首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Xugou garnet peridotite body of the southern Sulu ultrahigh‐pressure (UHP) terrane is enclosed in felsic gneiss, bounded by faults, and consists of harzburgite and lenses of garnet clinopyroxenite and eclogite. The peridotite is composed of variable amounts of olivine (Fo91), enstatite (En92?93), garnet (Alm20?23Prp53?58Knr6?9Grs12?18), diopside and rare chromite. The ultramafic protolith has a depleted residual mantle composition, indicated by a high‐Mg number, very low CaO, Al2O3 and total REE contents compared to primary mantle and other Sulu peridotites. Most garnet (Prp44?58) clinopyroxenites are foliated. Except for rare kyanite‐bearing eclogitic bands, most eclogites contain a simple assemblage of garnet (Alm29?34Prp32?50Grs15?39) + omphacite (Jd24?36) + minor rutile. Clinopyroxenite and eclogite exhibit LREE‐depleted and LREE‐enriched patterns, respectively, but both have flat HREE patterns. Normalized La, Sm and Yb contents indicate that both eclogite and garnet clinopyroxenite formed by high‐pressure crystal accumulation (+ variable trapped melt) from melts resulting from two‐stage partial melting of a mantle source. Recrystallized textures and P–T estimates of 780–870 °C, 5–7 GPa and a metamorphic age of 231 ± 11 Ma indicate that both mafic and ultramafic protoliths experienced Triassic UHP metamorphism in the P–T forbidden zone with an extremely low thermal gradient (< 5 °C km?1), and multistage retrograde recrystallization during exhumation. Develop of prehnite veins in clinopyroxenite, eclogite, felsic blocks and country rock gneiss, and replacements of eclogitic minerals by prehnite, albite, white mica, and K‐feldspar indicate low‐temperature metasomatism.  相似文献   

2.
This paper presents the first report on the occurrence of eclogite from the Kumon range of the Western province in Myanmar, which is in the southeastern extension of the Himalayan orogenic belt. The eclogite is mainly composed of omphacite, garnet, hornblende/edenite/katophorite/taramite, biotite, quartz, and rutile. The garnet grains in the eclogite usually show textures of barrier reef, atoll, and table reef types, and have a wide compositional range of Alm58–70Sps1–2Prp9–16Grs14–31. Omphacite grains that occur as garnet inclusions and as isolated crystals in the matrix have similar compositions of Jd34–45 and Jd37–44, respectively. Lesser amounts of jadeitic clinopyroxene (Jd21–38), phengite, biotite, albite, and quartz occur in the lagoon of barrier reef and atoll garnet grains. The matrix omphacite is partly replaced by symplectite of sodic clinopyroxene of Jd20–29 and albite. The lower limits of the pressure/temperature during the eclogite stage, which are defined by the assemblage of garnet, omphacite (Jd40–45), and quartz, are 1.2–1.3 GPa/530–615 °C. The finding of eclogite from Myanmar suggests the possibility of a wide occurrence of high-pressure metamorphic rocks in the ophiolite zone along the southeastern extension of the Indus-Yarlung Zangbo suture in Myanmar and Indochina.  相似文献   

3.
Quantitative thermobarometry of inclusions in zoned garnet from a Franciscan eclogite block record a counter-clockwise PT path from blueschist to eclogite and back. Garnet retains prograde zoning from inclusion-rich Alm52Grs30Pyp6Sps12 cores to inclusion-poor Alm62Grs25Pyp12Sps1 mantles, with overgrowths of highly variable composition. Barometry using the Waters–Martin version of the garnet–phengite–omphacite thermobarometer yields conditions of 7–15 kbar, 400–500°C (garnet cores), 18–22 kbar, ∼550°C (mantles), and 10–14 kbar, 350–450°C (overgrowths), in agreement with clinozoisite–sphene–rutile–garnet–quartz barometry. These pressures are ∼10–15 kbar less than those obtained using more recent, fully thermodynamic calibrations of the phengite–omphacite–garnet thermobarometer. Low early temperatures suggest that the block was subducted in a thermally mature subduction zone and not at the inception of subduction when prograde temperature is expected to be higher. Franciscan high-grade blocks likely represent crust subducted throughout the history of this convergent margin, rather than only at the inception of the subduction zone.  相似文献   

4.
Eclogites from the Onodani area in the Sambagawa metamorphic belt of central Shikoku occur as layers or lenticular bodies within basic schists. These eclogites experienced three different metamorphic episodes during multiple burial and exhumation cycles. The early prograde stage of the first metamorphic event is recorded by relict eclogite facies inclusions within garnet cores (XSps 0.80–0.24, XAlm 0–0.47). These inclusions consist of relatively almandine‐rich garnet (XSps 0.13–0.24, XAlm 0.36–0.45), aegirine‐augite/omphacite (XJd 0.08–0.28), epidote, amphiboles (e.g. actinolite, winchite, barroisite and taramite), albite, phengite, chlorite, calcite, titanite, hematite and quartz. The garnet cores also contain polyphase inclusions consisting of almandine‐rich garnet, omphacite (XJd 0.27–0.28), amphiboles (e.g. actinolite, winchite, barroisite, taramite and katophorite) and phengite. The peak P–T conditions of the first eclogite facies metamorphism are estimated to be 530–590 °C and 19–21 kbar succeeded by retrogression into greenschist facies. The second prograde metamorphism began at greenschist facies conditions. The peak metamorphic conditions are defined by schistosity‐forming omphacites (XJd ≤ 49) and garnet rims containing inclusions of barroisitic amphibole, phengite, rutile and quartz. The estimated peak metamorphic conditions are 630–680 °C and 20–22 kbar followed by a clockwise retrograde P–T path with nearly isothermal decompression to 8–12 kbar. In veins cross‐cutting the eclogite schistosity, resorbed barroisite/Mg‐katophorite occurs as inclusions in glaucophane which is zoned to barroisite, suggesting a prograde metamorphism of the third metamorphic event. The peak P–T conditions of this metamorphic event are estimated to be 540–600 °C and 6.5–8 kbar. These metamorphic conditions are correlated with those of the surrounding non‐eclogitic Sambagawa schists. The Onodani eclogites were formed by subduction of an oceanic plate, and metamorphism occurred beneath an accretionary prism. These high‐P/T type metamorphic events took place in a very short time span between 100 and 90 Ma. Plate reconstructions indicate highly oblique subduction of the Izanagi plate beneath the Eurasian continent at a high spreading rate. This probably resulted in multiple burial and exhumation movements of eclogite bodies, causing plural metamorphic events. The eclogite body was juxtaposed with non‐eclogitic Sambagawa schists at glaucophane stability field conditions. The amalgamated metamorphic sequence including the Onodani eclogites were exhumed to shallow crustal/surface levels in early Eocene times (c. 50 Ma).  相似文献   

5.
Pan‐African high‐pressure granulites occur as boudins and layers in the Lurio Belt in north‐eastern Mozambique, eastern Africa. Mafic granulites contain the mineral assemblage garnet + clinopyroxene + plagioclase + quartz ± magnesiohastingsite. Garnet porphyroblasts are zoned with increasing almandine and spessartine contents and decreasing grossular and pyrope contents from core (Alm46Prp32Grs21Sps2) to rim (Alm52Prp26Grs19Sps3). This pattern is interpreted as a retrograde diffusion zoning with the preserved core chemistry representing the peak metamorphic composition. Mineral reaction textures occur in the form of monomineralic and composite plagioclase ± orthopyroxene ± amphibole ± biotite ± magnetite coronas around garnet porphyroblasts. Thermobarometry indicates peak metamorphic conditions of up to 1.57 ± 0.14 GPa and 949 ± 92 °C (stage I), corresponding to crustal depths of ~55 km. Zircon yielded an U–Pb age of 557 ± 16 Ma, inferred to date crystallization of zircon during peak or immediately post‐peak metamorphism. Formation of plagioclase + orthopyroxene‐bearing coronas surrounding garnet indicates a near‐isothermal decompression of the high‐pressure granulites to lower pressure granulite facies conditions (stage II). Development of plagioclase + amphibole‐coronas enclosing the same garnet porphyroblasts shows subsequent cooling into amphibolite facies conditions (stage III). Symplectitic textures of the corona assemblages indicate rapid decompression. The high‐pressure granulite facies metamorphism of the Lurio Belt, followed by near‐isothermal decompression and subsequent cooling, is in accordance with a long‐lived tectonic history accompanied by high magmatic activity in the Lurio Belt during the late Neoproterozoic–early Palaeozoic East‐African–Antarctic orogeny.  相似文献   

6.
The eclogite facies assemblage K-feldspar–jadeite–quartz in metagranites and metapelites from the Sesia-Lanzo Zone (Western Alps, Italy) records the equilibration pressure by dilution of the reaction jadeite+quartz=albite. The metapelites show partial transformation from a pre-Alpine assemblage of garnet (Alm63Prp26Grs10)–K-feldspar–plagioclase–biotite±sillimanite to the Eo-Alpine high-pressure assemblage garnet (Alm50Prp14Grs35)–jadeite (Jd80–97Di0–4Hd0–8Acm0–7)–zoisite–phengite. Plagioclase is replaced by jadeite–zoisite–kyanite–K-feldspar–quartz, and biotite is replaced by garnet–phengite or omphacite–kyanite–phengite. Equilibrium was attained only in local domains in the metapelites and therefore the K-feldspar–jadeite–quartz (KJQ) barometer was applied only to the plagioclase pseudomorphs and K-feldspar domains. The albite content of K-feldspar ranges from 4 to 11 mol% in less equilibrated assemblages from Val Savenca and from 4 to 7 mol% in the partially equilibrated samples from Monte Mucrone and the equilibrated samples from Montestrutto and Tavagnasco. Thermodynamic calculations on the stability of the assemblage K-feldspar–jadeite–quartz using available mixing data for K-feldspar and pyroxene indicate pressures of 15–21 kbar (±1.6–1.9 kbar) at 550±50 °C. This barometer yields direct pressure estimates in high-pressure rocks where pressures are seldom otherwise fixed, although it is sensitive to analytical precision and the choice of thermodynamic mixing model for K-feldspar. Moreover, the KJQ barometer is independent of the ratio PH2O/PT. The inferred limiting a(H2O) for the assemblage jadeite–kyanite in the metapelites from Val Savenca is low and varies from 0.2 to 0.6.  相似文献   

7.
Ultrahigh‐pressure (UHP) rocks from the Western Gneiss Region (WGR) of Norway record subduction of Baltican continental crust during the Silurian to Devonian Scandian continental collision. Here, we report a new coesite locality from the island of Harøya in the Nordøyane UHP domain, the most northerly yet documented in the WGR, and reconstruct the P–T history of the host eclogite. The coesite–eclogite lies within migmatitic orthogneiss, interpreted as Baltica basement, that underwent multiple stages of deformation and partial melting during exhumation. Two stages of metamorphism have been deduced from petrography and mineral chemistry. The early (M1) assemblage comprises garnet (Pyr38–41Alm35–37Grs23–26Spss1) and omphacite (Na0.35–0.40Ca0.57–0.60Fe2+0.08–0.10Mg0.53Fe3+0.01AlVI0.40–0.42)2(AlIV0.03–0.06Si1.94–1.97)2O6, with subordinate phengite, kyanite, rutile, coesite and apatite, all present as inclusions in garnet. The later (M2) assemblage comprises retrograde rims on garnet (Pyr38–40Alm40–44Grs16–21Spss1), diopside rims on omphacite (Na0.04–0.06Ca0.88–0.91Fe2+0.09–0.13Mg0.81–83Fe3+0.08AlVI0.03)2(AlIV0.07–0.08Si1.92–1.93)2O6, plagioclase, biotite, pargasite, orthopyroxene and ilmenite. Metamorphic P–T conditions estimated using thermocalc are ~3 GPa and 760 °C for M1, consistent with the presence of coesite, and ~1 GPa and 813 °C for M2, consistent with possible phengite dehydration melting during decompression. Comparison with other WGR eclogites containing the same assemblage shows a broad similarity in peak (M1) P–T conditions, confirming suggestions that large portions of the WGR were buried to depths of ~100 km during Scandian subduction. Field relations suggest that exhumation, accompanied by widespread partial melting, involved an early phase of top‐northwest shearing, followed by subhorizontal sinistral shearing along northwest‐dipping foliations, related to regional transtension. The present results add to the growing body of data on the distribution, maximum P–T conditions, and exhumation paths of WGR coesite–eclogites and their host rocks that is required to constrain quantitative models for the formation and exhumation of UHP metamorphic rocks during the Scandian collision.  相似文献   

8.
The role of volatiles in the stabilization of the lower (granulite facies) crust is contentious. Opposing models invoke infiltration of CO2-rich fluids or generally vapour-absent conditions during granulite facies metamorphism. Stable isotope and petrological studies of granulite facies metacarbonates can provide constraints on these models. In this study data are presented from metre-scale forsteritic marble boudins within Archaean intermediate to felsic orthogneisses from the Rauer Group, East Antarctica. Forsteritic marble layers and associated calcsilicates preserve a range of 13C- and 18O-depleted calcite isotope values (δ13C= -9.9 to -3.0% PDB, δ18O = 4.0 to 12.1% SMOW). A coupled trend of 13C and 18O depletion (~2%, ~5%, respectively) from core to rim across one marble layer is inconsistent with pervasive CO2 infiltration during granulite facies metamorphism, but does indicate localized fluid-rock interaction. At another locality, more pervasive fluid infiltration has resulted in calcite having uniformly low, carbonatite-like δ18O and δ13C values. A favoured mechanism for the low δ18O and δ13C values of the marbles is infiltration by fluids that were derived from, or equilibrated with, a magmatic source. It is likely that this fluid-rock interaction occurred prior to high-grade metamorphism; other fluid-rock histories are not, however, ruled out by the available data. Coupled trends of 13C and 18O depletion are modified to even lower values by the superposed development of small-scale metasomatic reaction zones between marbles and internally folded mafic (?) interlayers. The timing of development of these layers is uncertain, but may be related to Archaean high-temperature (>1000d?C) granulite facies metamorphism.  相似文献   

9.
Eclogite inclusions from kimberlitic diatremes on the Colorado Plateau contain intricately zoned garnet and pyroxene and unusual textures. Detailed electron microprobe traverses for a clinopyroxene-garnet-phengite-lawsonite-rutile assemblage show garnet zoning from Alm69Gr21Py10 (core) to Alm61Gr13Py26 (rim) and pyroxene zoning from Jd50 (core) through Jd77 to Jd55 (rim). Pyroxene cores are Cr-rich in another rock. Sharp compositional discontinuities and zoning reversals are preserved in garnet and pyroxene. Oscillatory zoning occurs in both phases on a 10–20 m scale, with variations of up to 6% Py in garnet and 15% Jd in pyroxene. Phengite is unzoned and contains 74% celadonite endmember.Skeletal, pyroxene-filled garnet crystals are common in some rocks, and garnets in other rocks clearly began growth as shell-like crystals. Some rocks contain domains of coarse, prismatic pyroxene with very fine-grained, interstitial magnesium silicates. The texture appears to have resulted from crystallization in the presence of a fluid phase, and water pressure is inferred to have equalled total pressure during crystallization. Eclogite formation at high water pressure may reflect subcrustal crystallization.An analysis of error propagation shows that ferrous iron calculations from electron probe data are not meaningful for these jadeitic pyroxenes, and temperature differences between core and rim crystallization cannot be documented. The garnet textures and oscillatory zoning are unusual for metamorphic rocks, and they suggest disequilibrium crystallization after overstepping of reaction boundaries. All data fit a model of eclogite formation during cooling and metasomatism of basaltic dikes intruded into a cool upper mantle, but the results here do not preclude other origins, such as subduction zone metamorphism.  相似文献   

10.
The In Ouzzal granulitic unit (IOGU) consists predominantly of felsic orthogneisses most of which correspond to granitoids emplaced during the Archaean, plus metasediments, including olivine-spinel marbles, of late Archaean age. All units were metamorphosed at granulite facies during the Eburnean (2 Ga). The stable isotope signature of the marbles (δ13C=–0.8 to –4.2‰/PDB; δ18O = 7.9 to 18.9‰/SMOW) does not record a massive streaming of C-bearing fluids during metamorphism. Most of the isotopic variation in the marbles is explained in terms of pregranulitic features. Metasomatic transformation of granulites into layered potassic syenitic rocks and emplacement of carbonate veins and breccias occurred during retrogressive granulite facies conditions. The chemistry of these rocks is comparable with that of fenites and carbonatites with high contents of (L)REEs, Th, U, F, C, Ba and Sr but, with respect to these elements, a relative depletion in Nb, Ta, Hf, Zr and Ti. The isotopic compositions of Nd (?Nd(T)=–6.3 to –9.9), of Sr (87Sr/86Sr(T)= 0.7093–0.7104), and the O isotopic composition of metasomatic clinopyroxene (δ18O = 6.9 to 8‰), all indicate that the fluid had a strong crustal imprint. On the basis of the C isotope ratios (δ13C =–3.5 to –9.7‰), the fluid responsible for the crystallization of carbonates and metasomatic alteration is thought to be derived from the mantle, presumably through degassing of mantle-derived magmas at depth. Intense interaction with the crust during the upward flow of the fluid may explain its chemical and isotopic signatures. The zones of metasomatic alteration in the In Ouzzal granulites may be the deep-seated equivalents of the zones of channelled circulation of carbonated fluids described at shallower levels in the crust.  相似文献   

11.
Exhumed eclogitic crust is rare and exposures that preserve both protoliths and altered domains are limited around the world. Nominally anhydrous Neoproterozoic anorthositic granulites exposed on the island of Holsnøy, in the Bergen Arcs in western Norway, preserve different stages of progressive prograde deformation, together with the corresponding fluid‐assisted metamorphism, which record the conversion to eclogite during the Ordovician–Silurian Caledonian Orogeny. Four stages of deformation can be identified: (1) brittle deformation resulting in the formation of fractures and the generation of pseudotachylites in the granulite; (2) development of mesoscale shear zones associated with increased fluid–rock interaction; (3) the complete large‐scale replacement of granulite by hydrous eclogite with blocks of granulite sitting in an eclogitic “matrix”; and (4) the break‐up of completely eclogitized granulite by continued fluid influx, resulting in the formation of coarse‐grained phengite‐dominated mineral assemblages. P–T constraints derived from phase equilibria forward modelling of mineral assemblages of the early and later stages of the conversion to eclogite document burial and partial exhumation path with peak metamorphic conditions of ~21–22 kbar and 670–690°C. The P–T models, in combination with existing T–t constraints, imply that the Lindås Nappe underwent extremely rapid retrogressive pressure change. Fluid infiltration began on the prograde burial path and continued throughout the recorded P–T evolution, implying a fluid source that underwent progressive dehydration during subduction of the granulites. However, in places limited fluid availability on the prograde path resulted in assemblages largely consuming the available fluid, essentially freezing in snapshots of the prograde evolution. These were carried metastably deeper into the mantle with strain and metamorphic recrystallization partitioned into areas where ongoing fluid infiltration was concentrated.  相似文献   

12.
Caledonian eclogite facies shear zones developed from Grenvillian garnet granulite facies anorthosites and gabbros in the Bergen Arcs of western Norway allow direct investigation of the relations between macroscopic structures and crystallographic preferred orientation (CPO) in lower continental crust. Field relations on the island of Holsnøy show that the eclogites formed locally from granulite facies rocks by progressive development of: (1) eclogite adjacent to fractures; (2) eclogite in discrete shear zones (> 2 m thick); (3) eclogite breccia consisting of >80% well-foliated eclogite that wraps around rotated granulite blocks; and (4) anastomosing, subparallel, eclogite facies shear zones 30–100 m thick continuous over distances > 1 km within the granulite terrane. These shear zones deformed under eclogite facies conditions at an estimated temperature of 670 ± 50°C and a minimum pressure of 1460 MPa, which corresponds to depths of >55 km in the continental crust. Detailed investigation of the major shear zones shows the development of a strong foliation defined by the shape preferred orientation of omphacite and by alternating segregations of omphacite/garnet-rich and kyanite/zoisite-rich layers. A consistent lineation throughout the shear zones is defined by elongate aggregates of garnet and omphacite. The CPO of omphacite, determined from five-axis universal stage measurements, shows a strong b-axis maximum normal to foliation, and a c-axis girdle within the foliation plane with weak maxima parallel to the lineation direction. These patterns are consistent with deformation of omphacite by slip parallel to [001] and suggest glide along (010). The lineation and CPO data reveal a consistent sense of shear zone movement, although the displacement was small. Localized faulting of high-grade rocks accompanied by fluid infiltration can be an important mode of failure in the lower continental crust. Field relations show that granulite facies rocks can exist in a metastable state under eclogite facies conditions and imply that the lower crust can host differing metamorphic facies at the same depth. Deformation of granulite and partial conversion to eclogite, such as is exposed on Holsnøy Island, may be an orogenic-scale process in the lowermost crust of collisional orogens.  相似文献   

13.
Nine marble horizons from the granulite facies terrane of southern India were examined in detail for stable carbon and oxygen isotopes in calcite and carbon isotopes in graphite. The marbles in Trivandrum Block show coupled lowering of δ13C and δ18O values in calcite and heterogeneous single crystal δ13C values (? 1 to ? 10‰) for graphite indicating varying carbon isotope fractionation between calcite and graphite, despite the granulite facies regional metamorphic conditions. The stable isotope patterns suggest alteration of δ13C and δ18O values in marbles by infiltration of low δ13C–δ18O‐bearing fluids, the extent of alteration being a direct function of the fluid‐rock ratio. The carbon isotope zonation preserved in graphite suggests that the graphite crystals precipitated/recrystallized in the presence of an externally derived CO2‐rich fluid, and that the infiltration had occurred under high temperature and low fO2 conditions during metamorphism. The onset of graphite precipitation resulted in a depletion of the carbon isotope values of the remaining fluid+calcite carbon reservoir, following a Rayleigh‐type distillation process within fluid‐rich pockets/pathways in marbles resulting in the observed zonation. The results suggest that calcite–graphite thermometry cannot be applied in marbles that are affected by external carbonic fluid infiltration. However, marble horizons in the Madurai Block, where the effect of fluid infiltration is not detected, record clear imprints of ultrahigh temperature metamorphism (800–1000 °C), with fractionations reaching <2‰. Zonation studies on graphite show a nominal rimward lowering δ13C on the order of 1 to 2‰. The zonation carries the imprint of fluid deficient/absent UHT metamorphism. Commonly, calculated core temperatures are > 1000 °C and would be consistent with UHT metamorphism.  相似文献   

14.
A combined study of major and trace elements, fluid inclusions and oxygen isotopes has been carried out on garnet pyroxenite from the Raobazhai complex in the North Dabie Terrane (NDT). Well‐preserved compositional zoning with Na decreasing and Ca and Mg increasing from the core to rim of pyroxene in the garnet pyroxenite indicates eclogite facies metamorphism at the peak metamorphic stage and subsequent granulite facies metamorphism during uplift. A PT path with substantial heating (from c. 750 to 900 °C) after the maximum pressure reveals a different uplift history compared with most other eclogites in the South Dabie Terrane (SDT). Fluid inclusion data can be correlated with the metamorphic grade: the fluid regime during the peak metamorphism (eclogite facies) was dominated by N2‐bearing NaCl‐rich solutions, whereas it changed into CO2‐dominated fluids during the granulite facies retrograde metamorphism. At a late retrograde metamorphic stage, probably after amphibolite facies metamorphism, some external low‐salinity fluids were involved. In situ UV‐laser oxygen isotope analysis was undertaken on a 7 mm garnet, and impure pyroxene, amphibole and plagioclase. The nearly homogeneous oxygen isotopic composition (δ18OVSMOW = c. 6.7‰) in the garnet porphyroblast indicates closed fluid system conditions during garnet growth. However, isotopic fractionations between retrograde phases (amphibole and plagioclase) and garnet show an oxygen isotopic disequilibrium, indicating retrograde fluid–rock interactions. Unusual MORB‐like rare earth element (REE) patterns for whole rock of the garnet pyroxenite contrast with most ultra‐high‐pressure (UHP) eclogites in the Dabie‐Sulu area. However, the age‐corrected initial εNd(t) is ? 2.9, which indicates that the protolith of the garnet pyroxenite was derived from an enriched mantle rather than from a MORB source. Combined with the present data of oxygen isotopic compositions and the characteristic N2 content in the fluid inclusions, we suggest that the protolith of the garnet pyroxenite from Raobazhai formed in an enriched mantle fragment, which has been exposed to the surface prior to the Triassic metamorphism.  相似文献   

15.
Petrology of high-pressure granulites from the eastern Himalayan syntaxis   总被引:36,自引:0,他引:36  
The eastern Himalayan syntaxis, situated at the eastern terminus of the Himalayas, is the least-known segment of the Himalayas. Recent research in this area has revealed that the syntaxis consists of the Gangdise, the Yarlung Zangbo, and the Himalayan units, each of which is bounded by faults. The Himalayan unit, the northernmost exposed part of the Indian plate, mainly contains amphibolite facies rocks, marked by the assemblages staurolite+kyanite+plagioclase+biotite+muscovite±sillimanite and garnet+amphibole+plagioclase, in the south; to the north, low- to medium-pressure granulite grade pelitic gneisses and marbles are present and are characterized by the assemblages garnet+sillimanite+K-feldspar+plagioclase or antiperthite+biotite+quartz±spinel±cordierite±orthopyroxene in gneisses, and anorthite+diopside±wollastonite and plagioclase+diopside+quartz+phlogopite+calcite in marbles. Within this unit, the Namula thrust system is a series of moderately north-dipping structures that displaced the granulite facies rocks southwards over the amphibolite facies rocks. High-pressure granulites occur as relics within these granulite facies rocks and contain garnet–kyanite granulite and garnet clinopyroxenite. The peak assemblage of the garnet–kyanite granulite includes garnet (core part)+kyanite+ternary feldspar+quartz+rutile. Sillimanite+garnet (rim part)+K-feldspar+ oligoclase+ilmenite+biotite and spinel+albite+biotite or spinel+cordierite±orthopyroxene, which are coronas around sillimanite and garnet, are retrograde products of this peak assemblage. Another peak assemblage includes very-high-Ca garnet (CaO 32–34 wt%, Alm10±Grs>80) and diopside (CaO 22–24 wt%), scapolite, meionite, quartz, and accessory Al-bearing titanite (Al2O3 4–4.5 wt%). The diopside has kink bands. Partial or complete breakdown of Ca-rich garnet during post-peak metamorphism produced pseudomorphs and coronas consisting of fine-grained symplectic intergrowths of hedenbergite and anorthite. Thermobarometric estimates in combination with reaction textures, mineral compositions, and recent experimental studies indicate that these peak assemblages were formed at P=c. 1.7–1.8 GPa, T =c. 890 °C, and the retrograde assemblages experienced near-isothermal decompression to P=0.5±0.1 GPa, T =850±50 °C. The whole-rock compositions indicate that marble and pelite are plausible candidates for the protoliths. These facts suggest the following (1) sedimentary rocks were transported to upper-mantle depths and equilibrated at those conditions to form these high-pressure granulites, which were then emplaced into the crust quickly. During the rapid exhumation of these rocks, the earlier high-pressure assemblages were overprinted by the later low- to medium-pressure assemblages, that is, the high-pressure granulite belt formed in the syntaxis. (2) The Namula thrust system is an important tectonic boundary in the syntaxis, or even in the Higher Himalaya more generally.  相似文献   

16.
The Mt. Emilius klippe (Western Alps, Italy) corresponds to a segment of the stretched Adriatic continental margin metamorphosed at granulite facies during Permian. This slice was subducted during the early Cenozoic Alpine subduction with the underlying eclogite facies remnants of the Tethyan seafloor (Zermatt‐Saas zone). Near the base of the Mt. Emilius massif, there is a shear zone with eclogite facies hydrofracture systems associated with deformation‐induced re‐equilibration of granulites during high‐P metamorphism. In the basal part of the massif, a pluri‐hectometre domain of sheared mafic boudins is hosted in the granulitic paragneiss. In these mafic boudins, there are garnetites, garnet veins and clinopyroxenites, as well as clinozoisite and calcite veins. These features record multiple events of fracture opening, brecciation, boudinage and parallelization of structures coevally with fluid–rock interaction, metasomatism and volume change. This integrated petrological, micro‐textural and geochemical investigation illustrates the multiplicity and the chemical variability of fluid sources during prograde to peak metamorphic evolution in the lawsonite–eclogite‐facies field (at ~2.15–2.4 GPa, 500–550 °C) during subduction of the Mt. Emilius slice. The calcite veins crosscutting the garnetites have relatively low δ18OVSMOW values (+6.5‰) near those for marble layers (and nearby calcsilicates) embedded within the metasomatized granulites (+8 to +10‰). It is proposed that infiltration of externally‐derived H2O‐rich fluids derived from the plate interface flushed the marbles, promoting decarbonation followed by short‐distance transport and re‐precipitation along garnetite fractures. This study highlights the importance of inherited structural heterogeneities (such as mafic bodies or sills) in localizing deformation, draining fluids from the downgoing plate and creating long‐lasting mechanical instabilities during subduction zone deformation.  相似文献   

17.
The in situ electrical conductivity of hydrous garnet samples (Py20Alm76Grs4–Py73Alm14Grs13) was determined at pressures of 1.0–4.0 GPa and temperatures of 873–1273 K in the YJ-3000t apparatus using a Solartron-1260 impedance/gain-phase analyzer for various chemical compositions and oxygen fugacities. The oxygen fugacity was controlled by five solid-state oxygen buffers (Fe2O3 + Fe3O4, Ni + NiO, Fe + Fe3O4, Fe + FeO, and Mo + MoO2). Experimental results indicate that within a frequency range from 10−2 to 106 Hz, electrical conductivity is strongly dependent on signal frequency. Electrical conductivity shows an Arrhenius increase with temperature. At 2.0 GPa, the electrical conductivity of anhydrous garnet single crystals with various chemical compositions (Py20Alm76Grs4, Py30Alm67Grs3, Py56Alm43Grs1, and Py73Alm14Grs13) decreases with increasing pyrope component (Py). With increasing oxygen fugacity, the electrical conductivity of dry Py73Alm14Grs13 garnet single crystal shows an increase, whereas that of a hydrous sample with 465 ppm water shows a decrease, both following a power law (exponents of 0.061 and −0.071, respectively). With increasing pressure, the electrical conductivity of this hydrous garnet increases, along with the pre-exponential factors, and the activation energy and activation volume of hydrous samples are 0.7731 ± 0.0041 eV and −1.4 ± 0.15 cm3/mol, respectively. The results show that small hopping polarons ( \textFe\textMg · ) \left( {{\text{Fe}}_{\text{Mg}}^{ \cdot } } \right) and protons ( \textH · {\text{H}}^{ \cdot } ) are the dominant conduction mechanisms for dry and wet garnet single crystals, respectively. Based on these results and the effective medium theory, we established the electrical conductivity of an eclogite model with different mineral contents at high temperatures and high pressures, thereby providing constraints on the inversion of field magnetotelluric sounding results in future studies.  相似文献   

18.
Near the village of Engeln, Laacher See area, garnet-bearing pyriclasite and pyribolite ejecta were recognized as constituents of alkaline basaltic tuffs; they are interpreted as fragments of the lowermost crust. During the first main stage of granulite facies metamorphism, assemblages with garnet (Alm47Pyr34Spess2Gross + Andr17), clinopyroxene (Wo37En35Fs15Ts8.5Jd4.5), orthopyroxene I (En34Fs38Ts4Jd2), and plagioclase I (An40-An60) were formed in a temperature range of 730–850°C and rock pressures somewhere between 6.5 and 12 kb, Ptot >PH2O > 0. The rare sulfate-rich meionite, and at least a part of the ubiquitous brown hornblende were presumably also formed during this stage. A retrograde metamorphic event under slightly lower pressures and temperatures led to the breakdown of the assemblage garnet + clinopyroxene thereby forming coronas of plagioclase II (An75) + orthopyroxene II + Ti-magnetite ± brown hornblende.  相似文献   

19.
Granulite facies anorthosites on Holsenøy Island in the Bergen Arcs region of western Norway are transected by shear zones 0.1–100 m wide characterized by eclogite facies assemblages. Eclogite formation is related to influx of fluid along the shears at temperatures of c. 700d?C and pressures in excess of 1.7 GPa. Combined carbon and nitrogen stable isotope, 40Ar/36Ar, trace-element and petrological data have been used to determine the nature and distribution of fluids across the anorthosite-eclogite transition. A metre-wide drilled section traverses the eclogitic centre of the shear into undeformed granulite facies garnet-clinopyroxene anorthosite. Clinozoisite occurs along grain boundaries and microcracks in undeformed anorthosite up to 1 m from the centre of the shear and clinozoisite increases in abundance as the edge of the shear zone is approached. The eclogite-granulite transition, marked by the appearance of sodic pyroxene and loss of albite, occurs within the most highly sheared section of the traverse. The jadeite-in reaction coincides with increased paragonite activity in mica. The separation between paragonite and clinozoisite reaction fronts can be semiquantitatively modelled assuming advective fluid flow perpendicular to the shear zone. The inner section of the traverse (0.25 m wide) is marked by retrogressive replacement of omphacite by plagioclase + paragonite accompanied by veins of quartz-phengite-plagioclase. C-N-Ar characteristics of fluid inclusions in garnet show that fluids associated with precursor granulite, eclogite and retrogressed eclogite are isotopically distinct. The granulite-eclogite transition coincides with a marked change in CO2 abundance and δ13C (<36ppm, δ13C=-2% in the granulite; <180 ppm, δ13C=-10% in the eclogite). The distribution of Ar indicates mixing between influxed fluid (40Ar/36Ar > 25 times 103) and pre-existing Ar in the granulite (40Ar/36Ar < 8 times 103). δ15N values decrease from +6% in the anorthosite to +3% within the eclogite shear. The central zone of retrogressed eclogite post-dates shearing and is characterised by substantial enrichment of Si, K, Ba and Rb. Fluids are CO2-rich (δ13C ~ -5%) with variable N2 and Ar abundances and isotopic compositions. Both Ar and H2O have penetrated the underformed granulite fabric more than 0.5m beyond the granulite/eclogite transition during eclogite formation. Argon isotopes show a mixing profile consistent with diffusion through an interconnecting H2O-rich fluid network. In contrast, a carbon-isotope front coincides with the deformation boundary layer, indicating that the underformed anorthosite was impervious to CO2-rich fluids. This is consistent with the high dihedral angle of carbonic fluids, and may be interpreted in terms of evolving fluid compositions within the shear zone.  相似文献   

20.
Eclogite facies metamorphic rocks have been discovered from the Bizan area of eastern Shikoku, Sambagawa metamorphic belt. The eclogitic jadeite–garnet glaucophane schists occur as lenticular or sheet‐like bodies in the pelitic schist matrix, with the peak mineral assemblage of garnet + glaucophane + jadeite + phengite + quartz. The jadeitic clinopyroxene (XJd 0.46–0.75) is found exclusively as inclusions in porphyroblastic garnet. The eclogite metamorphism is characterized by prograde development from epidote–blueschist to eclogite facies. Metamorphic P–T conditions estimated using pseudosection modelling are 580–600 °C and 18–20 kbar for eclogite facies. Compared with common mafic eclogites, the jadeite–garnet glaucophane schists have low CaO (4.4–4.5 wt%) and MgO (2.1–2.3 wt%) bulk‐rock compositions. The P–T– pseudosections show that low XCa bulk‐rock compositions favour the appearance of jadeite instead of omphacite under eclogite facies conditions. This is a unique example of low XCa bulk‐rock composition triggered to form jadeite at eclogite facies conditions. Two significant types of eclogitic metamorphism have been distinguished in the Sambagawa metamorphic belt, that is, a low‐T type and subsequent high‐T type eclogitic metamorphic events. The jadeite–garnet glaucophane schists experienced low‐T type eclogite facies metamorphism, and the P–T path is similar to lawsonite‐bearing eclogites recently reported from the Kotsu area in eastern Shikoku. During subduction of the oceanic plate (Izanagi plate), the hangingwall cooled gradually, and the geothermal gradient along the subduction zone progressively decreased and formed low‐T type eclogitic metamorphic rocks. A subsequent warm subduction event associated with an approaching spreading ridge caused the high‐T type eclogitic metamorphism within a single subduction zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号