首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Coastal ocean numerical modeling is basically the representation of the dynamics of the coastal ocean in a chosen range of length scales and over an associated frequency band, including the modeling of both coherent processes and associated transient processes. The ocean dynamical features can be individually identified by combining wavelet analysis for time and frequency localization and principal component analysis to “decorrelate” physically consistent structures. In the present paper, the so-called WEof analysis is applied for the extraction of external gravity waves and internal gravity wave lower modes in a simple case of a flat bottom, constant Brunt-Väisälä ocean. It is shown that, with some well known restrictive assumptions, WEof analysis is an efficient candidate for the recognition of frequency localized dynamical processes.  相似文献   

2.
Atmospheric cyclones with strong winds significantly impact ocean circulation, regional sea surface temperature, and deep water formation across the global oceans. Thus they are expected to play a key role in a variety of energy transport mechanisms. Even though wind-generated internal gravity waves are thought to contribute significantly to the energy balance of the deep ocean, their excitation mechanisms are only partly understood.The present study investigates the generation of internal gravity waves during a geostrophic adjustment process in a Boussinesq model with axisymmetric geometry. The atmospheric disturbance is set by an idealized pulse of cyclonic wind stress with a Rankine vortex structure. Strength, radius and duration of the forcing are varied. The effect upon wave generation of stratification with variable mixed-layer depth is also examined.Results indicate that internal gravity waves are generated after approximately one inertial period. The outward radial energy flux is dominated by waves having structure close to vertical mode-1 and with frequency close to the inertial frequency. Less energetic higher mode waves are observed to be generated close to the sea floor underneath the storm. The total radiated energy corresponds to approximately 0.02% of the wind input. Deeper mixed-layer conditions as well as weaker stratification reduce this fraction.The low energy transfer rates suggest that other processes that drive vertical motion like surface heat fluxes, turbulent motion, mixed region collapse and storm translation are essential for significant energy extraction by internal gravity waves to occur.  相似文献   

3.
Energy transfer via resonance in a stratified fluid with a constant Brunt–Väisälä frequency is studied through the Manley–Rowe relation and direct numerical simulations. The objectives of this study are two-fold. One is to determine if there is a limitation on the lengthscale of small-scale waves to which primary energy can be effectively transferred. The other is to study factors affecting the growth of parametric subharmonic instability. Resonantly interacting modes are classified into three groups: local sum modes, quasi-subharmonic modes and remote parametric subharmonic instability modes (characterized by interaction with very small-scale waves). The latter two involve energy transfer from a primary wave to secondary waves with half the frequency. Most energy transfer is through local sum resonant modes and quasi-subharmonic modes. Energy cannot effectively transfer to higher wavenumber modes since dynamical systems are altered as wavenumbers of excited modes increase. In the remote modes, the solution is sinusoidal with high angular frequency and very small energy capacity. As a consequence, these modes are inactive in energy transfer despite their high energy growth rates. Effects of non-uniform white noise amplitude and primary mode propagation angle on the quasi-subharmonic modes are also investigated. Implications for energy transfer in the ocean are discussed.  相似文献   

4.
An ensemble of random-phase internal gravity waves is considered in the dynamical framework of the Euler–Boussinesq equations. For flows with zero mean potential vorticity, a kinetic equation for the mean spectral energy density of the waves is obtained under hypothesis of Gaussian statistics with zero correlation length. Stationary scaling solutions of this equation are found for almost vertically propagating waves. The resulting spectra are anisotropic in vertical and horizontal wave numbers. For flows with small but non-zero mean potential vorticity, under the same statistical hypothesis applied to the wave part of the flow, it is shown that the vortex part and the wave part decouple. The vortex part obeys a limiting slow dynamics equation exhibiting vertical collapse and layering which may contaminate the wave-part spectra. Relation of these results to the in situ atmospheric measurements and previous work on oceanic gravity waves is discussed.  相似文献   

5.
In a state of equilibrium, the constraint of a balanced heat budget for the ocean strongly influences the depth of the tropical thermocline because that depth controls the rate at which the ocean absorbs heat from the atmosphere. Thus, an increase in the oceanic heat loss in high latitudes results in a shoaling of the equatorial thermocline so that the heat gain also increases. How does the ocean adjust to such a new equilibrium state after an abrupt change in the heat flux in high latitudes? The adjustment of the wind-driven circulation of the upper ocean is shown to involve two timescales. The first is the familiar adiabatic wave-adjustment time associated with the horizontal redistribution of warm water above the thermocline in shallow water models. (This is essentially the time it takes Rossby and Kelvin waves to propagate from the disturbed extra-equatorial region to the equator.) The second adjustment-time is associated with the diabatic processes that come into play once the waves from higher latitudes modify the thermal structure in low latitudes and hence the flux of heat into the ocean; it is the timescale on which the ocean recovers a balanced heat budget. The identification of this timescale is the main result of this paper.Through a series of simulations of an idealized ocean basin, we identify the diabatic timescale and argue that it is determined by the strength of the upwelling and the intensity of the air–sea heatfluxes. By simulating the formation of a thermocline from isothermal conditions, we are able to relate this timescale to other relevant timescales such as that associated with diffusive processes and the adiabatic timescale invoked by Gu and Philander [Gu, D., Philander, S.G.H., 1997. Interdecadal climate fluctuations that depend on exchanges between the tropics and extra-topics. Science 275, 805–807].  相似文献   

6.
The uppermost surface of the ocean forms a peculiarly important ecosystem, the sea surface microlayer (SML). Comprising the top 1–1000 μm of the ocean surface, the SML concentrates many chemical substances, particularly those that are surface active. Important economically as a nursery for fish eggs and larvae, the SML unfortunately is also especially vulnerable to pollution. Contaminants that settle out from the air, have low solubility, or attach to floatable matter tend to accumulate in the SML.Bubbles contribute prominently to the dynamics of air–sea exchanges, playing an important role in geochemical cycling of material in the upper ocean and SML. In addition to the movement of bubbles, the development of a bubble cloud interrelates with the single particle dynamics of all other bubbles and particles. In the early sixties, several in situ oceanographic techniques revealed an “unbelievably immense” number of coastal bubbles of radius 15–300 μm. The spatial and temporal variation of bubble numbers were studied; acoustical oceanographers now use bubbles as tracers to determine ocean processes near the ocean surface. Sea state and rain noises have both been definitively ascribed to the radiation from huge numbers of infant micro bubbles [The Acoustic Bubble. Academic Press, San Diego].Our research programme aims at constructing a hydrodynamic model for particle transport processes occurring at the microscale, in multi-phase flotation suspensions. Current research addresses bubble and floc microhydrodynamics as building blocks for a microscale transport model. This paper reviews sea surface transport processes in the microlayer and the lower atmosphere, and identifies those amenable to microhydrodynamic modelling and simulation. It presents preliminary simulation results including the multi-body hydrodynamic mobility functions for the modelling of “dynamic bubble filters” and floc suspensions. Hydrodynamic interactions versus spatial anisotropy and size of particle clouds are investigated.  相似文献   

7.
This work deals with the propagation and evolution of disturbances which move along freely propagating two-dimensional gravity current fronts. Examples of evolving perturbations on fronts are displayed in real-aperture radar images of gravity currents in the coastal zone. The theory of Cooper et al. (2001), which is based upon the ray tube formulation of Whitham (1974), is employed to simulate disturbances of the sort seen in this imagery and in the larger body of literature. Initial anomalies in both shape and velocity are introduced and allowed to evolve, and several types of new and interesting behaviors emerge. Shape perturbations of the form x=a sech δy evolve into two anomalies, which separate in time as they propagate in opposite directions along the front. When the value of a is increased, the disturbances, which propagate along the gravity current, can break, forming breaking frontal waves (BFWs). These manifest themselves as sharp angular features to either side of the main bulge. Two types of velocity disturbances are employed. The first has the form U=U0(1+â sech δy), and evolves to preserve a single frontal bulge that increases in amplitude and width as it propagates. Here again, large values of â result in BFWs. In this case, they replicate the general behavior present in the imagery. The second type of velocity perturbation used is U=U0(1+â cos δy). The smallest values of a generate no BFWs, but yield fronts which oscillate in space and time. Larger values produce a string of BFWs which are qualitatively similar to the cusp-and-trough morphology observed so frequently in nature. The largest values of a allow the gravity current to form a string of large, bulbous structures which intersect one another as they propagate forward and spread laterally. And finally, we make an effort to correlate the results of the simulations with the shapes seen in radar and visible imagery in the literature.  相似文献   

8.
In this paper, the “Expérience sur Site pour COntraindre les Modèles de Pollution atmosphérique et de Transport d'Emissions” (ESCOMPTE) program is presented. The ESCOMPTE program is used to produce a relevant set of data for testing and evaluating regional pollution models. It includes high-resolution (in space and time) atmospheric emission inventories and field experiments, and covers an area of 120×120 km, centered over the Marseilles-Berre area in the southeast of France during Summer 2001. This region presents a high occurrence of photochemical pollution events, which result from numerous industrial and urban sources of primary pollutants. From the dynamical characteristics of the area, sea-breeze circulation and channeling effects due to terrain features highly influence the location of the pollutant plumes. ESCOMPTE will provide a highly documented framework for dynamics and chemistry studies.Campaign strategies and experimental set up are described. During the planning phase, existing modeling results helped defining the experimental design. The campaign involved surface measurement networks, remote sensing, ship-borne, balloon-borne, and airplane measurements. Mean standard meteorological parameters and turbulent fluxes, ozone, ozone precursors, photochemically active trace gases, and aerosols were measured. Five intensive observation periods (IOPs) were documented using a wide spectrum of instruments, involving aircraft (7) (one of them equipped with a Doppler lidar, the others for in situ meteorological and chemical measurements), constant volume balloons (33), ozone lidars (5), wind profilers (15 sodars and radars), Doppler scanning lidar (1), radiosonde systems (at 4 locations), instrumented ships (2). In addition to the air quality networks from environmental agencies, 15 supplementary ground stations equipped for chemistry and/or meteorology and/or surface flux measurements, were operational. All instruments were calibrated and compared during a Quality Control/Quality Assurance (QC/QA) week, at the very beginning of the campaign.Fifteen days were intensively documented during five IOPs, referenced as 1, 2a, 2b, 3, and 4. High pollution levels were encountered during sea-breeze conditions observed during IOPs 2b and 3, whereas IOPs 2a and 4 corresponded to moderate wind, and channeled plume regimes. In addition, hourly emissions inventories for all IOPs were established to complete data sets and to finalize the ESCOMPTE database (EDB).Two other projects were associated to ESCOMPTE: urban boundary layer (UBL) and tropospheric water vapor content by GPS tomography (GPS/H2O). They took advantage of the scientific environment provided by ESCOMPTE.  相似文献   

9.
The direction normal to the Earth spherical (or ellipsoidal) surface is not vertical (called deflected vertical) since the vertical direction is along the true gravity g (= igλjgφkgz). Here, (λ, φ, z) are (longitude, latitude, depth), and (i, j, k) are the corresponding unit vectors. The spherical (or ellipsoidal) surfaces are not horizontal surfaces (called deflected-horizontal surfaces). The most important body force g (true gravity) has been greatly simplified without justification in oceanography to the standard gravity (-g0k) with g0 = 9.81 m/s2. Impact of such simplification on ocean dynamics is investigated in this paper using the Ekman layer model. In the classical Ekman layer dynamic equation, the standard gravity (-g0k) is replaced by the true gravity g(λ, φ, z) with a constant eddy viscosity and a depth-dependent-only density ρ(z) represented by an e-folding near-inertial buoyancy frequency. New Ekman spiral and in turn new formulae for the Ekman transport are obtained for ocean with and without bottom. With the gravity data from the global static gravity model EIGEN-6C4 and the surface wind stress data from the Comprehensive Ocean-Atmosphere Data Set (COADS), large difference is found in the Ekman transport using the true gravity and standard gravity.  相似文献   

10.
Despite recent advances in supercomputing, current general circulation models (GCMs) have significant problems in representing the variability associated with organized tropical convection. Furthermore, due to high sensitivity of the simulations to the cloud radiation feedback, the tropical convection remains a major source of uncertainty in long-term weather and climate forecasts. In a series of recent studies, it has been shown, in paradigm two-baroclinic-mode systems and in aquaplanet GCMs, that a stochastic multicloud convective parameterization based on three cloud types (congestus, deep and stratiform) can be used to improve the variability and the dynamical structure of tropical convection, including intermittent coherent structures such as synoptic and mesoscale convective systems. Here, the stochastic multicloud model is modified with a parameterized cloud radiation feedback mechanism and atmosphere-ocean coupling. The radiative convective feedback mechanism is shown to increase the mean and variability of the Walker circulation. The corresponding intensification of the circulation is associated with propagating synoptic scale systems originating inside of the enhanced sea surface temperature area. In column simulations, the atmosphere ocean coupling introduces pronounced low frequency convective features on the time scale associated with the depth of the mixed ocean layer. However, in the presence of the gravity wave mixing of spatially extended simulations, these features are not as prominent. This highlights the deficiency of the column model approach at predicting the behavior of multiscale spatially extended systems. Overall, the study develops a systematic framework for incorporating parameterized radiative cloud feedback and ocean coupling which may be used to improve representation of intraseasonal and seasonal variability in GCMs.  相似文献   

11.
Coastal-trapped waves with finite bottom friction   总被引:2,自引:0,他引:2  
Coastal-trapped waves with finite-amplitude bottom friction are explored. “Finite-amplitude” in this context means that the bottom stresses are large enough to change the wave modal structure. The importance of bottom friction is measured by the nondimensional number r/(ωh), where r is a bottom resistance coefficient, ω the wave frequency and h the water depth. Increasing bottom drag causes free wave modes to adjust by having their amplitude maxima for alongshore current translate offshore to the point that, with relatively large bottom stress, the alongshore current variance is trapped entirely on the slope, even though pressure variations remain substantial right up to the coast. In conjunction with these adjustments, wave frequency, hence propagation speed, varies and the wave damping is usually less than would be expected based on a weak-friction perturbation calculation. Stronger density stratification increases wave damping, all else being the same. A mean alongshore flow can strongly affect modal structure and wave damping, although general trends are difficult to discern. Results suggest that bottom friction may cause an observed tendency for lower frequency alongshore current fluctuations to become relatively more important with distance offshore.  相似文献   

12.
基于秒级探空资料分析四川重力波统计特征   总被引:2,自引:0,他引:2       下载免费PDF全文
利用2014年6月-2017年9月的秒级探空资料,选取四川地区5个代表性站点研究重力波在对流层(2~10 km)和平流层(18~25 km)的时空特征。选取结果表明:重力波能量在四川地区各个高度均存在明显的季节变化,冬季强,夏季弱;在对流层由于地形影响,川西和川北高原地区的能量小于其他地区。垂直波长没有明显的时空变化,在对流层和平流层分别集中分布于1.5~3 km和1.5~3.5 km;水平波长则差别较大,分别分布于0~300 km和100~700 km,平均值分别为100 km和350 km。重力波固有频率在对流层有较大的区域差异,表现为在四川西北部的高原地区固有频率平均值为3f(f为地转参数),其他地区则仅为2.4f;平流层则没有明显的差异存在,均约为2f。四川地区重力波的垂直传播方向特征基本相同,在对流层约有50%的波动向上传播,平流层则有90%以上的波动向上传播。水平传播则存在明显的不确定性,特别是对流层;平流层水平传播方向存在明显的季节变化,表现为夏季重力波多向偏东方向传播,而其他季节则向偏西方向传播。  相似文献   

13.
平流层和中层大气研究的进展   总被引:16,自引:4,他引:12  
吕达仁  陈洪滨 《大气科学》2003,27(4):750-769
平流层和中层大气研究是20世纪70年代以来持续得到大气科学界和日地物理界共同关注的研究前沿.中国科学界在文化大革命结束后立即抓住这一前沿作为发展重点之一.20多年来,中国科学院大气物理研究所等单位较为系统地开展了这一方向的研究,并在一些方面进行了前沿性的工作.作者着重介绍以下几方面的进展:(1)平流层和中层大气探测设施与探测方法;(2)大气臭氧、平流层气溶胶的监测与分析;(3)行星波在中层大气环流与大气臭氧分布中的作用;(4)重力波在中层大气的传播特征与作用;(5)平流层-对流层交换的动力物理与化学问题.  相似文献   

14.
Over the tropics,convection,wind shear(i.e.,vertical and horizontal shear of wind and/or geostrophic adjustment comprising spontaneous imbalance in jet streams) and topography are the major sources for the generation of gravity waves.During the summer monsoon season(June-August) over the Indian subcontinent,convection and wind shear coexist.To determine the dominant source of gravity waves during monsoon season,an experiment was conducted using mesosphere-stratosphere-troposphere(MST) radar situated at Gadanki(13.5 N,79.2 E),a tropical observatory in the southern part of the Indian subcontinent.MST radar was operated continuously for 72 h to capture high-frequency gravity waves.During this time,a radiosonde was released every 6 h in addition to the regular launch(once daily to study low-frequency gravity waves) throughout the season.These two data sets were utilized effectively to characterize the jet stream and the associated gravity waves.Data available from collocated instruments along with satellite-based brightness temperature(TBB) data were utilized to characterize the convection in and around Gadanki.Despite the presence of two major sources of gravity wave generation(i.e.,convection and wind shear) during the monsoon season,wind shear(both vertical shear and geostrophic adjustment) contributed the most to the generation of gravity waves on various scales.  相似文献   

15.
We consider the three-dimensional reflection and diffraction properties of internal waves in a continuously stratified rotating fluid which are incident on the junction of a vertical slit and a half-space. This geometry is a model for submarine canyons on continental slopes in the ocean, where various physical phenomena embodying reflection and diffraction effects have been observed. Three types of incident wave are considered: (1) Kelvin waves in the slit (canyon); (2) Kelvin waves on the slope; and (3) plane internal waves incident from the half-space (ocean). These are scattered into Kelvin and Poincaré waves in the slit, a Kelvin wave on the slope and Poincaré waves in the half-space. Most of the discussion is centered around case (1). Various properties of the wave field are calculated for ranges of the parameters c/cot θ, γα and ƒ/ω where cot θ is the topographic slope, c is the internal wave ray slope, α is the canyon half-width, γ is the down-slope wave-number, ƒ is the Coriolis parameter and ω is the wave frequency. Analytical results are obtained for small γα and some approximate results for larger values of γα. The results show that significant wave trapping may occur in oceanic situations, and that submarine canyons may act as source regions for internal Kelvin waves on the continental slope.  相似文献   

16.
基于2007年7月青海祁连站的野外加密探空资料,结合高分辨率的三维边界层模式,模拟研究了青藏高原东北边坡复杂地形条件下,边界层对流引起的干动力过程对该地区地形重力波产生及传播的影响机理。结果表明:在不同的背景场强迫下,高原东北边坡复杂地形上空对流和重力波的空间结构存在较大差异。当背景风向与山体垂直时,随着风速增加,山脊背风坡混合层顶附近大气不稳定能量加强,激发了下游区域较强的重力波信号,此时对流线组织性增强、重力波波列较长,高水汽含量的空气被波峰传输到较高的高度,为对流云发展提供了有利条件;当背景风向与山脊走向平行时,山顶上空对流发展旺盛,山脊背风坡混合层顶大气状态较稳定,激发的地形重力波信号较弱且波列较短,整个混合层顶附近水汽较少,对流云形成条件减弱;当背景大气浮力频率减小时,整个区域上空对流发展更加旺盛但组织性减弱,背风坡下游重力波向上传输的距离减小,信号不显著,混合层顶附近水汽分布均匀且变化幅度较小,有利于层状云发展。  相似文献   

17.
A linearized instability analysis model with five unknowns was proposed to describe disturbance motions under general oceanic background conditions, including large-scale current shear, density stratification, frontal zone, and arbitrary topography. A unified linear theory of wavelike perturbations for surface gravity waves, internal gravity waves and inertial gravity waves was derived for the adiabatic case, and the solution was then found using Fourier integrals. In this theory, we discarded the assumptions widely accepted in the literature concerning derivations of wave motions such as the irrotationality assumption for surface gravity waves, the rigid-lid approximation for internal gravity waves, and the long-wave approximation for inertial gravity waves. Analytical solutions based on this theory indicate that the complex dispersion relationships between frequency and wave-number describing the propagation and development of the three types of wavelike perturbation motions include three components: complex dispersion relationships at the sea surface; vertical invariance of the complex frequency; and expressions of the vertical wave-number (phase). Classical results of both surface waves and internal waves were reproduced from the unified theory under idealized conditions. The unified wave theory can be applied in the dynamical explanation of the generation and propagation properties of internal waves that are visible in the satellite SAR images in the southern part of the China Seas. It can also serve as the theoretical basis for both a numerical internal-wave model and analytical estimation of the ocean fluxes transported by wavelike perturbations.  相似文献   

18.
This work presents the temporal evolution and spatial distribution of nitrogen dioxide (NO2) measured with the help of passive diffusion tubes in different environments: rural, sub-urban, urban, at La Réunion Island in December 1997 and November 2000 (austral spring), respectively. NO2 concentration exhibits notable enhancement from 1997 to 2000. For instance, its mean concentration was 16 and 20 μg/m3 in December 1997 and November 2000, respectively, at La Réunion Island, especially in inhabited regions due to increase of local anthropogenic activities, mainly traffic circulation, in the absence of house heating and biomass burning. We also observe a net increase of pollutant levels by a factor two in rural/remote areas within 3 years, which is tied to the extension of inhabited areas and air-flows from enhanced local sources. The increase of atmospheric pollutants is mainly due to enhancement of anthropogenic activities (traffic) since the 1990s at La Réunion Island, which results from a constant increase of population and consequently, from a higher number of vehicles in circulation. Importantly, in cities like Saint-Denis, where traffic network has been subject to notable improvement (e.g. single to double lanes, etc.), pollutant levels exhibit little variability as in temperate continental latitudes. Semi-continuous NO2 concentration measured in parallel with ozone in November 2000 also showed that daytime photochemical ozone production is influenced by pollutant and precursor (NO2) levels at Saint-Denis, while nighttime ozone increase is mainly tied to dynamical processes. The November 2000 ozone diurnal pattern is notably different from that observed in September 1995, during which a daytime ozone loss was observed, pointing out that atmospheric conditions have been subject to notable changes, i.e., clean to moderately polluted, within a few years at La Réunion Island. The results presented here point out that the ‘source enhancement effect’ is superimposed on dynamical and photochemical processes to influence pollutants variability and hence atmospheric chemistry, in a quite ‘pristine’ tropical oceanic region.  相似文献   

19.
An investigation is made on the damping of gravity oscillations in closed basins by using the singular perturbation method of Hukuda and Mysak. A perturbation solution, pivoting on a small bottom friction parameter ε, is derived for an arbitrary shaped basin with a sloping beach. It is shown that at 0(ε) the gravity oscillations are attenuated at a decay rate equal to the kinetic energy of 0(1) wave field. A simple law of decay rates is proposed for estimating the e-folding time of lake seiches, on the basis of calculations in both circular and elliptical basins with parabolic depth. The theoretical prediction is in good agreement with the long life cycle of a uninodal seiches observed in Lake Vättern, Sweden, as quoted in Defant.  相似文献   

20.
This essay concerns precipitating convective cloud systems and convectively-driven mesoscale circulations (“mesoscale convection”) and their role in the large-scale structure of the atmosphere. Mesoscale convection is an important and ubiquitous process on scales of motion spanning a few kilometers to many hundreds of kilometers. It plays a role in the input of energy to the climate system through the radiative effect of upper-tropospheric cloud and water vapor, and enhanced surface fluxes. This is in addition to its important effect on energy, heat and momentum transport within the atmosphere. However, mesoscale convection is neither parameterized nor adequately resolved in atmospheric general circulation models. Its representation in mean-flow terms raises issues that are quite distinct from classical approaches to sub-grid scale convection parameterization.Cloud-resolving modeling and theoretical concepts pertinent to the transport properties and mean-flow effects of organized convection are summarized, as are the main convective parameterization techniques used in global models. Two principal themes that are relevant to the representation of organized mesoscale systems are discussed. First, mesoscale transports and their sub-grid scale approximation with emphasis on dynamical approaches. Second, long time-scale modeling of mesoscale cloud systems that involves the collective effect of convection, boundary and surface layers, radiation, microphysics acting under the influence of large-scale forcing.Finally, major research programs that address the role of precipitating convection and mesoscale processes in global models are summarized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号