首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
A displacement history and slip rates were determined for the Reelfoot fault in the New Madrid seismic zone from a seismic reflection profile and trench data. Based on calculations from the seismic reflection line the average slip rate over the last 80 million years is 0.0009 mm year−1. Slip rate during the Late Cretaceous was 0.0007 mm year−1, 0.002 mm year−1 during the Paleocene Midway Group, 0.001 mm year−1 during Paleocene–Eocene Wilcox Formation time, 0.0003 mm year−1 during the post-Wilcox/pre-Holocene period, and a Holocene slip rate of 1.8 mm year−1. Based on trench data, slip rate on the Reelfoot fault has been 4.4 mm year−1 over the last 2400 years and a maximum of 6.2 mm year−1 during the two most recent earthquake cycles between AD 900 and AD 1812. The Holocene slip rate is at least four orders of magnitude higher than the average Late Cretaceous and Cenozoic slip rates for the Reelfoot fault. It would appear that there has been a Quaternary change in the stress field in the central United States or the Reelfoot fault is experiencing a short-lived burst of seismic activity.  相似文献   

2.
The New Madrid seismic zone (NMSZ) is an intraplate right-lateral strike-slip and thrust fault system contained mostly within the Mississippi Alluvial Valley. The most recent earthquake sequence in the zone occurred in 1811–1812 and had estimated moment magnitudes of 7–8 (e.g., [Johnston, A.C., 1996. Seismic moment assessment of stable continental earthquakes, Part 3: 1811–1812 New Madrid, 1886 Charleston, and 1755 Lisbon. Geophysical Journal International 126, 314–344; Johnston, A.C., Schweig III, E.S, 1996. The enigma of the New Madrid earthquakes of 1811–1812. Annual Reviews of Earth and Planetary Sciences 24, 339–384; Hough, S.E., Armbruster, J.G., Seeber, L., Hough, J.F., 2000. On the modified Mercalli intensities and magnitudes of the New Madrid earthquakes. Journal of Geophysical Research 105 (B10), 23,839–23,864; Tuttle, M.P., 2001. The use of liquefaction features in paleoseismology: Lessons learned in the New Madrid seismic zone, central United States. Journal of Seismology 5, 361–380]). Four earlier prehistoric earthquakes or earthquake sequences have been dated A.D. 1450 ± 150, 900 ± 100, 300 ± 200, and 2350 B.C. ± 200 years using paleoliquefaction features, particularly those associated with native American artifacts, and in some cases surface deformation ([Craven, J. A. 1995. Paleoseismology study in the New Madrid seismic zone using geological and archeological features to constrain ages of liquefaction deposits. M.S thesis, University of Memphis, Memphis, TN, U.S.A.; Tuttle, M.P., Lafferty III, R.H., Guccione, M.J., Schweig III, E.S., Lopinot, N., Cande, R., Dyer-Williams, K., Haynes, M., 1996. Use of archaeology to date liquefaction features and seismic events in the New Madrid seismic zone, central United States. Geoarchaeology 11, 451–480; Guccione, M.J., Mueller, K., Champion, J., Shepherd, S., Odhiambo, B., 2002b. Stream response to repeated co-seismic folding, Tiptonville dome, western Tennessee. Geomorphology 43(2002), 313–349; Tuttle, M.P., Schweig, E.S., Sims, J.D., Lafferty, R.H., Wolf, L.W., Haynes, M.L., 2002. The earthquake potential of the New Madrid seismic zone, Bulletin of the Seismological Society of America, v 92, n. 6, p. 2080–2089; Tuttle, M.P., Schweig III, E.S., Campbell, J., Thomas, P.M., Sims, J.D., Lafferty III, R.H., 2005. Evidence for New Madrid earthquakes in A.D. 300 and 2350 B.C. Seismological Research Letters 76, 489–501]). The two most recent prehistoric and the 2350 B.C. events were probably also earthquake sequences with approximately the same magnitude as the historic sequence.Surface deformation (faulting and folding) in an alluvial setting provides many examples of stream response to gradient changes that can also be used to date past earthquake events. Stream responses include changes in channel morphology, deviations in the channel path from the regional gradient, changes in the direction of flow, anomalous longitudinal profiles, and aggradation or incision of the channel ([Merritts, D., Hesterberg, T, 1994. Stream networks and long-term surface uplift in the New Madrid seismic zone. Science 265, 1081–1084.; Guccione, M.J., Mueller, K., Champion, J., Shepherd, S., Odhiambo, B., 2002b. Stream response to repeated co-seismic folding, Tiptonville dome, western Tennessee. Geomorphology 43 (2002), 313–349]). Uplift or depression of the floodplain affects the frequency of flooding and thus the thickness and style of vertical accretion or drowning of a meander scar to form a lake. Vegetation may experience trauma, mortality, and in some cases growth enhancement due to ground failure during the earthquake and hydrologic changes after the earthquake ([VanArdale, R.B., Stahle, D.W., Cleaveland, M.K., Guccione, M.J., 1998. Earthquake signals in tree-ring data from the New Madrid seismic zone and implications for paleoseismicity. Geology 26, 515–518]). Identification and dating these physical and biologic responses allows source areas to be identified and seismic events to be dated.Seven fault segments are recognized by microseismicity and geomorphology. Surface faulting has been recognized at three of these segments, Reelfoot fault, New Madrid North fault, and Bootheel fault. The Reelfoot fault is a compressive stepover along the strike-slip fault and has up to 11 m of surface relief ([Carlson, S.D., 2000. Formation and geomorphic history of Reelfoot Lake: insight into the New Madrid seismic zone. M.S. Thesis, University of Arkansas, Fayetteville, Arkansas, U.S.A]) deforming abandoned and active Mississippi River channels ([Guccione, M.J., Mueller, K., Champion, J., Shepherd, S., Odhiambo, B., 2002b. Stream response to repeated co-seismic folding, Tiptonville dome, western Tennessee. Geomorphology 43 (2002), 313–349]). The New Madrid North fault apparently has only strike-slip motion and is recognized by modern microseismicity, geomorphic anomalies, and sand cataclasis ([Baldwin, J.N., Barron A.D., Kelson, K.I., Harris, J.B., Cashman, S., 2002. Preliminary paleoseismic and geophysical investigation of the North Farrenburg lineament: primary tectonic deformation associated with the New Madrid North Fault?. Seismological Research Letters 73, 393–413]). The Bootheel fault, which is not identified by the modern microseismicity, is associated with extensive liquefaction and offset channels ([Guccione, M.J., Marple, R., Autin, W.J., 2005, Evidence for Holocene displacements on the Bootheel fault (lineament) in southeastern Missouri: Seismotectonic implications for the New Madrid region. Geological Society of America Bulletin 117, 319–333]). The fault has dominantly strike-slip motion but also has a vertical component of slip. Other recognized surface deformation includes relatively low-relief folding at Big Lake/Manila high ([Guccione, M.J., VanArdale, R.B., Hehr, L.H., 2000. Origin and age of the Manila high and associated Big Lake “Sunklands”, New Madrid seismic zone, northeastern Arkansas. Geological Society of America Bulletin 112, 579–590]) and Lake St. Francis/Marked Tree high ([Guccione, M.J., VanArsdale, R.B., 1995. Origin and age of the St. Francis Sunklands using drainage patterns and sedimentology. Final report submitted to the U. S. Geological Survey, Award Number 1434-93-G-2354, Washington D.C.]), both along the subsurface Blytheville arch. Deformation at each of the fault segments does not occur during each earthquake event, indicating that earthquake sources have varied throughout the Holocene.  相似文献   

3.
海原断裂是青藏高原东北缘一条重要的陆内活动左旋走滑断裂,于1920年发生过里氏8?级特大地震,形成约230km的地表破裂带和高达10.2m的同震左旋位移。该断裂的大地震复发行为特征一直是地震地质学家关注的重点,然而现有的认识需要更多以精细沉积地层约束的古地震数据的验证。基于此,在海原断裂中段干盐池盆地成功开挖了数个大型三维探槽,揭露了清晰的韵律性、面状展布地层和丰富的古地震事件证据。在探槽上部2.5m厚的最新细粒沉积层序记录了AD 1500以来的3次地震事件。基于地层中~(14)C样品的结果和历史地震史料的考证,限定这3次地震事件分别对应于AD 1920年、AD 1760年(或1709年)和AD 1638年的地震,但其震级差别很大。除了最新一次地震,即1920年海原大地震的震级为8?级,其他2次地震事件的震级较小,均小于7级,说明海原断裂上伴生有地表破裂的地震不全是特征型地震事件。结果表明,古地震探槽中揭示的地震强度不一定相同,而且中等震级地震也可以产生地表破裂,其地层证据在合适的条件下,如无沉积间断、沉积速率大等环境能在地层中得到保存。  相似文献   

4.
Field observations and analog models show that cross-basin faults play a key role in the evolution of pull-apart basins and dominate the distribution of earthquake rupture in basin areas. We studied the long-term history of large earthquakes on a cross-basin fault to reveal its behavior in response to propagating earthquake rupture and gain insight into the evolution of the pull-apart basin. A number of pull-apart basins have developed along the Haiyuan fault in the northeastern Tibetan Plateau, the largest being the Ganyanchi pull-apart basin. The surface rupture associated with the 1920 M 8.5 earthquake shows that a cross-basin fault developed in the basin and that the basin is now going through the late stage of its evolution. We excavated two trenches and drilled four cores across the cross-basin fault in the basin and found abundant evidence of paleoseismic events. Seven events were identified and 14C-dated. The two youngest events are associated with the historical records of 1092 AD and 1920 AD, respectively. The paleoseismic sequence shows the recurrence of earthquakes characterized by earthquake clusters alternating with a single event. Comparing these with previous paleoseismic results, all the major earthquake events seem to be associated with cascade events that ruptured multi-fault segments, suggesting that only an earthquake of this scale (likely M > 8) can produce obvious surface rupture along the cross-basin fault. We propose that the fault has a long tectonic history, with a series of cascade rupture events that could play an important part in the evolution of the pull-apart basin.  相似文献   

5.
The 2004 Mid-Niigata Prefecture earthquake sequence (mainshock magnitude, MJMA 6.8), which occurred in an active fold-and-thrust belt in northern central Japan, generated a small thrust surface rupture (< 20 cm of vertical displacement) along a previously unmapped northern extension of the active Muikamachi–Bonchi–Seien fault zone, on the eastern margin of the epicentral region. To better understand past seismic behavior of the rupture, we conducted a paleoseismic trenching study across the 10-cm-high west-side-up surface rupture at the foot of a pre-existing 1.8-m-high east-facing scarp, which probably resulted from past earthquake(s). A well-defined west-dipping thrust fault zone accompanied by drag folding and displacing the upper Pliocene to lower Pleistocene strata and the unconformably overlying upper Pleistocene (?) to Holocene strata was exposed. The principal fault zone is connected directly to the 2004 surface rupture. From the deformational characteristics of the strata and radiocarbon dating, we inferred that two large paleoseismic events occurred during the past 9000 years prior to the 2004 event. These two pre-2004 events have a nearly identical fault slip (at minimum, 1.5 m), which is ≥ 15 times that of the 2004 event (∼ 10 cm). These paleoseismic data, coupled with the geological and geomorphological features, suggest that the 2004 event represented non-characteristic behavior of the fault, which can potentially generate a more destructive earthquake accompanied by meter-scale surface displacement. This study provides insight into the interpretation of past faulting events and increases our understanding of rupture behavior.  相似文献   

6.
Seafloor irregularities influence rupture behavior along the subducting slab and in the overriding plate, thus affecting earthquake cycles. Whether seafloor irregularities increase the likelihood of large earthquakes in a subduction zone remains contested, partially due to focus put either on fault development or on rupture pattern. Here, we simulate a subducting slab with a seafloor irregularity and the resulting deformation pattern of the overriding plate using the discrete element method. Our simulations illustrate the rupture along three major fault systems: megathrust, splay and backthrust faults. Our results show different rupture dimensions of earthquake events varying from tens to ca. 140 km. Our results suggest that the recurrence interval of megathrust events with rupture length of ca. 100 km is ca. 140 years, which is overall comparable to the paleoseismic records at the Mentawai area of the Sumatran zone. We further propose the coseismic slip amounts decrease and interseismic slip amounts increase from the surface downwards gradually.  相似文献   

7.
The NW–SE-trending Dinar fault is an active normal fault upon which the 1 October 1995 earthquake ( M  = 6.1) occurred. The 1995 earthquake resulted in a c. 10-km-long surface rupture with the south side down-thrown by 50 cm. Investigations of two trench sites perpendicular to the 1995 rupture suggest at least two prior large earthquakes in historical times. Radiocarbon dates and historical records constrain the age of events between 1500 bc and ad 53, event 2 possibly coinciding with the earthquake that damaged Dinar (the ancient city of Apamea Kibotos) in c. 80 bc and event 1 around 1500 bc. Surface displacements determined for events 1 and 2, compared to the 1995 surface faulting, indicate that M > 6.8 earthquakes were associated with each rupture. Using the total displacement in trenches, a slip rate of about 1 mm yr−1 can be estimated for the Dinar fault. Observations suggest that the return period for large earthquakes in the Dinar area is about 1500–2000 years.  相似文献   

8.
Multiple earthquakes produced by thrusting deformation have been recorded over the last century in the Tianshan area. Paleoseismic studies are very important in the exploration of the active quaternary tectonics and the risk assessment of great earthquakes in the Tianshan orogenic region. However, in this area, paleoseismic research is still lacking because of the lack of samples dated by 14C or optically stimulated luminescence (OSL) methods. We determined the ages of the alluvial fans by 10Be terrestrial cosmogenic nuclide (TCN) dating, measured the surface deformation of the fault scarp in a GPS survey, and evaluated the vertical displacements of the events in trenches in the east Kalpintage fault in the southwest Tianshan region. We estimated the displacement and recurrence intervals of the paleoseismic events and constrained the errors of the 10Be ages and slip rates using a Monte Carlo simulation method. Our study suggests that each paleoseismic event shows a similar displacement of ~1.5 m with a recurrence interval of ~5 kyr in the east Kalpintage fault. The calculated slip rate is 0.31(+0.21/?0.18) mm/yr. In such arid regions with large areas of coarse gravel that lack 14C or OSL samples, the integration of TCN dating, geomorphic deformation survey, and trenching methods is a reliable alternative for studying the active regional tectonics.  相似文献   

9.
The Xiaojiang fault is a major active left-lateral fault along the southeastern margin of the Tibetan Plateau.The largest historical earthquake in Yunnan Province, with a magnitude 8 and a mean coseismic left-lateral displacement of ~ 6.9 m, occurred on the western branch of the Xiaojiang fault.Studying this fault is important in understanding current deformation and kinematic characteristics of the Tibetan Plateau.Activities and stretches have been well undertaken on the Xiaojiang fault, while paleoseismic research work is always the weak link on this fault.To investigate the paleoseismic history and large earthquake activity of the Xiaojiang fault, we opened a large trench at the northern edge of Caohaizi sag pond on the western branch of the Xiaojiang fault.Six paleoseismic events have been identified, and named E1 through E6 from the oldest to the youngest.Charcoal and woods are abundant, 20 samples were dated to constrain the ages of the paleoseismic events at 40 000–36 300 BC, 35 400–24 800 BC, 9 500 BC–AD 500, AD 390–720, AD 1120–1620 and AD 1750–present.We associate the youngest event E6 with the 1833 M8 earthquake.Events E4, E5 and E6 show a continuous record of the western strand of the Xiaojiang fault in the late Holocene, with a average recurrence interval of 370–480 yr.Large earthquake recurrence in the late Holocene is far less than the recurrence of 2000–4000 yr posed in previous studies.Thus, the seismic hazard on the Xiaojiang fault should be reevaluated.Furthermore, the irregular recurrence of large earthquakes on the Xiaojiang fault and other faults in the Xianshuihe-Xiaojiang system, indicates the uneven southeastward extrusion of the Sichuan-Yunnan block along the southeastern margin of the Tibetan Plateau.  相似文献   

10.
Large to great earthquakes and related tsunamis generated on the Aleutian megathrust produce major hazards for both the area of rupture and heavily populated coastlines around much of the Pacific Ocean. Here we use paleoseismic records preserved in coastal sediments to investigate whether segment boundaries control the largest ruptures or whether in some seismic cycles segments combine to produce earthquakes greater than any observed since instrumented records began. Virtually the entire megathrust has ruptured since AD1900, with four different segments generating earthquakes >M8.0. The largest was the M9.2 great Alaska earthquake of March 1964 that ruptured ~800 km of the eastern segment of the megathrust. The tsunami generated caused fatalities in Alaska and along the coast as far south as California. East of the 1964 zone of deformation, the Yakutat microplate experienced two >M8.0 earthquakes, separated by a week, in September 1899. For the first time, we present evidence that earthquakes ~900 and ~1500 years ago simultaneously ruptured adjacent segments of the Aleutian megathrust and the Yakutat microplate, with a combined area ~15% greater than 1964, giving an earthquake of greater magnitude and increased tsunamigenic potential.  相似文献   

11.
The Manyas fault zone (MFZ) is a splay fault of the Yenice Gönen Fault, which is located on the southern branch of the North Anatolian Fault System. The MFZ is a 38 km long, WNW–ESE-trending and normal fault zone comprised of three en-echelon segments. On 6 October 1964, an earthquake (Ms = 6.9) occurred on the Salur segment. In this study, paleoseismic trench studies were performed along the Salur segment. Based on these paleoseismic trench studies, at least three earthquakes resulting in a surface rupture within the last 4000 years, including the 1964 earthquake have been identified and dated. The penultimate event can be correlated with the AD 1323 earthquake. There is no archaeological and/or historical record that can be associated with the oldest earthquake dated between BP 3800 ± 600 and BP 2300 ± 200 years. Additionally, the trench study performed to the north of the Salur segment demonstrates paleoliquefaction structures crossing each other. The surface deformation that occurred during the 1964 earthquake is determined primarily to be the consequence of liquefaction. According to the fault plane slip data, the MFZ is a purely normal fault demonstrating a listric geometry with a dip of 64°–74° to the NNE.  相似文献   

12.
In eastern Indonesia, the Central Sulawesi fault system consists of complex left-lateral strike-slip fault zones located within the triple junction area between the Pacific, Indo-Australian and Eurasian plates. Seismicity in Central Sulawesi documents low-magnitude shallow earthquakes related, from NW to SE, to the NNW-trending Palu-Koro (PKF) and WNW-trending Matano fault zones. Study of the active fault traces indicates a northward growing complexity in the PKF segmentation. Left-lateral displacement of 370 ± 10 m of streams incised within fans, whose deposition has been dated at 11 000 ± 2300 years, yields a calculated PKF horizontal slip rate of 35 ± 8 mm yr−1. This geologically determined long-term slip rate agrees with the far-field strike-slip rate of 32–45 mm yr−1 previously proposed from GPS measurements and confirms that the PKF is a fast slipping fault with a relatively low level of seismicity.  相似文献   

13.
The Concud fault is a 13.5 km long, NW–SE striking normal fault at the eastern Iberian Chain. Its recent (Late Pleistocene) slip history is characterized from mapping and trench analysis and discussed in the context of the accretion/incision history of the Alfambra River. The fault has been active since Late Pliocene times, with slip rates ranging from 0.07 to 0.33 mm/year that are consistent with its present-day geomorphologic expression. The most likely empirical correlation suggests that the associated paleoseisms have potential magnitudes close to 6.8, coseismic displacements of 2.0 m, and recurrence intervals from 6.1 to 28.9 ka. At least six paleoseismic events have been identified between 113 and 32 ka. The first three events (U to W) involved displacement along the major fault plane. The last three events (X to Z) encompassed downthrow and hanging-wall synthetic bending prompting fissure opening. This change is accompanied by a decrease in slip rate (from 0.63 to 0.08–0.17 mm/year) and has been attributed to activation of a synthetic blind fault at the hanging wall. The average coseismic displacement (1.9–2.0 m) and recurrence period (6.7–7.9 ka) inferred from this paleoseismic succession are within the ranges predicted from empirical correlation. Such paleoseismic activity contrasts with the moderate present-day seismicity of the area (maximum instrumental Mb = 4.4), which can be explained by the long recurrence interval that characterizes intraplate regions.  相似文献   

14.
The early Jurassic soft-sediment deformation occurring within lacustrine sandstone is distributed mainly in the Wuqia region of SW Tianshan Mountains, Xinjiang, western China. Triggered by earthquakes, such deformation was found to occur in three beds overlying the lower Jurassic Kangsu Formation. The main styles of deformation structures comprise load cast, ball-and-pillow, droplet, cusps, homogeneous layer, and liquefied unconformity. The deformation layers reflect a series of three strong earthquakes at the end of early Jurassic in the Wuqia region. The differences of deformation mechanisms undergone might represent the varying magnitudes of the earthquake events. During the early Jurassic, the Wuqia region was located in a pull-apart basin controlled by the significant Talas-Ferghana strike-slip fault in central Asia, which initiated the soft-sediment deformation induced by earthquakes. Our research suggests that the paleoseismic magnitudes could have ranged from Ms 6.5 to 7.  相似文献   

15.
Comparison of historical and of post-seismic triangulation data is used to model vertical crustal movements in the vicinity of the Kapareli Fault (or the Alkynonides earthquakes North Fault), one of the two antithetic normal faults which reactivated during the 1981, Gulf of Corinth (Ms = 6.7) earthquakes. This fault is characterized by a much smaller geomorphological signature than the South (or Perachora) fault of the same seismic sequence. Analysis of geodetic data on the basis of polynomial filtering and elastic dislocation modelling, as well as analysis of structural and coastal change data permits us to conclude that the upper bound in the uncertainty level of most of the available elevation changes is 20–30 cm, usually lower than the corresponding dislocation signal. In addition, the available geodetic data have a systematic pattern and are consistent with structural data. For this reason they permit more precise constraints on the geometry and the role of the Kapareli Fault (or the Alkyonides earthquakes North Fault): its total length is estimated about 17 km, about 50% longer than its surface trace; about 30–40 cm subsidence of its hanging wall, as well as at least 15 cm maximum uplift of its footwall is also inferred. This new evidence suggests that although in the long-term the Kapareli fault may represent a rather secondary, antithetic fault to the Alkyonides earthquakes South (Perachora) fault, during the 1981 earthquakes it probably had a more important structural role.  相似文献   

16.
The use of archaeology to study earthquake hazards provides a human dimension to an issue of modern societal concern. We developed an archaeoseismic approach to the study of prehistoric earthquakes on active strike-slip faults. This approach employs a combination of standard archaeological and paleoseismic techniques. We have successfully applied this approach and its attendant methods to an archaeological site that straddles and has been offset by the San Andreas fault in northern coastal California. Resultant fault parameters, including cumulative rate of slip and timing of the penultimate event, are comparable to results of strictly paleoseismic investigations at other sites on this fault. The archaeoseismic approach furnishes a number of advantages over geologic studies in terms of the availability and number of potential study sites, the abundance of datable materials, and the array of potential piercing features with which to constrain fault history. © 1997 John Wiley & Sons, Inc.  相似文献   

17.
A multiarchive approach has been applied to the investigation of the late Pleistocene and Holocene record of strong earthquakes in Switzerland. The geological archives used for this study include active faults, lake deposits, slope instabilities, and caves. In the Basle area, eight trenches were opened across the Basle–Reinach fault, nearby rockfall deposits were systematically investigated, sediment cores were taken from two lakes, and nine caves were studied. In Central Switzerland, five lakes were investigated by means of high-resolution seismic lines and sediment cores. Furthermore, three caves were studied in Central Switzerland. Altogether, the investigations are based on more than 350 km of high-resolution reflection seismic lines, 450 m of core samples, 260 m of trenches, and 245 radiocarbon age determinations. The measured co-seismic displacements along the Basle–Reinach fault supply independent information for the magnitude of the AD 1356 Basle earthquake exclusively based on geological evidence. Deformation features related to three well-documented strong historic earthquake shocks were identified. Deformation features of the AD 1774 Altdorf and AD 1601 Unterwalden earthquakes can be used to calibrate paleoseismic evidence in Central Switzerland. Altogether, traces of 13 earthquakes could be found in the two study areas, all of them with magnitudes Mw  6 or greater. For the first time, the earthquake catalogue for Switzerland can be extended back beyond historic records, into the late Pleistocene, spanning 15,000 years.  相似文献   

18.
Although the upper Mississippi embayment is an area of low relief, the region has been subjected to tectonic influence throughout its history and continues to be so today. Tectonic activity can be recognized through seismicity patterns and geological indicators of activity, either those as a direct result of earthquakes, or longer term geomorphic, structural, and sedimentological signatures. The rate of seismic activity in the upper Mississippi embayment is generally lower than at the margins of tectonic plates; the embayment, however, is the most seismically active region east of the Rocky Mountains, with activity concentrated in the New Madrid seismic zone. This zone produced the very large New Madrid earthquakes of 1811 and 1812.

Geological and geophysical evidence of neotectonic activity in the upper Mississippi embayment includes faulting in the Benton Hills and Thebes Gap in Missouri, paleoliquefaction in the Western Lowlands of Missouri, subsurface faulting beneath and tilting of Crowley's Ridge in northeastern Arkansas and southeastern Missouri, subsurface faulting along the Crittenden County fault zone near Memphis, Tennessee, faulting along the east flank of the Tiptonville dome, and numerous indicators of historic and prehistoric large earthquakes in the New Madrid seismic zone.

Paleoearthquake studies in the New Madrid seismic zone have used trenching, seismic reflection, shallow coring, pedology, geomorphology, archaeology, and dendrochronology to identify and date faulting, deposits of liquefied sand, and areas of uplift and subsidence. The cause of today's relatively high rate of tectonic activity in the Mississippi embayment remains elusive. It is also not clear whether this activity rate is a short term phenomenon or has been constant over millions of years. Ongoing geodetic and geological studies should provide more insight as to the precise manner in which crustal strain is accumulating, and perhaps allow improved regional neotectonic models.  相似文献   


19.
The East Anatolian Fault Zone (EAFZ) is among the most important active continental transform fault zones in the world as testified by major historical and minor instrumental seismicity. The first paleoseismological exploratory trenching study on the EAFZ was done on the Palu–Lake Hazar segment (PLHS), which is one of the six segments forming the fault zone, in order to determine its past activity and to assess its earthquake hazard.The results of trenching indicate that the latest surface rupturing earthquakes on this segment may be the Ms=7.1+ 1874 and Ms=6.7 1875 events, and there were other destructive earthquakes prior to these events. The recurrence interval for a surface rupturing large (M>7) earthquake is estimated as minimum 100±35 and maximum 360 years. Estimates for the maximum possible paleoearthquake magnitude are (Mw) 7.1–7.7 for the Palu–Lake Hazar segment based on empirical magnitude fault rupture relations.An alluvial fan dated 14,475–15,255 cal years BP as well as another similar age fan with an abandoned stream channel on it are offset in a left-lateral sense 175 and 160.5 m, respectively, indicating an average slip rate of 11 mm/year. Because 127 years have elapsed since the last surface rupturing event, this slip rate suggests that 1.4 m of left-lateral strain has accumulated along the segment, ignoring possible creep effects, folding and other inelastic deformation. A 2.5 Ma age for the start of left-lateral movement on the segment, and in turn the EAFZ, is consistent with a slip rate of 11 mm/year and a previously reported 27 km total left-lateral offset. The cumulative 5–6 mm/year vertical slip rate near Lake Hazar suggests a possible age of 148–178 ka for the lake. Our trenching results indicate also that a significant fraction of the slip across the EAFZ zone is likely to be accommodated seismically. The present seismic quiescence compared with the past activity (paleoseismic and historic) indicate that the EAFZ may be “locked” and accumulating elastic strain energy but could move in the near future.  相似文献   

20.
Geometric and kinematic analyses of minor thrusts and folds, which record earthquakes between 1200 AD and 1700 AD, were performed for two trench sites (Rampur Ghanda and Ramnagar) located across the Himalayan Frontal Thrust (HFT) in the western Indian Himalaya. The present study aims to re-evaluate the slip estimate of these two trench sites by establishing a link between scarp geometry, displacements observed very close to the surface and slip at deeper levels. As geometry of the active thrust beneath the scarp is unknown, we develop a parametric study to understand the origin of the scarp surface and to estimate the influence of ramp dip. The shortening estimates of Rampur Ghanda trench by line length budget and distance–displacement (D–d) method show values of 23 and 10–15 %, respectively. The estimate inferred from the later method is less than the line length budget suggesting a small internal deformation. Ramnagar trench shows 12 % shortening by line length budget and 10–25 % by the D–d method suggesting a large internal deformation. A parametric study at the trenched fault zone of Rampur Ghanda shows a slip of 16 m beneath the trailing edge of the scarp, and it is sufficient to raise a 8-m-high scarp. This implies that the Rampur Ghanda scarp is balanced with a single event with 7.8-m-coseismic slip in the trenched fault zone at the toe of the scarp, 8–15 % mean deformation within the scarp and 16-m slip at depth along a 30° ramp for a pre-1400 earthquake event. A 16-m slip is the most robust estimate of the maximum slip for a single event reported previously by trench studies along the HFT in the western Indian Himalaya that occurred between 1200 AD and 1700 AD. However, the Ramnagar trenched fault zone shows a slip of 23 m, which is larger than both line length and D–d methods. It implies that a 13-m-high scarp and 23-m slip beneath the rigid block may be ascribed to multiple events. It is for the first time we report that in the south-eastern extent of the western Indian Himalaya, Ramnagar scarp consists of minimum two events (i) pre-1400 AD and (ii) unknown old events of different lateral extents with overlapping ruptures. If the more optimistic two seismic events scenario is followed, the rupture length would be at least 260 km and would lead to an earthquake greater than Mw 8.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号