairo, northern Egypt. The quake has been felt as far as Cairo and its surroundings while no casualties were reported. The instrumental epicentre is located at 28.57°N and 31.55°E. Seismic moment is 1.76 E14 Nm, corresponding to a moment magnitude Mw 3.5. Following a Brune model, the source radius is 0.3 km with an average dislocation of 1.8 cm and a 2.4 MPa stress drop. The source mechanism from a first motion fault plane solution shows a left-lateral strike-slip mechanism with a minor dip-slip component along fault NNW striking at 161°, dipping 52° to the west and rake −5°. Trend and plunging of the maximum and minimum principle axes P/T are 125°, 28°, 21°, and 23°, respectively. A comparison with the mechanism of the October, 1999 event shows similarities in faulting type and orientation of nodal planes.Eight small earthquakes (3.0  ML < 5.0) were also recorded by the Egyptian National Seismological Network (ENSN) from the same region. We estimate the source parameters and fault mechanism solutions (FMS) for these earthquakes using displacement spectra and P-wave polarities, respectively. The obtained source parameters including seismic moments of 4.9 × 1012–5.04 × 1015 Nm, stress drops of 0.2–4.9 MPa and relative displacement of 0.1–9.1 cm. The azimuths of T-axes determined from FMS are oriented in NNE–SSW direction. This direction is consistent with the present-day stress field in Egypt and the last phase of stress field changes in the Late Pleistocene, as well as with recent GPS measurements.  相似文献   

15.
The crustal structure along a 312 km transect, stretching from the axial mountains of the North Atlantic Knipovich Ridge to the continental shelf of Svalbard, has been obtained using seismic reflection data and wide angle OBS data. The resulting seismic Vp and Vs models are further constrained by a 2-D-gravity model. The principal objective of this study is to describe and resolve the physical and compositional properties of the crust in order to understand the processes and creation of oceanic crust in this extremely slow-spreading counterpart of the North Atlantic Ridge Systems. Vp is estimated to be 3.50–6.05 km/s for the upper oceanic crust (oceanic layer 2), with a marked increase away from the ridge. The measured Vp of 6.55–6.95 km/s for oceanic layer 3A and 7.10–7.25 km/s for layer 3B, both with a Vp/Vs ratio of 1.81, except for slightly higher values at the ridge axis, does not allow a clear distinction between gabbro and mantle-derived peridotite (10–40% serpentized). The thickness of the oceanic crust varies a lot along the transect from the minimum of 5.6 km to a maximum of 8.1 km. The mean thickness of 6.7 km for the oceanic crust is well above the average thickness for slow-spreading ridges (<10 mm/year half-spreading rate). The areas of increased thickness could be explained by large magma production-rates found in the zones of axial highs at the ridge axis, which also have generated the off-axial highs adjacent the ridge. We suggest that these axial and off-axial highs along the ridge control the lithological composition of the oceanic crust. This approach suggests normal gabbroic oceanic crust to be found in the areas bound by the active magma segments (the axial and off-axial highs) and mantle-derived peridotite outside these zone.  相似文献   

16.
We determine detailed 3-D Vp and Vs structures of the crust and uppermost mantle beneath the Kyushu Island, southwest Japan, using a large number of arrival times from local earthquakes. From the obtained Vp and Vs models, we further calculate Poisson’s ratio images beneath the study area. By using this large data set, we successfully image the 3-D seismic velocity and Poisson’s ratio structures beneath Kyushu down to a depth of 150 km with a more reliable spatial resolution than previous studies. Our results show very clear low Vp and low Vs anomalies in the crust and uppermost mantle beneath the northern volcanoes, such as Abu, Kujyu and Unzen. Low-velocity anomalies are seen in the mantle beneath most other volcanoes. In contrast, there are no significant low-velocity anomalies in the crust or in the upper mantle between Aso and Kirishima. The subducting Philippine Sea slab is imaged generally as a high-velocity anomaly down to a depth of 150 km with some patches of normal to low seismic wave velocities. The Poisson’s ratio is almost normal beneath most volcanoes. The crustal seismicity is distributed in both the high- and low-velocity zones, but most distinctly in the low Poisson’s ratio zone. A high Poisson’s ratio region is found in the forearc crustal wedge above the slab in the junction area with Shikoku and Honshu; this high Poisson’s ratio could be caused by fluid-filled cracks induced by dehydration from the Philippine Sea slab. The Poisson’s ratio is normal to low in the forearc mantle in middle-south Kyushu. This is consistent with the absence of low-frequency tremors, and may indicate that dehydration from the subducting crust is not vigorous in this region.  相似文献   

17.
Several pieces of studies on the January 26, 2001, Bhuj earthquake (Mw 7.6) revealed that the mainshock was triggered on the hidden unmapped fault in the western part of Indian stable continental region that caused a huge loss in the entire Kachchh rift basin of Gujarat, India. Occurrences of infrequent earthquakes of Mw 7.6 due to existence of hidden and unmapped faults on the surface have become one of the key issues for geoscientific research, which need to be addressed for evolving plausible earthquake hazard mitigation model. In this study, we have carried out a detailed autopsy of the 2001 Bhuj earthquake source zone by applying three-dimensional (3-D) local earthquake tomography (LET) method to a completely new data set consisting of 576 local earthquakes recorded between November 2006 and April 2009 by a seismic network consisting of 22 numbers of three-component broadband digital seismograph stations. In the present study, a total of 7560 arrival times of P-wave (3820) and S-wave (3740) recorded at least 4 seismograph stations were inverted to assimilate 3-D P-wave velocity (Vp), S-wave velocity (Vs), and Poisson’s ratio (σ) structures beneath the 2001 Bhuj earthquake source zone for reliable interpretation of the imaged anomalies and its bearing on earthquake hazard of the region. The source zone is located near the triple junction formed by juxtapositions of three Indian, Arabian, and Iranian tectonic plates that might have facilitated the process of brittle failure at a depth of 25 km beneath the KRB, Gujarat, which caused a gigantic loss to both property and persons of the region. There may be several hidden seismogenic faults around the epicentral zone of the 2001 Bhuj earthquake in the area, which are detectable using 3-D tomography to minimize earthquake hazard for a region. We infer that the use of detailed 3-D seismic tomography may offer potential information on hidden and unmapped faults beneath the plate interior to unravel the genesis of such big damaging earthquakes. This study may help in evolving a comprehensive earthquake risk mitigation model for regions of analogous geotectonic settings, elsewhere in the world.  相似文献   

18.
Abstract: The ratio of P- to S-wave velocities (Vp/Vs) is regarded as one of the most diagnostic properties of natural rocks. It has been used as a discriminant of composition for the continental crust and provides valuable constraints on its formation and evolution processes. Furthermore, the spatial and temporal changes in Vp/Vs before and after earthquakes are probably the most promising avenue to understanding the source mechanics and possibly predicting earthquakes. Here we calibrate the variations in Vp/Vs in dry, anisotropic crustal rocks and provide a set of basic information for the interpretation of future seismic data from the Wenchuan earthquake Fault zone Scientific Drilling (WFSD) project and other surveys. Vp/Vs is a constant (Ф0) for an isotropic rock. However, most of crustal rocks are anisotropic due to lattice-preferred orientations of anisotropic minerals (e.g., mica, amphibole, plagioclase and pyroxene) and cracks as well as thin compositional layering. The Vp/Vs ratio of an anisotropic rock measured along a selected pair of propagation-vibration directions is an apparent value (Фij) that is significantly different from the value for its isotropic counterpart (Ф0). The usefulness of apparent Vp/Vs ratios as a diagnostic of crustal composition depends largely on rock seismic anisotropy. A 5% of P- and S-wave velocity anisotropy is sufficient to make it impossible to determine the crustal composition using the conventional criteria (Vp/Vs≤1.756 for felsic rocks, 1.7561.944 fluid-filled porous/fractured or partially molten rocks) if the information about the wave propagation-polarization directions with respect to the tectonic framework is unknown. However, the variations in Vp/Vs measured from borehole seismic experiments can be readily interpreted according to the orientations of the ray path and the polarization of the shear waves with respect to the present-day principal stress directions (i.e., the orientation of cracks) and the frozen fabric (i.e., foliation and lineation).  相似文献   

19.
Tokutaro Hatori 《GeoJournal》1996,38(3):313-319
The regional characteristics of tsunami magnitudes in the SE Asia region are discussed in relation to earthquake magnitudes during the period from 1960 to 1994. Tsunami magnitudes on the Imamura-Iida scale are investigated by the author's method (Hatori 1979, 1986) using the data of inundation heights near the source area and tide-gauge records observed in Japan. The magnitude values of the Taiwan tsunamis showed relatively to be small. On the contrary, the magnitudes of tsunamis in the vicinities of the Philippines and Indonesia exceed more than 1–2 grade (tsunami heights: 2–5 times) compared to earthquakes with similar size on the circum-Pacific zone. The relation between tsunami magnitude, m, and earthquake magnitude, M s, is expressed as m = 2.66 M s– 17.5 for these regions. For example, the magnitudes for the 1976 Mindanao tsunami (M s= 7.8, 3702 deaths) and the 1992 Flores tsunami (M s= 7.5, 1713 deaths) were determined to be m = 3 and m = 2.5, respectively. The focal depth of tsunamigenic earthquakes is shallower thand< 36 km, and the detectively of tsunamis is small for deep earthquakes being d > 40 km. For future tsunamis, it is indispensable to take precautions against shallow earthquakes having the magnitudes M s> 6.5.  相似文献   

20.
Following a large-sized Bhuj earthquake (M s = 7.6) of January 26th, 2001, a small aperture 4-station temporary local network was deployed, in the epicentral area, for a period of about three weeks and resulted in the recording of more than 1800 aftershocks (-0.07 ≤M L <5.0). Preliminary locations of epicenters of 297 aftershocks (2.0 ≤M L <5.0) have brought out a dense cluster of aftershock activity, the center of which falls 20 km NW of Bhachau. Epicentral locations of after-shocks encompass a surface area of about 50 × 40 km2 that seems to indicate the surface projection of the rupture area associated with the earthquake. The distribution of aftershock activity above magnitude 3, shows that aftershocks are nonuniformly distributed and are aligned in the north, northwest and northeast directions. The epicenter of the mainshock falls on the southern edge of the delineated zone of aftershock activity and the maximum clustering of activity occurs in close proximity of the mainshock. Well-constrained focal depths of 122 aftershocks show that 89% of the aftershocks occurred at depths ranging between 6 and 25 km and only 7% and 4% aftershocks occur at depths less than 5 and more than 25 km respectively. The Gutenberg-Richter (GR) relationship, logN = 4.52 - 0.89ML, is fitted to the aftershock data (1.0<-M L<5.0) and theb-value of 0.89 has been estimated for the aftershock activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号