首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A program for identifying magnetic clouds in patrol satellite data, which recorded the interplanetary medium parameters near the magnetosphere, has been developed based on the cloud model in the form of a force-free cylindrical flux tube. The program makes it possible to also determine the entire magnetic field distribution in a cloud that approaches the Earth, using the initial satellite measurements. For this purpose, a model cloud (which has the maximal correlation coefficient with an analyzed cloud with respect to three magnetic field vector components and minimal rms deviations of the magnetic field and velocity components) is selected from the preliminarily created database including 2 million model clouds. The obtained magnetic field distribution in a cloud will make it possible to predict the intensity of a magnetic storm that this cloud will cause.  相似文献   

2.
The topology and dynamics of the three-dimensional magnetic field in the solar atmosphere govern various solar eruptive phenomena and activities, such as flares, coronal mass ejections, and filaments/prominences. We have to observe and model the vector magnetic field to understand the structures and physical mechanisms of these solar activities. Vector magnetic fields on the photosphere are routinely observed via the polarized light, and inferred with the inversion of Stokes profiles. To analyze these vector magnetic fields, we need first to remove the 180° ambiguity of the transverse components and correct the projection effect. Then, the vector magnetic field can be served as the boundary conditions for a force-free field modeling after a proper preprocessing. The photospheric velocity field can also be derived from a time sequence of vector magnetic fields.Three-dimensional magnetic field could be derived and studied with theoretical force-free field models, numerical nonlinear force-free field models, magnetohydrostatic models, and magnetohydrodynamic models. Magnetic energy can be computed with three-dimensional magnetic field models or a time series of vector magnetic field. The magnetic topology is analyzed by pinpointing the positions of magnetic null points, bald patches, and quasi-separatrix layers. As a well conserved physical quantity,magnetic helicity can be computed with various methods, such as the finite volume method, discrete flux tube method, and helicity flux integration method. This quantity serves as a promising parameter characterizing the activity level of solar active regions.  相似文献   

3.
本文首先指出经典粘性理论应适用于扇形边界低速风,接着论证了常用太阳风粘性数学表式的不正确性,导出了螺旋磁场中径向球对称强磁化等离子体流动的各种经典粘性表式,并证明了这些公式的合理性;最后讨论了常用太阳风经典粘性表式出错原因,估计了具有正确粘性公式的扇形边界低速太阳风粘性模式应有的结果。  相似文献   

4.
本文讨论分层大气中孤立约束磁通量拱的二维静平衡位形.通量拱中的磁场初步假定为无力场,通过利用有限元计算方法,得到这个非线性自由边界问题的数值解.结果清楚地表明磁拱的内外场的耦合关系,并讨论了大气压力分布,尤其是大气标高对通量拱位形的影响.  相似文献   

5.
The structure, configuration, dynamics, and solar sources of the near-Earth MHD disturbance of the solar wind on November 20, 2003, is considered. The disturbances of October 24 and November 22 after flares from the same AR 10484 (10501) are compared. The velocity field in the leading part of the sporadic disturbance is for the first time studied in the coordinate system stationary relative to the bow shock. A possible scenario of the physical processes in the course of this solar-terrestrial storm is discussed in comparison with the previously developed scenario for the storm of July 15, 2000. It has been indicated that (1) the near-Earth disturbance was observed at the sector boundary (HCS) and in its vicinities and (2) the disturbance MHD structure included: the complicated bow shock, wide boundary layer with reconnecting fields at a transition from the shock to the magnetic cloud, magnetic cloud with a magnetic cavity including packed substance of an active filament, and return shock layer (supposedly). It has been found out that the shock front configuration and the velocity field are reproduced at an identical position of AR and HCS relative to the Earth on November 20 and 24. It has been indicated that the maximal magnetic induction in the cloud satisfied the condition B m = (8πn 1 m p)1/2(D ? NV1), i.e., depended on the dynamic impact on the cloud during all three storms [Ivanov et al., 1974]. When the disturbance was related to solar sources, the attention has been paid to the parallelism of the axes of symmetry of the active filament, transient coronal hole, coronal mass ejection, zero line of the open coronal field (HCS), and the axis of the near-Earth magnetic cloud: the regularity previously established in the scenario of the storm of July 15, 2000 [Ivanov et al., 2005]. It has been indicated that the extremely large B m value in the cloud of October 20 was caused by a strong suppression of the series of postflare shocks reflected from the heliospheric streamer.  相似文献   

6.
The difficulties associated with calculating the parameters of the interplanetary magnetic field (IMF) from solar magnetic data have been considered. All conventional calculation patterns and available input databases have been analyzed from a unified standpoint. It has been shown that these assumptions and limitations cannot affect the general structure and dependence on cycle of solar and interplanetary data. At the same time, the measured solar field values are underestimated as a result of the magnetograph signal saturation effect. It has been shown that the correction should depend on the heliocentric observation latitude and cycle phase. The correction method responsible for good agreement between the calculated and measured values has been proposed. The created database makes it possible to quantitatively calculate the magnetic fields in the solar wind near the Earth.  相似文献   

7.
本文对磁宁静时的123个动压变化事件(不包含激波事件)进行了统计研究.研究表明,在白天侧(9~15MLT)同步轨道磁场z分量对太阳风动压增大、减小事件具有较强的正响应,而在夜侧(21~3MLT)响应明显减弱,响应幅度具有明显的磁地方时分布.对动压增大事件的平均响应幅度在午前最大,而对动压减小事件的平均响应幅度在午后达到...  相似文献   

8.
This review presents some of the new developments in the understanding of coronal magnetic fields in flares and coronal mass ejections. The modelling of the coronal magnetic field based on observed photospheric field permits to understand the location of energy release. Various flare observations are consistent with a model where magnetic reconnection occurs between two magnetic fields of different connectivity. Because magnetic helicity is almost conserved, the stored energy cannot be fully released in confined flares. The corona gets rid of the helicity injected by the convection zone only by ejecting part of the magnetic field. A severe physical constraint (open-field limit) on these ejections has been firmly established for force-free fields. It is, however, possible to open partially the field or to eject a twisted flux-tube keeping the energy of the field behind the open-field limit. New results show that in simply connected fields this happen after a finite time without loss of equilibrium, while in more complex topology a loss of equilibrium can still be present.  相似文献   

9.
Recent observations have quantified the auroral wind O+ outflow in response to magnetospheric inputs to the ionosphere, notably Poynting energy flux and precipitating electron density. For moderate to high activity periods, ionospheric O+ is observed to become a significant or dominant component of plasma pressure in the inner plasma sheet and ring current regions. Using a global circulation model of magnetospheric fields and its imposed ionospheric boundary conditions, we evaluate the global ionospheric plasma response to local magnetospheric conditions imposed by the simulation and evaluate magnetospheric circulation of solar wind H+, polar wind H+, and auroral wind O+. We launch and track the motions of millions of test particles in the global fields, launched at randomly distributed positions and times. Each particle is launched with a flux weighting and perpendicular and parallel energies randomly selected from defined thermal ranges appropriate to the launch point. One sequence is driven by a two-hour period of southward interplanetary magnetic field for average solar wind intensity. A second is driven by a 2-h period of enhanced solar wind dynamic pressure for average interplanetary field. We find that the simulated ionospheric O+ becomes a significant plasma pressure component in the inner plasma sheet and outer ring current region, particularly when the solar wind is intense or its magnetic field is southward directed. We infer that the reported empirical scalings of auroral wind O+ outflows are consistent with a substantial pressure contribution to the inner plasma sheet and plasma source surrounding the ring current. This result violates the common assumption that the ionospheric load is entirely confined to the F layer, and shows that the ionosphere is often an important dynamic element throughout the magnetosphere during moderate to large solar wind disturbances.  相似文献   

10.
The magnetic field behavior in the magnetosheath, when the IMF and the solar wind velocity are almost collinear, has been analyzed based on the perturbation method. Magnetic disturbances are considered against a background of the stationary MHD solar wind flow around the magnetosphere when the magnetic field and the solar wind velocity are strictly collinear. It has been indicated that the angle between the magnetic field and velocity vectors increases considerably in a relatively thin layer near the magnetopause. The angle rise factor profiles have been determined for different distances from the subsolar point. The thickness of the layer, where the angle reaches values of about unity and more, has been estimated. It is important to take this layer into account when the magnetopause stability with respect to Kelvin-Helmholtz waves is analyzed.  相似文献   

11.
A summary of experiments and analyses concerning electromagnetic induction in the Moon and other extraterrestrial bodies is presented. Magnetic step-transient measurements made on the lunar dark side show the eddy current response to be the dominant induction mode of the Moon. Analysis of the poloidal field decay of the eddy currents has yielded a range of monotonic conductivity profiles for the lunar interior: the conductivity rises from 3·10?4 mho/m at a depth of 170 km to 10?2 mho/m at 1000 km depth. The static magnetization field induction has been measured and the whole-Moon relative magnetic permeability has been calculated to be μμ0 = 1.01 ± 0.06. The remanent magnetic fields, measured at Apollo landing sites, range from 3 to 327 γ. Simultaneous magnetometer and solar wind spectrometer measurements show that the 38-γ remanent field at the Apollo 12 site is compressed to 54 γ by a solar wind pressure increase of 7·10?8 dyn/cm2. The solar wind confines the induced lunar poloidal field; the field is compressed to the surface on the lunar subsolar side and extends out into a cylindrical cavity on the lunar antisolar side. This solar wind confinement is modeled in the laboratory by a magnetic dipole enclosed in a superconducting lead cylinder; results show that the induced poloidal field geometry is modified in a manner similar to that measured on the Moon. Induction concepts developed for the Moon are extended to estimate the electromagnetic response of other bodies in the solar system.  相似文献   

12.
The studies are based on the experimental mass sounding of the interplanetary plasma near the Sun at radial distances of R = 4−70 R S, performed at Pushchino RAO, Russian Academy of Sciences, and on the calculated magnetic fields in the solar corona based on the magnetic field strength and structure measured on the Sun’s surface at J. Wilcox Solar Observatory, United States. The experimental data make it possible to localize the position of the boundary closest to the Sun of the transition transonic region of the solar wind in the near-solar space (R ≈ 10−20 R S) and to perform an interrelated study of the solar wind structure and its sources, namely, the magnetic field components in the solar corona based on these data. An analysis of the evolution of the flow types in 2000–2007 makes it possible to formulate the physically justified criterion responsible for the time boundaries of different epochs in the solar activity cycle.  相似文献   

13.
On October 14, 1995, a C1.6 long duration event (LDE) started in active region (AR) NOAA 7912 at approximately 5:00 UT and lasted for about 15 h. On October 18, 1995, the Solar Wind Experiment and the Magnetic Field Instrument (MFI) on board the Wind spacecraft registered a magnetic cloud (MC) at 1 AU, which was followed by a strong geomagnetic storm. We identify the solar source of this phenomenon as AR 7912. We use magnetograms obtained by the Imaging Vector Magnetograph at Mees Solar Observatory, as boundary conditions to the linear force-free model of the coronal field, and, we determine the model in which the field lines best fit the loops observed by the Soft X-ray Telescope on board Yohkoh. The computations are done before and after the ejection accompanying the LDE. We deduce the loss of magnetic helicity from AR 7912. We also estimate the magnetic helicity of the MC from in situ observations and force-free models. We find the same sign of magnetic helicity in the MC and in its solar source. Furthermore, the helicity values turn out to be quite similar considering the large errors that could be present. Our results are a first step towards a quantitative confirmation of the link between solar and interplanetary phenomena through the study of magnetic helicity.  相似文献   

14.
A comparative study of the geomagnetic and ionospheric data at equatorial and low-latitude stations in India over the 20 year period 1956–1975 is described. The reversal of the electric field in the ionosphere over the magnetic equator during the midday hours indicated by the disappearance of the equatorial sporadic E region echoes on the ionograms is a rare phenomenon occurring on about 1% of time. Most of these events are associated with geomagnetically active periods. By comparing the simultaneous geomagnetic H field at Kodaikanal and at Alibag during the geomagnetic storms it is shown that ring current decreases are observed at both stations. However, an additional westward electric field is superimposed in the ionosphere during the main phase of the storm which can be strong enough to temporarily reverse the normally eastward electric field in the dayside ionosphere. It is suggested that these electric fields associated with the V × Bz electric fields originate at the magnetopause due to the interaction of the solar wind and the interplanetary magnetic field.  相似文献   

15.
The general features of the region of interaction of the solar wind with the ionosphere of Venus and Mars are compared using data obtained with the Mariner 5 and the Pioneer Venus Orbiter (PVO) spacecraft for Venus and with the Phobos II, the Mars Global Surveyor (MGS) and the Mars Express spacecraft for Mars. Despite the overall weak intrinsic global magnetic field that is present in both planets there are significant differences in the manner in which the interplanetary magnetic field accumulates and is organized around and within their ionosphere. Such differences are unrelated to the crustal magnetic field remnants inferred from the MGS measurements around Mars. In fact, while in Venus and Mars there is a region in which the magnetic field becomes enhanced as it piles up in their plasma environment it is shown that such a region exhibits different regimes with respect to changes in the ion composition measured outside and within the ionosphere. At Venus the region of enhanced magnetic field intensity occurs in general above the ionopause which represents the boundary across which there is a change in the ion composition with dominant solar wind protons above and planetary O+ ions below. At Mars the region of enhanced magnetic field is located below a magnetic pileup boundary across which there is also a comparable change in the ion composition (solar wind protons above and planetary O+ ions below). It is argued that this difference in the relative position of the region of enhanced magnetic field with respect to that of a plasma boundary that separates different ion populations results from the peculiar response of the ionosphere of each planet to the oncoming solar wind dynamic pressure. While at Venus the peak ionospheric thermal pressure is in general sufficient to withhold the incident solar wind kinetic pressure there is a different response in Mars where the peak ionospheric thermal pressure is in general not large enough to deviate the solar wind. In this latter case the ionosphere is unable to force the solar wind to move around the ionosphere and as a result the oncoming electron population can reach low altitudes where it is influenced by neutral atmospheric particles (the solar wind proton population is replaced at the magnetic pileup boundary which marks the upper extent of the region where the interplanetary magnetic field becomes enhanced). Peculiar conditions are expected near the magnetic polar regions and over the terminator plane where the solar wind is directed along the sides of the planet.  相似文献   

16.
We investigate the features of the planetary distribution of wave phenomena (geomagnetic pulsations) in the Earth’s magnetic shell (the magnetosphere) during a strong geomagnetic storm on December 14–15, 2006, which is untypical of the minimum phase of solar activity. The storm was caused by the approach of the interplanetary magnetic cloud towards the Earth’s magnetosphere. The study is based on the analysis of 1-min data of global digital geomagnetic observations at a few latitudinal profiles of the global network of ground-based magnetic stations. The analysis is focused on the Pc5 geomagnetic pulsations, whose frequencies fall in the band of 1.5–7 mHz (T ~ 2–10 min), on the fluctuations in the interplanetary magnetic field (IMF) and in the solar wind density in this frequency band. It is shown that during the initial phase of the storm with positive IMF Bz, most intense geomagnetic pulsations were recorded in the dayside polar regions. It was supposed that these pulsations could probably be caused by the injection of the fluctuating streams of solar wind into the Earth’s ionosphere in the dayside polar cusp region. The fluctuations arising in the ionospheric electric currents due to this process are recorded as the geomagnetic pulsations by the ground-based magnetometers. Under negative IMF Bz, substorms develop in the nightside magnetosphere, and the enhancement of geomagnetic pulsations was observed in this latitudinal region on the Earth’s surface. The generation of these pulsations is probably caused by the fluctuations in the field-aligned magnetospheric electric currents flowing along the geomagnetic field lines from the substorm source region. These geomagnetic pulsations are not related to the fluctuations in the interplanetary medium. During the main phase of the magnetic storm, when fluctuations in the interplanetary medium are almost absent, the most intense geomagnetic pulsations were observed in the dawn sector in the region corresponding to the closed magnetosphere. The generation of these pulsations is likely to be associated with the resonance of the geomagnetic field lines. Thus, it is shown that the Pc5 pulsations observed on the ground during the magnetic storm have a different origin and a different planetary distribution.  相似文献   

17.
Polar and high latitude substorms and solar wind conditions   总被引:1,自引:0,他引:1  
All substorm disturbances observed in polar latitudes can be divided into two types: polar, which are observable at geomagnetic latitudes higher than 70° in the absence of substorms below 70°, and high latitude substorms, which travel from auroral (<70°) to polar (>70°) geomagnetic latitudes. The aim of this study is to compare conditions in the IMF and solar wind, under which these two types of substorms are observable on the basis of data from meridional chain of magnetometers IMAGE and OMNI database for 1995, 2000, and 2006–2011. In total, 105 polar and 55 high latitude substorms were studied. It is shown that polar substorms are observable at a low velocity of solar wind after propagation of a high-speed recurrent stream during the late recovery phase of a magnetic storm. High latitude substorms, in contrast, are observable with a high velocity of solar wind, increased values of the Bz component of the IMF, the Ey component of the electric field, and solar wind temperature and pressure, when a high-speed recurrent stream passes by the Earth.  相似文献   

18.
We have integrated the Fok radiation belt environment (RBE) model into the space weather modeling framework (SWMF). RBE is coupled to the global magnetohydrodynamics component (represented by the Block-Adaptive-Tree Solar-wind Roe-type Upwind Scheme, BATS-R-US, code) and the Ionosphere Electrodynamics component of the SWMF, following initial results using the Weimer empirical model for the ionospheric potential. The radiation belt (RB) model solves the convection–diffusion equation of the plasma in the energy range of 10 keV to a few MeV. In stand-alone mode RBE uses Tsyganenko's empirical models for the magnetic field, and Weimer's empirical model for the ionospheric potential. In the SWMF the BATS-R-US model provides the time dependent magnetic field by efficiently tracing the closed magnetic field-lines and passing the geometrical and field strength information to RBE at a regular cadence. The ionosphere electrodynamics component uses a two-dimensional vertical potential solver to provide new potential maps to the RBE model at regular intervals. We discuss the coupling algorithm and show some preliminary results with the coupled code. We run our newly coupled model for periods of steady solar wind conditions and compare our results to the RB model using an empirical magnetic field and potential model. We also simulate the RB for an active time period and find that there are substantial differences in the RB model results when changing either the magnetic field or the electric field, including the creation of an outer belt enhancement via rapid inward transport on the time scale of tens of minutes.  相似文献   

19.
南向行星际磁场事件与磁暴关系的研究   总被引:5,自引:5,他引:5       下载免费PDF全文
利用172-182年IMP-8飞船的太阳风观测资料和相应地磁活动性指数Dst和AE,研究了43个南向行星际磁场事件期间太阳风和磁层的耦合问题. 与这43个事件对应的地磁暴是中等的和强的磁暴(Dst<-50nT). 结果表明:(1) 在43个事件中有11个(约占25.6髎)紧随激波之后,18个处于激波下游流场中(占42髎),其余14个(占33髎)和激波没有关连. 绝大多数事件都伴有太阳风动压和总磁场强度的增加;(2) 当行星际晨昏向电场强度EI>-4mV/m时,只引起磁亚暴,对Dst指数没有明显影响. 仅当EI<-5mV/m时,磁亚暴和磁暴才会同时出现;(3) 太阳风动压的增加会增强能量向环电流的输入,但不是密度和速度单独起作用,而是以PK=ρV2的组合形式影响能量的输入;(4) 虽然行星际磁场(IMF)南向分量BZ对太阳风和磁层的耦合起着关键作用,但IMF的BX和BY分量相对于BZ的大小对太阳风向磁层的能量传输也有一定影响. 当BX、BY相对BZ较大时能量耦合加强.  相似文献   

20.
电离层电场的半年变化对F2区峰值电子浓度的影响   总被引:4,自引:2,他引:2       下载免费PDF全文
利用一个电离层理论模式,模拟了太阳活动低年、地磁宁静情况下,中低纬和赤道地区电离层F2区峰值电子浓度(NmF2)的半年变化规律,重点讨论了电离层电场对NmF2半年变化的影响.模拟结果表明,当输入的电场没有周年和半年变化时,磁赤道地区电离层NmF2本身就具有一定的半年变化特征,而在稍高的纬度上,NmF2半年变化的强度较弱.当输入的电场具有一定的半年变化时,电离层NmF2的半年变化强度有明显的改变,且这种改变随地方时和地磁纬度不同有明显的差别.在地磁赤道附近的电离层赤道槽地区,从上午到午夜的时间内,具有半年变化的电场对电离层NmF2半年变化的强度是减弱的作用,在其他的时间内,电场对电离层NmF2半年变化强度是加强的作用.而在稍高纬度的电离层驼峰地区,情况明显不同.从上午一直到翌日日出前,具有半年变化的电场对电离层NmF2半年变化的幅度都是加强的作用.在其他的时间内,电场对电离层NmF2半年变化的幅度是减弱的作用.同时,研究表明电离层电场对NmF2半年变化的作用和“赤道喷泉”现象强烈相关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号