首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The Earth’s uppermost asthenosphere is generally associated with low seismic wave velocity and high electrical conductivity. The electrical conductivity anomalies observed from magnetotelluric studies have been attributed to the hydration of mantle minerals, traces of carbonatite melt, or silicate melts. We report the electrical conductivity of both H2O-bearing (0–6 wt% H2O) and CO2-bearing (0.5 wt% CO2) basaltic melts at 2 GPa and 1,473–1,923 K measured using impedance spectroscopy in a piston-cylinder apparatus. CO2 hardly affects conductivity at such a concentration level. The effect of water on the conductivity of basaltic melt is markedly larger than inferred from previous measurements on silicate melts of different composition. The conductivity of basaltic melts with more than 6 wt% of water approaches the values for carbonatites. Our data are reproduced within a factor of 1.1 by the equation log σ = 2.172 − (860.82 − 204.46 w 0.5)/(T − 1146.8), where σ is the electrical conductivity in S/m, T is the temperature in K, and w is the H2O content in wt%. We show that in a mantle with 125 ppm water and for a bulk water partition coefficient of 0.006 between minerals and melt, 2 vol% of melt will account for the observed electrical conductivity in the seismic low-velocity zone. However, for plausible higher water contents, stronger water partitioning into the melt or melt segregation in tube-like structures, even less than 1 vol% of hydrous melt, may be sufficient to produce the observed conductivity. We also show that ~1 vol% of hydrous melts are likely to be stable in the low-velocity zone, if the uncertainties in mantle water contents, in water partition coefficients, and in the effect of water on the melting point of peridotite are properly considered.  相似文献   

2.
 Diffusion rates for sulfur in rhyolite melt have been measured at temperatures of 800–1100° C, water contents of 0–7.3 wt%, and oxygen fugacities from the quartz-fayalite-magnetite buffer to air. Experiments involved dissolution of anhydrite or pyrrhotite into rhyolite melt over time scales of hours to days. Electron microprobe analysis was used to measure sulfur concentration profiles in the quenched glasses. Regression of the diffusion data in dry rhyolite melt gives Dsulfur=0.05·exp{−221±80RT}, which is one to two orders of magnitude slower than diffusion of other common magmatic volatiles such as H2O, CO2 and Cl-. Diffusion of sulfur in melt with 7 wt% dissolved water is 1.5 to 2 orders of magnitude faster than diffusion in the anhydrous melt, depending on temperature. Sulfur is known to dissolve in silicate melts as at least two different species, S2− and S6+, the proportions of which vary with oxygen fugacity; despite this, oxygen fugacity does not appear to affect sulfur diffusivity except under extremely oxidizing conditions. This result suggests that diffusion of sulfur is controlled by one species over a large range in oxygen fugacity. The most likely candidate for the diffusing species is the sulfide ion, S2−. Re-equilibration between S2− and S6+ in oxidized melts must generally be slow compared to S2− diffusion in order to explain the observed results. In a silicic melt undergoing degassing, sulfur will tend to be fractionated from other volatile species which diffuse more rapidly. This is consistent with analyses of tephra from the 1991 eruption of Mount Pinatubo, Philippines, and from other high-silica volcanic eruptions. Received: 26 April 1995 / Accepted: 1 November 1995  相似文献   

3.
An experimental study has been carried out to determine the partition coefficients of tungsten between aqueous fluids and granitic melts at 800 °C and 1.5 kb with natural granite as the starting material. The effects of the solutions on the partition coefficients of tungsten show a sequence of P > CO 3 2− > B > H2O. The effects are limited (generallyK D < 0.3) and the tungsten shows a preferential trend toward the melt over the aqueous fluid. The value ofK D increases with increasing concentration of phosphorus; theK D increases first and then reduces with the concentration of CO 3 2− when temperature decreases, theK D between the solution of CO 3 2− and the silicate melt increases, and that between the solution of B4O 7 2− and the silicate melt decreases. The partition coefficients of phosphorus and sodium between fluids and silicate melts have been calculated from the concentrations of the elements in the melts. TheK D value for phosphorus is 0.38 and that for sodium is 0.56. Evidence shows that the elements tend to become richer and richer in the melts.  相似文献   

4.
To interpret the degassing of F-bearing felsic magmas, the solubilities of H2O, NaCl, and KCl in topaz rhyolite liquids have been investigated experimentally at 2000, 500, and ≈1 bar and 700° to 975 °C. Chloride solubility in these liquids increases with decreasing H2O activity, increasing pressure, increasing F content of the liquid from 0.2 to 1.2 wt% F, and increasing the molar ratio of ((Al + Na + Ca + Mg)/Si). Small quantities of Cl exert a strong influence on the exsolution of magmatic volatile phases (MVPs) from F-bearing topaz rhyolite melts at shallow crustal pressures. Water- and chloride-bearing volatile phases, such as vapor, brine, or fluid, exsolve from F-enriched silicate liquids containing as little as 1 wt% H2O and 0.2 to 0.6 wt% Cl at 2000 bar compared with 5 to 6 wt% H2O required for volatile phase exsolution in chloride-free liquids. The maximum solubility of Cl in H2O-poor silicate liquids at 500 and 2000 bar is not related to the maximum solubility of H2O in chloride-poor liquids by simple linear and negative relationships; there are strong positive deviations from ideality in the activities of each volatile in both the silicate liquid and the MVP(s). Plots of H2O versus Cl in rhyolite liquids, for experiments conducted at 500 bar and 910°–930 °C, show a distinct 90° break-in-slope pattern that is indicative of coexisting vapor and brine under closed-system conditions. The presence of two MVPs buffers the H2O and Cl concentrations of the silicate liquids. Comparison of these experimentally-determined volatile solubilities with the pre-eruptive H2O and Cl concentrations of five North American topaz and tin rhyolite melts, determined from melt inclusion compositions, provides evidence for the exsolution of MVPs from felsic magmas. One of these, the Cerro el Lobo magma, appears to have exsolved alkali chloride-bearing vapor plus brine or a single supercritical fluid phase prior to entrapment of the melt inclusions and prior to eruption. Received: 6 November 1995 / Accepted: 29 January 1998  相似文献   

5.
Near-liquidus crystallization experiments have been carried out on two basalts (12.5 and 7.8 wt% MgO) from Soufriere, St Vincent (Lesser Antilles arc) to document the early stages of differentiation in calc-alkaline magmas. The water-undersaturated experiments were performed mostly at 4 kbar, with 1.6 to 7.7 wt% H2O in the melt, and under oxidizing conditions (ΔNNO = −0.8 to +2.4). A few 10 kbar experiments were also performed. Early differentiation of primitive, hydrous, high-magnesia basalts (HMB) is controlled by ol + cpx + sp fractionation. Residual melts of typical high-alumina basalt (HAB) composition are obtained after 30–40% crystallization. The role of H2O in depressing plagioclase crystallization leads to a direct relation between the Al2O3 content of the residual melt and its H2O concentration, calibrated as a geohygrometer. The most primitive phenocryst assemblage in the Soufriere suite (Fo89.6 olivine, Mg-, Al- and Ti-rich clinopyroxene, Cr–Al spinel) crystallized from near-primary (Mg# = 73.5), hydrous (∼5 wt% H2O) and very oxidized (ΔNNO = +1.5–2.0) HMB liquids at middle crustal pressures and temperatures from ∼1,160 to ∼1,060°C. Hornblende played no role in the early petrogenetic evolution. Derivative HAB melts may contain up to 7–8 wt% dissolved H2O. Primitive basaltic liquids at Soufriere, St Vincent, have a wide range of H2O concentrations (2–5 wt%).  相似文献   

6.
Fluorine-, boron- and phosphorus-rich pegmatites of the Variscan Ehrenfriedersdorf complex crystallized over a temperature range from about 700 to 500 °C at a pressure of about 1 kbar. Pegmatite quartz crystals continuously trapped two different types of melt inclusions during cooling and growth: a silicate-rich H2O-poor melt and a silicate-poor H2O-rich melt. Both melts were simultaneously trapped on the solvus boundaries of the silicate (+ fluorine + boron + phosphorus) − water system. The partially crystallized melt inclusions were rehomogenized at 1 kbar between 500 and 712 °C in steps of 50 °C by conventional rapid-quench hydrothermal experiments. Glasses of completely rehomogenized inclusions were analyzed for H2O by Raman spectroscopy, and for major and some trace elements by EMP (electron microprobe). Both types of melt inclusions define a solvus boundary in an XH2O–T pseudobinary system. At 500 °C, the silicate-rich melt contains about 2.5 wt% H2O, and the conjugate water-rich melt about 47 wt% H2O. The solvus closes rapidly with increasing temperature. At 650 °C, the water contents are about 10 and 32 wt%, respectively. Complete miscibility is attained at the critical point: 712 °C and 21.5 wt% H2O. Many pegmatites show high concentrations of F, B, and P, this is particularly true for those pegmatites associated with highly evolved peraluminous granites. The presence of these elements dramatically reduces the critical pressure for fluid–melt systems. At shallow intrusion levels, at T ≥ 720 °C, water is infinitely soluble in a F-, B-, and P-rich melt. Simple cooling induces a separation into two coexisting melts, accompanied with strong element fractionation. On the water-rich side of the solvus, very volatile-rich melts are produced that have vastly different physical properties as compared to “normal” silicate melts. The density, viscosity, diffusivity, and mobility of such hyper-aqueous melts under these conditions are more comparable to an aqueous fluid. Received: 15 September 1999 / Accepted: 10 December 1999  相似文献   

7.
Primitive chemical characteristics of high-Mg andesites (HMA) suggest equilibration with mantle wedge peridotite, and they may form through either shallow, wet partial melting of the mantle or re-equilibration of slab melts migrating through the wedge. We have re-examined a well-studied example of HMA from near Mt. Shasta, CA, because petrographic evidence for magma mixing has stimulated a recent debate over whether HMA magmas have a mantle origin. We examined naturally quenched, glassy, olivine-hosted (Fo87–94) melt inclusions from this locality and analyzed the samples by FTIR, LA-ICPMS, and electron probe. Compositions (uncorrected for post-entrapment modification) are highly variable and can be divided into high-CaO (>10 wt%) melts only found in Fo > 91 olivines and low-CaO (<10 wt%) melts in Fo 87–94 olivine hosts. There is evidence for extensive post-entrapment modification in many inclusions. High-CaO inclusions experienced 1.4–3.5 wt% FeOT loss through diffusive re-equilibration with the host olivine and 13–28 wt% post-entrapment olivine crystallization. Low-CaO inclusions experienced 1–16 wt% olivine crystallization with <2 wt% FeOT loss experienced by inclusions in Fo > 90 olivines. Restored low-CaO melt inclusions are HMAs (57–61 wt% SiO2; 4.9–10.9 wt% MgO), whereas high-CaO inclusions are primitive basaltic andesites (PBA) (51–56 wt% SiO2; 9.8–15.1 wt% MgO). HMA and PBA inclusions have distinct trace element characteristics. Importantly, both types of inclusions are volatile-rich, with maximum values in HMA and PBA melt inclusions of 3.5 and 5.6 wt% H2O, 830 and 2,900 ppm S, 1,590 and 2,580 ppm Cl, and 500 and 820 ppm CO2, respectively. PBA melts are comparable to experimental hydrous melts in equilibrium with harzburgite. Two-component mixing between PBA and dacitic magma (59:41) is able to produce a primitive HMA composition, but the predicted mixture shows some small but significant major and trace element discrepancies from published whole-rock analyses from the Shasta locality. An alternative model that involves incorporation of xenocrysts (high-Mg olivine from PBA and pyroxenes from dacite) into a primary (mantle-derived) HMA magma can explain the phenocryst and melt inclusion compositions but is difficult to evaluate quantitatively because of the complex crystal populations. Our results suggest that a spectrum of mantle-derived melts, including both PBA and HMA, may be produced beneath the Shasta region. Compositional similarities between Shasta parental melts and boninites imply similar magma generation processes related to the presence of refractory harzburgite in the shallow mantle.  相似文献   

8.
We have mapped the mineralogy onto the H2O-undersaturated liquidus surface of basaltic andesite from North Sister Volcano to constrain the crystalline assemblage with which, and PT–H2O conditions at which, the melt last equilibrated before erupting. Combining our high pressure experimental results with examples of tectonically exposed lower arc crust, geophysical constraints, trace element geochemistry, and melt inclusion volatile contents, we conclude that an anhydrous, augite-rich gabbro at ∼12 kbar and ∼1,175°C is the most probable lithology with which North Sister basaltic andesite with ∼3.5 wt% H2O last equilibrated before erupting. We speculate that reaction between this gabbro and primitive mantle-derived precursor melts buffered the compositions of magmas erupted from this volcano resulting in their remarkably limited compositional range.  相似文献   

9.
Liquidus phase relationships have been determined for a high-MgO basalt (STV301: MgO=12.5 wt%, Ni=250 ppm, Cr=728 ppm) from Black Point, St Vincent (Lesser Antilles arc). Piston-cylinder experiments were conducted between 7.5 and 20 kbar under both hydrous and oxidizing conditions. AuPd capsules were used as containers. Compositions of supraliquidus glasses and mass-balance calculations show that Fe loss is < 10% in the majority of experiments. Two series of water concentrations in melt were investigated: (i) 1.5 wt% and (ii) 4.5 wt% H2O, as determined by SIMS analyses on quenched glasses and with the by difference technique. The Fe3+/Fe2+ partitioning between Cr-Al spinel and melt and olivine-spinel equilibria show that oxidizing fO2 were imposed (NNO + 1.5 for the 1.5 wt% H2O series, NNO + 2.3 for the 4.5 wt% H2O series). For both series of water concentrations, the liquid is multiply-saturated with a spinel lherzolite phase assemblage on its liquidus, at 1235°C, 11.5 kbar (1.5 wt% H2O) and 1185°C, 16 kbar (4.5 wt% H2O). Liquidus phases are homogeneous and comparable to typical mantle compositions. Mineral-melt partition coefficients are generally identical to values under anhydrous conditions. The modal proportion cpx/opx on the liquidus decreases from the 1.5 wt% to the 4.5 wt% H2O series. The experimental data are consistent with STV301 being a product of partial melting of lherzolitic mantle. Conditions of multiple saturation progressively evolve toward lower temperatures and higher pressures with increasing melt H2O concentration. Phase equilibria constraints, i.e., the necessity of preserving the mantle signature seen in high-MgO and picritic arc basalts, and glass inclusion data suggest that STV301 was extracted relatively dry (∼ 2 wt% H2O) from its mantle source. However, not all primary arc basalts are extracted under similarly dry conditions because more hydrous melts will crystallize during ascent and will not be present unmodified at the surface. From degrees of melting calculated from experiments on KLB-1, extraction of a 12.5 wt% MgO melt with ∼ 2 wt% H2O would require a H2O concentration of 0.3 wt% in the sub-arc mantle. For mantle sources fluxed with a slab-derived hydrous component, extracted melts may contain up to ∼ 5.5 wt% H2O.  相似文献   

10.
We investigate the inclusions hosted in peritectic garnet from metapelitic migmatites of the Kinzigite Formation (Ivrea Zone, NW Italy) to evaluate the starting composition of the anatectic melt and fluid regime during anatexis throughout the upper amphibolite facies, transition, and granulite facies zones. Inclusions have negative crystal shapes, sizes from 2 to 10 μm and are regularly distributed in the core of the garnet. Microstructural and micro‐Raman investigations indicate the presence of two types of inclusions: crystallized silicate melt inclusions (i.e., nanogranitoids, NI), and fluid inclusions (FI). Microstructural evidence suggests that FI and NI coexist in the same cluster and are primary (i.e., were trapped simultaneously during garnet growth). FI have similar compositions in the three zones and comprise variable proportions of CO2, CH4, and N2, commonly with siderite, pyrophyllite, and kaolinite, suggesting a COHN composition of the trapped fluid. The mineral assemblage in the NI contains K‐feldspar, plagioclase, quartz, biotite, muscovite, chlorite, graphite and, rarely, calcite. Polymorphs such as kumdykolite, cristobalite, tridymite, and less commonly kokchetavite, were also found. Rehomogenized NI from the different zones show that all the melts are leucogranitic but have slightly different compositions. In samples from the upper amphibolite facies, melts are less mafic (FeO + MgO = 2.0–3.4 wt%), contain 860–1700 ppm CO2 and reach the highest H2O contents (6.5–10 wt%). In the transition zone melts have intermediate H2O (4.8–8.5 wt%), CO2 (457–1534 ppm) and maficity (FeO + MgO = 2.3–3.9 wt%). In contrast, melts at granulite facies reach highest CaO, FeO + MgO (3.2–4.7 wt%), and CO2 (up to 2,400 ppm), with H2O contents comparable (5.4–8.3 wt%) to the other two zones. Our results represent the first clear evidence for carbonic fluid‐present melting in the Ivrea Zone. Anatexis of metapelites occurred through muscovite and biotite breakdown melting in the presence of a COH fluid, in a situation of fluid–melt immiscibility. The fluid is assumed to have been internally derived, produced initially by devolatilization of hydrous silicates in the graphitic protolith, then as a result of oxidation of carbon by consumption of Fe3+‐bearing biotite during melting. Variations in the compositions of the melts are interpreted to result from higher T of melting. The H2O contents of the melts throughout the three zones are higher than usually assumed for initial H2O contents of anatectic melts. The CO2 contents are highest at granulite facies, and show that carbon‐contents of crustal magmas are not negligible at high T. The activity of H2O of the fluid dissolved in granitic melts decreases with increasing metamorphic grade. Carbonic fluid‐present melting of the deep continental crust represents, together with hydrate‐breakdown melting reactions, an important process in the origin of crustal anatectic granitoids.  相似文献   

11.
The behavior of tantalum and zirconium in pegmatitic systems has been investigated through the determination of Ta and Zr solubilities at manganotantalite and zircon saturation from dissolution and crystallization experiments in hydrous, Li-, F-, P- and B-bearing pegmatitic melts. The pegmatitic melts are synthetic and enriched in flux elements: 0.7–1.3 wt% Li2O, 2–5.5 wt% F, 2.8–4 wt% P2O5 and 0–2.8 wt% B2O3, and their aluminum saturation index ranges from peralkaline to peraluminous (ASILi = Al/[Na + K + Li] = 0.8 to 1.3) with various K/Na ratios. Dissolution and crystallization experiments were conducted at temperatures varying between 700 and 1,150°C, at 200 MPa and nearly water-saturated conditions. For dissolution experiments, pure synthetic, end member manganotantalite and zircon were used in order to avoid problems with slow solid-state kinetics, but additional experiments using natural manganotantalite and zircon of relatively pure composition (i.e., close to end member composition) displayed similar solubility results. Zircon and manganotantalite solubilities considerably increase from peraluminous to peralkaline compositions, and are more sensitive to changes in temperature or ASI of the melt than to flux content. A model relating the enthalpy of dissolution of manganotantalite to the ASILi of the melt is proposed: ∆H diss (kJ/mol) = 304 × ASILi − 176 in the peralkaline field, and ∆H diss (kJ/mol) = −111 × ASILi + 245 in the peraluminous field. The solubility data reveal a small but detectable competitivity between Zr and Ta in the melt, i.e., lower amounts of Zr are incorporated in a Ta-bearing melt compared to a Ta-free melt under the same conditions. A similar behavior is observed for Hf and Ta. The competitivity between Zr (or Hf) and Ta increases from peraluminous to peralkaline compositions, and suggests that Ta is preferentially bonded to non-bridging oxygens (NBOs) with Al as first-neighbors, whereas Zr is preferentially bonded to NBOs formed by excess alkalies. As a consequence Zr/Ta ratios, when buffered by zircon and manganotantalite simultaneously, are higher in peralkaline melts than in peraluminous melts.  相似文献   

12.
Near-infrared (NIR) absorption bands related to total water (4000 and 7050 cm−1), OH groups (4500 cm−1) and molecular H2O (5200 cm−1) were studied in two polymerised glasses, a synthetic albitic composition and a natural obsidian. The water contents of the glasses were determined using Karl Fischer titration. Molar absorption coefficients were calculated for each of the bands using albitic glasses containing between 0.54 and 9.16 wt.% H2O and rhyolitic glasses containing between 0.97 and 9.20 wt.% H2O. Different combinations of baseline type and intensity measure (peak height/area) for the combination bands at 4500 and 5200 cm−1 were used to investigate the effect of evaluation procedure on calculated hydrous species concentrations. Total water contents calculated using each of the baseline/molar absorption coefficient combinations agree to within 5.8% relative for rhyolitic and 6.5% relative for albitic glasses (maximum absolute differences of 0.08 and 0.15 wt.% H2O, respectively). In glasses with water contents >1 wt.%, calculated hydrous species concentrations vary by up to 17% relative for OH and 11% relative for H2O (maximum absolute differences of 0.33 and 0.43 wt.% H2O, respectively). This variation in calculated species concentrations is typically greater in rhyolitic glasses than albitic. In situ, micro-FTIR analysis at 300 and 100 K was used to investigate the effect of varying temperature on the NIR spectra of the glasses. The linear and integral molar absorption coefficients for each of the bands were recalculated from the 100 K spectra, and were found to vary systematically from the 300 K values. Linear molar absorption coefficients for the 4000 and 7050 cm−1 bands decrease by 16–20% and integral molar absorption coefficients by up to 30%. Depending on glass composition and baseline type, the integral molar absorption coefficients for the absorption bands related to OH groups and molecular H2O change by up to −5.8 and +7.4%, respectively, while linear molar absorption coefficients show less variation, with a maximum change of ∼4%. Using the new molar absorption coefficients for the combination bands to calculate species concentrations at 100 K, the maximum change in species concentration is 0.08 wt.% H2O, compared with 0.39 wt.% which would be calculated if constant values were assumed for the combination band molar absorption coefficients. Almost all the changes in the spectra can therefore be interpreted in terms of changing molar absorption coefficient, rather than interconversion between hydrous species. Received: 17 December 1998 / Revised, accepted 8 July 1999  相似文献   

13.
The solubility of sulphur in sulphide-saturated, H2O-bearing basaltic–andesitic and basaltic melts from Hekla volcano (Iceland) has been determined experimentally at 1,050°C, 300 and 200 MPa, and redox conditions with oxygen fugacity (logfO2) between QFM−1.2 and QFM+1.1 (QFM is a quartz–fayalite–magnetite oxygen buffer) in the systems containing various amounts of S and H2O. The S content of the H2O-rich glasses saturated with pyrrhotite decreases from 2,500 ppm in basalt to 1,500 ppm in basaltic andesite at the investigated conditions. Furthermore, the reduction of water content in the melt at pyrrhotite saturation and fixed T, P and redox conditions leads to a decrease in S concentration from 2,500 to 1,400 ppm for basaltic experiments (for H2O decrease from 7.8 to 1.4 wt%) and from 1,500 to 900 ppm (for H2O decrease from 6.7 to 1.7 wt%) for basaltic andesitic experiments. Our experimental data, combined with silicate melt inclusion investigations and the available models on sulphide saturation in mafic magmas, indicate that the parental basaltic melts of Hekla were not saturated with respect to sulphide. During magmatic differentiation, the S content in the residual melts increased and might have reached sulphide saturation with 2,500 ppm dissolved S. With further magma crystallization, the S concentration in the melt was controlled by the sulphide saturation of the magma, decreasing from ~2,500 to 900 ppm S.  相似文献   

14.
Experiments have been conducted in a peralkaline Ti-KNCMASH system representative of MARID-type bulk compositions to delimit the stability field of K-richterite in a Ti-rich hydrous mantle assemblage, to assess the compositional variation of amphibole and coexisting phases as a function of P and T, and to characterise the composition of partial melts derived from the hydrous assemblage. K-richterite is stable in experiments from 0.5 to 8.0 GPa coexisting with phlogopite, clinopyroxene and a Ti-phase (titanite, rutile or rutile + perovskite). At 8.0 GPa, garnet appears as an additional phase. The upper T stability limit of K-richterite is 1200–1250 °C at 4.0 GPa and 1300–1400 °C at 8.0 GPa. In the presence of phlogopite, K-richterite shows a systematic increase in K with increasing P to 1.03 pfu (per formula unit) at 8.0 GPa/1100 °C. In the absence of phlogopite, K-richterite attains a maximum of 1.14 K pfu at 8.0 GPa/1200 °C. Titanium in both amphibole and mica decreases continuously towards high P with a nearly constant partitioning while Ti in clinopyroxene remains more or less constant. In all experiments below 6.0 GPa ΣSi + Al in K-richterite is less than 8.0 when normalised to 23 oxygens+stoichiometric OH. Rutiles in the Ti-KNCMASH system are characterised by minor Al and Mg contents that show a systematic variation in concentration with P(T) and the coexisting assemblage. Partial melts produced in the Ti-KNCMASH system are extremely peralkaline [(K2O+Na2O)/Al2O3 = 1.7–3.7], Si-poor (40–45 wt% SiO2), and Ti-rich (5.6–9.2 wt% TiO2) and are very similar to certain Ti-rich lamproite glasses. At 4.0 GPa, the solidus is thought to coincide with the K-richterite-out reaction, the first melt is saturated in a phlogopite-rutile-lherzolite assemblage. Both phlogopite and rutile disappear ca. 150 °C above the solidus. At 8.0 GPa, the solidus must be located at T≤1400 °C. At this temperature, a melt is in equilibrium with a garnet- rutile-lherzolite assemblage. As opposed to 4.0 GPa, phlogopite does not buffer the melt composition at 8.0 GPa. The experimental results suggest that partial melting of MARID-type assemblages at pressures ≥4.0 GPa can generate Si-poor and partly ultrapotassic melts similar in composition to that of olivine lamproites. Received: 23 December 1996 / Accepted: 20 March 1997  相似文献   

15.
Mineral inclusions in pyrope crystals from Garnet Ridge in the Navajo Volcanic Field on the Colorado Plateau are investigated in this study with emphasis on the oxide minerals. Each pyrope crystal is roughly uniform in composition except for diffusion halos surrounding some inclusions. The pyrope crystals have near constant Ca:Fe:Mg ratios, 0.3 to 5.7 wt% Cr2O3, and 20 to 220 ppm H2O. Thermobarometric calculations show that pyrope crystals with different Cr contents formed at different depths ranging from 50 km (where T ≈ 600 °C and P = 15 kbar) to 95 km (where T ≈ 800 °C and P = 30 kbar) along the local geotherm. In addition to previously reported inclusions of rutile, spinel and ilmenite, we discovered crichtonite series minerals (AM21O38, where A = Sr, Ca, Ba and LREE, and M mainly includes Ti, Cr, Fe and Zr), srilankite (ZrTi2O6), and a new oxide mineral, carmichaelite (MO2−x(OH)x, where M = Ti, Cr, Fe, Al and Mg). Relatively large rutile inclusions contain a significant Nb (up to 2.7 wt% Nb2O5), Cr (up to ∼6 wt% Cr2O3), and OH (up to ∼0.9 wt% H2O). The Cr and OH contents of rutile inclusions are positively related to those of pyrope hosts, respectively. Needle- and blade-like oxide inclusions are commonly preferentially oriented. Composite inclusions consisting mainly of carbonate, amphibole, phlogopite, chlorapatite, spinel and rutile are interpreted to have crystallized from trapped fluid/melt. These minerals in composite inclusions commonly occur at the boundaries between garnet host and large silicate inclusions of peridotitic origin, such as olivine, enstatite and diopside. The Ti-rich oxide minerals may constitute a potential repository for high field strength elements (HFSE), large ion lithophile elements and light rare earth elements (LREE) in the upper mantle. The composite and exotic oxide inclusions strongly suggest an episode of metasomatism in the depleted upper mantle beneath the Colorado Plateau, contemporaneous with the formation of pyrope crystals. Our observations show that mantle metasomatism may deplete HFSE in metasomatic fluids/melts. Such fluids/melts may subsequently contribute substantial trace elements to island arc basalts, providing a possible mechanism for HFSE depletion in these rocks. Received: 20 December 1997 / Accepted: 15 October 1998  相似文献   

16.
Phase relations of basalts from the Kerguelen large igneous province have been investigated experimentally to understand the effect of temperature, fO2, and fugacity of volatiles (e.g., H2O and CO2) on the differentiation path of LIP basalts. The starting rock samples were a tholeiitic basalt from the Northern Kerguelen Plateau (ODP Leg 183 Site 1140) and mildly alkalic basalt evolved from the Kerguelen Archipelago (Mt. Crozier on the Courbet Peninsula), representing different differentiation stages of basalts related to the Kerguelen mantle plume. The influence of temperature, water and oxygen fugacity on phase stability and composition was investigated at 500 MPa and all experiments were fluid-saturated. Crystallization experiments were performed at temperatures between 900 and 1,160°C under oxidizing (log fO2 ~ ΔQFM + 4) and reducing conditions (log fO2 ~ QFM) in an internally heated gas-pressure vessel equipped with a rapid quench device and a Pt-Membrane for monitoring the fH2. In all experiments, a significant influence of the fO2 on the composition and stability of the Mg/Fe-bearing mineral phases could be observed. Under reducing conditions, the residual melts follow a tholeiitic differentiation trend. In contrast, melts have high Mg# [Mg2+/(Mg2+ + Fe2+)] and follow a calk-alkalic differentiation trend at oxidizing conditions. The comparison of the natural phenocryst assemblages with the experimental products allows us to constrain the differentiation and pre-eruptive conditions of these magmas. The pre-eruptive temperature of the alkalic basalt was about 950–1,050°C. The water content of the melt was below 2.5 wt% H2O and strongly oxidizing conditions (log fO2 ~ ΔQFM + 2) were prevailing in the magma chamber prior to eruption. The temperature of the tholeiitic melt was above 1,060°C, with a water content below 2 wt% H2O and a log fO2 ~ ΔQFM + 1. Early fractionation of clinopyroxene is a crucial step resulting in the generation of silica-poor and alkali-rich residual melts (e.g., alkali basalt). The enrichment of alkalis in residual melts is enhanced at high fO2 and low aH2O.  相似文献   

17.
In volatile-saturated magmas, degassing and crystallisation are interrelated processes which influence the eruption style. Melt inclusions provide critical information on volatile and melt evolution, but this information can be compromised significantly by post-entrapment modification of the inclusions. We assess the reliability and significance of pyroxene-hosted melt inclusion analyses to document the volatile contents (particularly H2O) and evolution of intermediate arc magmas at Volcán de Colima, Mexico. The melt inclusions have maximal H2O contents (≤4 wt%) consistent with petrological estimates and the constraint that the magmas crystallised outside the amphibole stability field, demonstrating that pyroxene-hosted melt inclusions can preserve H2O contents close to their entrapment values even in effusive eruptions with low effusion rates (0.6 m3 s?1). The absence of noticeable H2O loss in some of the inclusions requires post-entrapment diffusion coefficients (≤1 × 10?13 m2 s?1) at least several order of magnitude smaller than experimentally determined H+ diffusion coefficient in pyroxenes. The H2O content distribution is, however, not uniform, and several peaks in the data, interpreted to result from diffusive H2O reequilibration, are observed around 1 and 0.2 wt%. H2O diffusive loss is also consistent with the manifest lack of correlations between H2O and CO2 or S contents. The absence of textural evidence supporting post-entrapment H2O loss suggests that diffusion most likely occurred via melt channels prior to sealing of the inclusions, rather than through the host crystals. Good correlation between the melt inclusion sealing and volcano-tectonic seismic swarm depths further indicate that, taken as a whole, the melt inclusion population accurately records the pre-eruptive conditions of the magmatic system. Our data demonstrate that H2O diffusive loss is a second-order process and that pyroxene-hosted melt inclusions can effectively record the volatile contents and decompression-induced crystallisation paths of vapour-saturated magmas.  相似文献   

18.
The behaviour of niobium and tantalum in magmatic processes has been investigated by conducting MnNb2O6 and MnTa2O6 solubility experiments in nominally dry to water-saturated peralkaline (aluminium saturation index, A.S.I. 0.64) to peraluminous (A.S.I. 1.22) granitic melts at 800 to 1035 °C and 800 to 5000 bars. The attainment of equilibrium is demonstrated by the concurrence of the solubility products from dissolution, crystallization, Mn-doped and Nb- or Ta-doped experiments at the same pressure and temperature. The solubility products of MnNb2O6 (Ksp Nb) and MnTa2O6 (Ksp Ta) at 800 °C and 2 kbar both increase dramatically with alkali contents in water-saturated peralkaline melts. They range from 1.2 × 10−4 and 2.6 × 10−4 mol2/kg2, respectively, in subaluminous melt (A.S.I. 1.02) to 202 × 10−4 and 255 × 10−4 mol2/kg2, respectively, in peralkaline melt (A.S.I. 0.64). This increase from the subaluminous composition can be explained by five non-bridging oxygens being required for each excess atom of Nb5+ or Ta5+ that is dissolved into the melt. The Ksp Nb and Ksp Ta also increase weakly with Al content in peraluminous melts, ranging up to 1.7 × 10−4 and 4.6 × 10−4 mol2/kg2, respectively, in the A.S.I. 1.22 composition. Columbite-tantalite solubilities in subaluminous and peraluminous melts (A.S.I. 1.02 and 1.22) are strongly temperature dependent, increasing by a factor of 10 to 20 from 800 to 1035 °C. By contrast columbite-tantalite solubility in the peralkaline composition (A.S.I. 0.64) is only weakly temperature dependent, increasing by a factor of less than 3 over the same temperature range. Similarly, Ksp Nb and Ksp Ta increase by more than two orders of magnitude with the first 3 wt% H2O added to the A.S.I. 1.02 and 1.22 compositions, whereas there is no detectable change in solubility for the A.S.I. 0.64 composition over the same range of water contents. Solubilities are only slightly dependent on pressure over the range 800 to 5000 bars. The data for water-saturated sub- and peraluminous granites have been extrapolated to 600 °C, conditions at which pegmatites and highly evolved granites may crystallize. Using a melt concentration of 0.05 wt% MnO, 70 to 100 ppm Nb or 500 to 1400 ppm Ta are required for manganocolumbite and manganotantalite saturation, respectively. The solubility data are also used to model the fractionation of Nb and Ta between rutile and silicate melts. Predicted rutile/melt partition coefficients increase by about two orders of magnitude from peralkaline to peraluminous granitic compositions. It is demonstrated that the γNb2O5/γTa2O5 activity coefficient ratio in the melt phase depends on melt composition. This ratio is estimated to decrease by a factor of 4 to 5 from andesitic to peraluminous granitic melt compositions. Accordingly, all the relevant accessory phases in subaluminous to peraluminous granites are predicted to incorporate Nb preferentially over Ta. This explains the enrichment of Ta over Nb observed in highly fractionated granitic rocks, and in the continental crust in general. Received: 9 August 1996 / Accepted: 26 February 1997  相似文献   

19.
Diffusion of water was experimentally investigated for melts of albitic (Ab) and quartz-orthoclasic (Qz29Or71, in wt %) compositions with water contents in the range of 0 to 8.5 wt % at temperatures of 1100 to 1200 °C and at pressures of 1.0 and 5.0 kbar. Apparent chemical diffusion coefficients of water (D water) were determined from concentration-distance profiles measured by FTIR microspectroscopy. Under the same P-T condition and water content the diffusivity of water in albitic, quartz-orthoclasic and haplogranitic (Qz28Ab38 Or34, Nowak and Behrens, this issue) melts is identical within experimental error. Comparison to data published in literature indicates that anhydrous composition only has little influence on the mobility of water in polymerized melts but that the degree of polymerization has a large effect. For instance, Dwater is almost identical for haplogranitic and rhyolitic melts with 0.5–3.5 wt % water at 850 °C but it is two orders of magnitude higher in basaltic than in haplogranitic melts with 0.2–0.5 wt % water at 1300 °C. Based on the new water diffusivity data, recently published in situ near-infrared spectroscopic data (Nowak 1995; Nowak and Behrens 1995), and viscosity data (Schulze et al. 1996) for hydrous haplogranitic melts current models for water diffusion in silicate melts are critically reviewed. The NIR spectroscopy has indicated isolated OH groups, pairs of OH groups and H2O molecules as hydrous species in polymerized silicate melts. A significant contribution of isolated OH groups to the transport of water is excluded for water contents above 10 ppm by comparison of viscosity and water diffusion data and by inspection of concentration profiles from trace water diffusion. Spectroscopic measurements have indicated that the interconversion of H2O molecules and OH pairs is relatively fast in silicate glasses and melts even at low temperature and it is inferred that this reaction is an active step for migration of water. However, direct jumps of H2O molecules from one cavity within the silicate network to another one can not be excluded. Thus, we favour a model in which water migrates by the interconversion reaction and, possibly, small sequences of direct jumps of H2O molecules. In this model, immobilization of water results from dissociation of the OH pairs. Assuming that the frequency of the interconversion reaction is faster than that of diffusive jumps, OH pairs and water molecules can be treated as a single diffusing species having an effective diffusion coefficient . The shape of curves of Dwater versus water content implies that increases with water content. The change from linear to exponential dependence of Dwater between 2 and 3 wt % water is attributed to the influence of the dissociation reaction at low water content and to the modification of the melt structure by incorporation of OH groups. Received: 26 March 1996 / Accepted: 23 August 1996  相似文献   

20.
In order to shed light on upper crustal differentiation of mantle-derived basaltic magmas in a subduction zone setting, we have determined the mineral chemistry and oxygen and hydrogen isotope composition of individual cumulus minerals in plutonic blocks from St. Vincent, Lesser Antilles. Plutonic rock types display great variation in mineralogy, from olivine–gabbros to troctolites and hornblendites, with a corresponding variety of cumulate textures. Mineral compositions differ from those in erupted basaltic lavas from St. Vincent and in published high-pressure (4–10 kb) experimental run products of a St. Vincent high-Mg basalt in having higher An plagioclase coexisting with lower Fo olivine. The oxygen isotope compositions (δ18O) of cumulus olivine (4.89–5.18‰), plagioclase (5.84–6.28‰), clinopyroxene (5.17–5.47‰) and hornblende (5.48–5.61‰) and hydrogen isotope composition of hornblende (δD = −35.5 to −49.9‰) are all consistent with closed system magmatic differentiation of a mantle-derived basaltic melt. We employed a number of modelling exercises to constrain the origin of the chemical and isotopic compositions reported. δ18OOlivine is up to 0.2‰ higher than modelled values for closed system fractional crystallisation of a primary melt. We attribute this to isotopic disequilibria between cumulus minerals crystallising at different temperatures, with equilibration retarded by slow oxygen diffusion in olivine during prolonged crustal storage. We used melt inclusion and plagioclase compositions to determine parental magmatic water contents (water saturated, 4.6 ± 0.5 wt% H2O) and crystallisation pressures (173 ± 50 MPa). Applying these values to previously reported basaltic and basaltic andesite lava compositions, we can reproduce the cumulus plagioclase and olivine compositions and their associated trend. We conclude that differentiation of primitive hydrous basalts on St. Vincent involves crystallisation of olivine and Cr-rich spinel at depth within the crust, lowering MgO and Cr2O3 and raising Al2O3 and CaO of residual melt due to suppression of plagioclase. Low density, hydrous basaltic and basaltic andesite melts then ascend rapidly through the crust, stalling at shallow depth upon water saturation where crystallisation of the chemically distinct cumulus phases observed in this study can occur. Deposited crystals armour the shallow magma chamber where oxygen isotope equilibration between minerals is slowly approached, before remobilisation and entrainment by later injections of magma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号