首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Landslide susceptibility mapping (LSM) is important for catastrophe management in the mountainous regions. They focus on generating susceptibility maps beginning from landslide inventories and considering the main predisposing parameters. The aim of this study was to assess the susceptibility of the occurrence of debris flows in the Zêzere River basin and its surrounding area using logistic regression (LR) and frequency ratio (FR) models. To achieve this, a landslide inventory map was created using historical information, satellite imagery, and extensive field works. One hundred landslides were mapped, of which 75% were randomly selected as training data, while the remaining 25% were used for validating the models. The landslide influence factors considered for this study were lithology, elevation, slope gradient, slope aspect, plan curvature, profile curvature, normalized difference vegetation index (NDVI), distance to roads, topographic wetness index (TWI), and stream power index (SPI). The relationships between landslide occurrence and these factors were established, and the results were then evaluated and validated. Validation results show that both methods give acceptable results [the area under curve (AUC) of success rates is 83.71 and 76.38 for LR and FR, respectively]. Furthermore, the AUC results for prediction accuracy revealed that LR model has the highest predictive performance (AUC of predicted rate?=?80.26). Hence, it is concluded that the two models showed reasonably good accuracy in predicting the landslide susceptibility in the study area. These two models have the potential to aid planners in development and land-use planning and to offer tools for hazard mitigation measures.  相似文献   

2.
The main purpose of this paper is to present the use of multi-resource remote sensing data, an incomplete landslide inventory, GIS technique and logistic regression model for landslide susceptibility mapping related to the May 12, 2008 Wenchuan earthquake of China. Landslide location polygons were delineated from visual interpretation of aerial photographs, satellite images in high resolutions, and verified by selecting field investigations. Eight factors, including slope angle, slope aspect, elevation, distance from drainages, distance from roads, distance from main faults, seismic intensity and lithology were selected as controlling factors for earthquake-triggered landslide susceptibility mapping. Qualitative susceptibility analyses were carried out using the map overlaying techniques in GIS platform. The validation result showed a success rate of 82.751 % between the susceptibility probability index map and the location of the initial landslide inventory. The predictive rate of 86.930 % was obtained by comparing the additional landslide polygons and the landslide susceptibility probability index map. Both the success rate and the predictive rate show sufficient agreement between the landslide susceptibility map and the existing landslide data, and good predictive power for spatial prediction of the earthquake-triggered landslides.  相似文献   

3.
The Paonia-McClure Pass area of Colorado has been recognized as a region highly susceptible to mass movement. Because of the dynamic nature of this landscape, accurate methods are needed to predict susceptibility to movement of these slopes. The area was evaluated by coupling a geographic information system (GIS) with logistic regression methods to assess susceptibility to landslides. We mapped 735 shallow landslides in the area. Seventeen factors, as predictor variables of landslides, were mapped from aerial photographs, available public data archives, ETM + satellite data, published literature, and frequent field surveys. A logistic regression model was run using landslides as the dependent factor and landslide-causing factors as independent factors (covariates). Landslide data were sampled from the landslide masses, landslide scarps, center of mass of the landslides, and center of scarp of the landslides, and an equal amount of data were collected from areas void of discernible mass movement. Models of susceptibility to landslides for each sampling technique were developed first. Second, landslides were classified as debris flows, debris slides, rock slides, and soil slides and then models of susceptibility to landslides were created for each type of landslide. The prediction accuracies of each model were compared using the Receiver Operating Characteristic (ROC) curve technique. The model, using samples from landslide scarps, has the highest prediction accuracy (85 %), and the model, using samples from landslide mass centers, has the lowest prediction accuracy (83 %) among the models developed from the four techniques of data sampling. Likewise, the model developed for debris slides has the highest prediction accuracy (92 %), and the model developed for soil slides has the lowest prediction accuracy (83 %) among the four types of landslides. Furthermore, prediction from a model developed by combining the four models of the four types of landslides (86 %) is better than the prediction from a model developed by using all landslides together (85 %).  相似文献   

4.
Sánchez  Y.  Martínez-Graña  A.  Santos-Francés  F.  Yenes  M. 《Natural Hazards》2018,90(3):1407-1426
The random forest method was used to generate susceptibility maps for debris flows, rock slides, and active layer detachment slides in the Donjek River area within the Yukon Alaska Highway Corridor, based on an inventory of landslides compiled by the Geological Survey of Canada in collaboration with the Yukon Geological Survey. The aim of this study is to develop data-driven landslide susceptibility models which can provide information on risk assessment to existing and planned infrastructure. The factors contributing to slope failure used in the models include slope angle, slope aspect, plan and profile curvatures, bedrock geology, surficial geology, proximity to faults, permafrost distribution, vegetation distribution, wetness index, and proximity to drainage system. A total of 83 debris flow deposits, 181 active layer detachment slides, and 104 rock slides were compiled in the landslide inventory. The samples representing the landslide free zones were randomly selected. The ratio of landslide/landslide free zones was set to 1:1 and 1:2 to examine the results of different sample ratios on the classification. Two-thirds of the samples for each landslide type were used in the classification, and the remaining 1/3 were used to evaluate the results. In addition to the classification maps, probability maps were also created, which served as the susceptibility maps for debris flows, rock slides, and active layer detachment slides. Success and prediction rate curves created to evaluate the performance of the resulting models indicate a high performance of the random forest in landslide susceptibility modelling.  相似文献   

5.
Landslide susceptibility zonation mapping is a fundamental procedure for geo-disaster management in tropical and sub-tropical regions. Recently, various landslide susceptibility zonation models have been introduced in Nepal with diverse approaches of assessment. However, validation is still a problem. Additionally, the role of various predisposing causative parameters for landslide activity is still not well understood in the Nepal Himalaya. To address these issues of susceptibility zonation and landslide activity, about 4,000 km2 area of central Nepal was selected for regional-scale assessment of landslide activity and susceptibility zonation mapping. In total, 655 new landslides and 9,229 old landslides were identified with the study area with the help of satellite images, aerial photographs, field data and available reports. The old landslide inventory was “blind landslide database” and could not explain the particular rainfall event responsible for the particular landslide. But considering size of the landslide, blind landslide inventory was reclassified into two databases: short-duration high-intensity rainfall-induced landslide inventory and long-duration low-intensity rainfall-induced landslide inventory. These landslide inventory maps were considered as proxy maps of multiple rainfall event-based landslide inventories. Similarly, all 9,884 landslides were considered for the activity assessment of predisposing causative parameters. For the Nepal Himalaya, slope, slope aspect, geology and road construction activity (anthropogenic cause) were identified as most affective predisposing causative parameters for landslide activity. For susceptibility zonation, multivariate approach was considered and two proxy rainfall event-based landslide databases were used for the logistic regression modelling, while a relatively recent landslide database was used in validation. Two event-based susceptibility zonation maps were merged and rectified to prepare the final susceptibility zonation map and its prediction rate was found to be more than 82 %. From this work, it is concluded that rectification of susceptibility zonation map is very appropriate and reliable. The results of this research contribute to a significant improvement in landslide inventory preparation procedure, susceptibility zonation mapping approaches as well as role of various predisposing causative parameters for the landslide activity.  相似文献   

6.
The objective of this study is to map landslide susceptibility in Zigui segment of the Yangtze Three Gorges area that is known as one of the most landslide-prone areas in China by using data from light detection and ranging (LiDAR) and digital mapping camera (DMC). The likelihood ratio (LR) and logistic regression model (LRM) were used in this study. The work is divided into three phases. The first phase consists of data processing and analysis. In this phase, LiDAR and DMC data and geological maps were processed, and the landslide-controlling factors were derived such as landslide density, digital elevation model (DEM), slope angle, aspect, lithology, land use and distance from drainage. Among these, the landslide inventories, land use and drainage were constructed with both LiDAR and DMC data; DEM, slope angle and aspect were constructed with LiDAR data; lithology was taken from the 1:250,000 scale geological maps. The second phase is the logistic regression analysis. In this phase, the LR was applied to find the correlation between the landslide locations and the landslide-controlling factors, whereas the LRM was used to predict the occurrence of landslides based on six factors. To calculate the coefficients of LRM, 13,290,553 pixels was used, 29.5 % of the total pixels. The logical regression coefficients of landslide-controlling factors were obtained by logical regression analysis with SPSS 17.0 software. The accuracy of the LRM was 88.8 % on the whole. The third phase is landslide susceptibility mapping and verification. The mapping result was verified using the landslide location data, and 64.4 % landslide pixels distributed in “extremely high” zone and “high” zone; in addition, verification was performed using a success rate curve. The verification result show clearly that landslide susceptibility zones were in close agreement with actual landslide areas in the field. It is also shown that the factors that were applied in this study are appropriate; lithology, elevation and distance from drainage are primary factors for the landslide susceptibility mapping in the area, while slope angle, aspect and land use are secondary.  相似文献   

7.
The main objective of this study is to investigate potential application of frequency ratio (FR), weights of evidence (WoE), and statistical index (SI) models for landslide susceptibility mapping in a part of Mazandaran Province, Iran. First, a landslide inventory map was constructed from various sources. The landslide inventory map was then randomly divided in a ratio of 70/30 for training and validation of the models, respectively. Second, 13 landslide conditioning factors including slope degree, slope aspect, altitude, plan curvature, stream power index, topographic wetness index, sediment transport index, topographic roughness index, lithology, distance from streams, faults, roads, and land use type were prepared, and the relationships between these factors and the landslide inventory map were extracted by using the mentioned models. Subsequently, the multi-class weighted factors were used to generate landslide susceptibility maps. Finally, the susceptibility maps were verified and compared using several methods including receiver operating characteristic curve with the areas under the curve (AUC), landslide density, and spatially agreed area analyses. The success rate curve showed that the AUC for FR, WoE, and SI models was 81.51, 79.43, and 81.27, respectively. The prediction rate curve demonstrated that the AUC achieved by the three models was 80.44, 77.94, and 79.55, respectively. Although the sensitivity analysis using the FR model revealed that the modeling process was sensitive to input factors, the accuracy results suggest that the three models used in this study can be effective approaches for landslide susceptibility mapping in Mazandaran Province, and the resultant susceptibility maps are trustworthy for hazard mitigation strategies.  相似文献   

8.
Statistical and deterministic methods are widely used in geographic information system based landslide susceptibility mapping. This paper compares the predictive capability of three different models, namely the Weight of Evidence, the Fuzzy Logic and SHALSTAB, for producing shallow earth slide susceptibility maps, to be included as informative layers in land use planning at a local level. The test site is an area of about 450 km2 in the northern Apennines of Italy where, in April 2004, rainfall combined with snowmelt triggered hundreds of shallow earth slides that damaged roads and other infrastructure. An inventory of the landslides triggered by the event was obtained from interpretation of aerial photos dating back to May 2004. The pre-existence of mapped landslides was then checked using earlier aerial photo coverage. All the predictive models were run on the same set of geo-environmental causal factors: soil type, soil thickness, land cover, possibility of deep drainage through the bedrock, slope angle, and upslope contributing area. Model performance was assessed using a threshold-independent approach (the ROC plot). Results show that global accuracy is as high as 0.77 for both statistical models, while it is only 0.56 for SHALSTAB. Besides the limited quality of input data over large areas, the relatively poorer performance of the deterministic model maybe also due to the simplified assumptions behind the hydrological component (steady-state slope parallel flow), which can be considered unsuitable for describing the hydrologic behavior of clay slopes, that are widespread in the study area.  相似文献   

9.
We present the methodologies adopted and the outcomes obtained in the analysis of landslide risk in the basin of the Arno River (Central Italy) in the framework of a project sponsored by the Basin Authority of the Arno River, started in the year 2002 and completed at the beginning of 2005. In particular, a complete set of methods and applications for the assessment of landslide susceptibility and risk are described and discussed. A new landslide inventory of the whole area was realized, using conventional (aerial-photo interpretation and field surveys) and non-conventional methods (e.g. remote sensing techniques such as DInSAR and PS-InSAR). The great majority of the mapped mass movements are rotational slides (75%), solifluctions and other shallow slow movements (17%) and flows (5%), while soil slips, and other rapid landslides, seem less frequent everywhere within the basin. The relationships between landslide characteristics and environmental factors have been assessed through statistical analysis. As expected, the results show a strong control of land cover, lithology and morphology on landslide occurrence. The landslide frequency-size distribution shows a typical scaling behaviour already underlined in other landslide inventories worldwide. The assessment of landslide hazard in terms of probability of occurrence in a given time, based for mapped landslides on direct and indirect observations of the state of activity and recurrence time, has been extended to landslide-free areas through the application of statistical methods implemented in an artificial neural network (ANN). Unique conditions units (UCU) were defined by the map overlay of landslide preparatory factors (lithology, land cover, slope gradient, slope curvature and upslope contributing area) and afterwards used to construct a series of model vectors for the training and test of the ANN. Various different ANNs were selected throughout the basin, until each UCU was assigned a degree of membership to a susceptibility and a hazard class. Model validation confirms that prediction results are very good, with an average percentage of correctly recognized mass movements of about 85%. The analysis also revealed the existence of a large number of unmapped mass movements, thus contributing to the completeness of the final inventory. Temporal hazard was estimated via the translation of state of activity in recurrence time and hence probability of occurrence. The following intersection of hazard values with vulnerability and exposure figures, obtained by reclassification of digital vector mapping at 1:10,000 scale, lead to the definition of risk values for each terrain unit for different periods of time into the future. The final results of the research are now undergoing a process of integration and implementation within land planning and risk prevention policies and practices at local and national level.  相似文献   

10.
Landslides are one of the most frequent and common natural hazards in Malaysia. Preparation of landslide susceptibility maps is one of the first and most important steps in the landslide hazard mitigation. However, due to complex nature of landslides, producing a reliable susceptibility map is not easy. For this reason, a number of different approaches have been used, including direct and indirect heuristic approaches, deterministic, probabilistic, statistical, and data mining approaches. Moreover, these landslides can be systematically assessed and mapped through a traditional mapping framework using geoinformation technologies. Since the early 1990s, several mathematical models have been developed and applied to landslide hazard mapping using geographic information system (GIS). Among various approaches, fuzzy logic relation for mapping landslide susceptibility is one of the techniques that allows to describe the role of each predisposing factor (landslide-conditioning parameters) and their optimal combination. This paper presents a new attempt at landslide susceptibility mapping using fuzzy logic relations and their cross application of membership values to three study areas in Malaysia using a GIS. The possibility of capturing the judgment and the modeling of conditioning factors are the main advantages of using fuzzy logic. These models are capable to capture the conditioning factors directly affecting the landslides and also the inter-relationship among them. In the first stage of the study, a landslide inventory was complied for each of the three study areas using both field surveys and airphoto studies. Using total 12 topographic and lithological variables, landslide susceptibility models were developed using the fuzzy logic approach. Then the landslide inventory and the parameter maps were analyzed together using the fuzzy relations and the landslide susceptibility maps produced. Finally, the prediction performance of the susceptibility maps was checked by considering field-verified landslide locations in the studied areas. Further, the susceptibility maps were validated using the receiver-operating characteristics (ROC) success rate curves. The ROC curve technique is based on plotting model sensitivity—true positive fraction values calculated for different threshold values versus model specificity—true negative fraction values on a graph. The ROC curves were calculated for the landslide susceptibility maps obtained from the application and cross application of fuzzy logic relations. Qualitatively, the produced landslide susceptibility maps showed greater than 82% landslide susceptibility in all nine cases. The results indicated that, when compared with the landslide susceptibility maps, the landslides identified in the study areas were found to be located in the very high and high susceptibility zones. This shows that as far as the performance of the fuzzy logic relation approach is concerned, the results appeared to be quite satisfactory, the zones determined on the map being zones of relative susceptibility.  相似文献   

11.
Limbe town and surrounding areas, on the SE foot slopes of the active Mt Cameroon Volcano, have experienced numerous small-scale shallow landslides within the last 20 years. These resulted in the loss of ~30 lives and significant damage to farmland and properties. Landslides and their scars are identified in the field, and their geometry systematically measured to construct a landslide inventory map for the study area. Specific landslides are investigated in detail to identify site-specific controlling and triggering factors. This is to constrain key input parameters and their variability for subsequent susceptibility and risk modeling, for immediate local and regional applications in land-use planning. It will also enable a rapid exploration of remediation strategies that are currently lacking in the SW and NW regions of Cameroon. Typical slides within the study area are small-scale, shallow, translational earth, and debris slides though some rotational earth slides were also documented. The depletion zones have mean widths of 22 m ± 16.7 m and lengths of 25 ± 23 standard deviation. Estimated aerial extents of landslide scars and volume of generated debris range from 101 to 104 m2 and 2 to 5 × 104 m3, respectively. A key finding is that most slope instabilities within the study area are associated with and appear to be exacerbated by man-made factors such as excavation, anarchical construction, and deforestation of steep slopes. High intensity rainfall notably during localized storms is the principal triggering factor identified so far. The findings from this case study have relevance to understanding some key aspects of locally devastating slope instabilities that commonly occur on intensely weathered steep terrains across subtropical Africa and in the subtropics worldwide and affecting an ever denser and most vulnerable population.  相似文献   

12.
In volcanic terrains, dormant stratovolcanoes are very common and can trigger landslides and debris flows continually along stream systems, thereby affecting human settlements and economic activities. It is important to assess their potential impact and damage through the use of landslide inventory maps and landslide models. In Mexico, numerous geographic information systems (GIS)-based applications have been used to represent and assess slope stability. However, there is no practical and standardized landslide mapping methodology under a GIS. This work provides an overview of the ongoing research project from the Institute of Geography at the National Autonomous University of Mexico that seeks to conduct a multi-temporal landslide inventory and produce a landslide susceptibility map by using GIS. The Río El Estado watershed on the southwestern flank of Pico de Orizaba volcano, the highest mountain in Mexico, is selected as a study area. The geologic and geomorphologic factors in combination with high seasonal precipitation, high degree of weathering, and steep slopes predispose the study area to landslides. The method encompasses two main levels of analysis to assess landslide susceptibility. First, the project aims to derive a landslide inventory map from a representative sample of landslides using aerial orthophotographs and field work. Next, the landslide susceptibility is modelled by using multiple logistic regression implemented in a GIS platform. The technique and its implementation of each level in a GISs-based technology is presented and discussed.  相似文献   

13.
This study presented herein compares the effect of the sampling strategies by means of landslide inventory on the landslide susceptibility mapping. The conditional probability (CP) and artificial neural networks (ANN) models were applied in Sebinkarahisar (Giresun–Turkey). Digital elevation model was first constructed using a geographical information system software and parameter maps affecting the slope stability such as geology, faults, drainage system, topographical elevation, slope angle, slope aspect, topographic wetness index, stream power index and normalized difference vegetation index were considered. In the last stage of the analyses, landslide susceptibility maps were produced applying different sampling strategies such as; scarp, seed cell and point. The maps elaborated were then compared by means of their validations. Scarp sampling strategy gave the best results than the point, whereas the scarp and seed cell methods can be evaluated relatively similar. Comparison of the landslide susceptibility maps with known landslide locations indicated that the higher accuracy was obtained for ANN model using the scarp sampling strategy. The results obtained in this study also showed that the CP model can be used as a simple tool in assessment of the landslide susceptibility, because input process, calculations and output process are very simple and can be readily understood.  相似文献   

14.
Landslide susceptibility zonation in Greece   总被引:7,自引:3,他引:4  
The objective of this study is to perform a preliminary national-scale assessment of the landslide susceptibility in Greece using a landslide inventory derived from historical archives. The effects of controlling factors on landslide susceptibility combined with multivariate statistics have been evaluated using GIS aided mapping techniques. Thousand six hundred thirty-five landslide occurrences, mainly earth slides obtained from Public Authorities archives, covering a long time period were recorded and digitally stored using a spatial relational database management system. Ten landslide predisposing factors (predictors) were identified, while digital thematic maps on the spatial distribution of those factors were generated. The correlation between the landslide locations and predictor classes was analyzed by using the Landslide Relative Frequency. R-mode factor analysis was applied to study the interrelations between predictors (independent variables) while weighting coefficients were determined. Landslide susceptibility was derived from an algorithm which modeled the influence of predictors, and a susceptibility map was compiled. The landslide susceptibility map was verified using a data set of 375 new landslide locations. It is the first comprehensive attempt to illustrate the landslide susceptibility in the total country based on the interpretation of historical data only.  相似文献   

15.
Landslide susceptibility mapping is essential for land-use activities and management decision making in hilly or mountainous regions. The existing approaches to landslide susceptibility zoning and mapping require many different types of data. In this study, we propose a fractal method to map landslide susceptibility using historical landslide inventories only. The spatial distribution of landslides is generally not uniform, but instead clustered at many different scales. In the method, we measure the degree of spatial clustering of existing landslides in a region using a box-counting method and apply the derived fractal clustering relation to produce a landslide susceptibility map by means of GIS-supported spatial analysis. The method is illustrated by two examples at different regional scales using the landslides inventory data from Zhejiang Province, China, where the landslides are mainly triggered by rainfall. In the illustrative examples, the landslides from the inventory are divided into two time periods: The landslides in the first period are used to produce a landslide susceptibility map, and those in the late period are taken as validation samples for examining the predictive capability of the landslide susceptibility maps. These examples demonstrate that the landslide susceptibility map created by the proposed technique is reliable.  相似文献   

16.
Dramatic effects resulting from landslides on human life and economy of many nations are observed sometimes throughout the world. Landslide inventory and susceptibility mapping studies are accepted as the first stage of landslide hazard mitigation efforts. Generally, these landslide inventory studies include identification and location of landslides. The main benefit is to provide a basis for statistical susceptibility zoning studies. In the present study, a landslide susceptibility zoning near Yenice (NW Turkey) is carried out using the factor analysis approach. The study area is approximately 64 km2 and 57 landslides were identified in this area. The area is covered completely by Ulus Formation that has a flysh-like character. Slope angle, elevation, slope aspect, land-use, weathering depth and water conditions were considered as the main conditioning factors while the heavy precipitation is the main trigger for landsliding. According to the results of factor analysis, the importance weights for slope angle, land-use, elevation, dip direction, water conditions and weathering depth were determined as 45.2%, 22.4%, 12.5%, 8.8%, 8.1% and 3.0% respectively. Also, using these weights and the membership values of each conditioning factor, the membership value for landslide susceptibility was introduced. In the study area, the lowest membership value for landslide susceptibility was calculated as 0.20. Consequently, combining all results, a landslide susceptibility map was obtained. Compared with the obtained map, a great majority of the landslides (86 %) identified in the field were found to be located in susceptible and highly susceptible zones.  相似文献   

17.
Several researchers have evaluated landslide susceptibility using various factors, and only few have focused on only one landslide impacting factor in detail, especially its response to geomorphologic evolution. Slope aspect is one of the key conditioning factors for landslide susceptibility assessment in fine-scale studies. To elucidate the slope aspect effect of loess slides and its spatial differentiation, we selected three study areas with different geomorphologic settings in the Chinese Loess Plateau, and developed landslide inventory through the interpretation of remote sensing images and intensive field survey. By using GIS and statistical approach, including extreme ratio and coefficient of variation, we characterized the distribution of loess slides in different slope aspects and compared their spatial differentiation. The results showed that the slope aspect has a significant influence on the spatial distribution of loess slides. The number and area of loess slide is higher in south-facing slope in all the three counties. Moreover, the slope aspect effects on loess slides were mediated by the geomorphologic types. The more mature the development of geomorphology, the more obvious is the slope aspect effect on the landslide. This study is very important for the study on geomorphologic evolution of Loess Plateau.  相似文献   

18.
The study area located in southern Kyrgyzstan is affected by high and ongoing landslide activity. To characterize this activity, a multi-temporal landslide inventory containing over 2800 landslide polygons was generated from multiple data sources. The latter include the results of automated landslide detection from multi-temporal satellite imagery. The polygonal representation of the landslides allows for characterization of the landslide geometry and determination of further landslide attributes in a way that accounts for the diversity of conditions within the landslide, e.g., at the landslide main scarp opposed to its toe. To perform such analyses, a methodology for efficient geographic information system (GIS)-based attribute derivation was developed, which includes both standard and customized GIS tools. We derived a number of landslide attributes, including area, length, compactness, slope, aspect, distance to stream and geology. The distributions of these attributes were analyzed to obtain a better understanding of landslide properties in the study area as a preliminary step for probabilistic landslide hazard assessment. The obtained spatial and temporal attribute variations were linked to differences in the environmental characteristics within the study area, in which the geological setting proved to be the most important differentiating factor. Moreover, a significant influence of the different data sources on the distribution of the landslide attribute values was found, indicating the importance of a critical evaluation of the landslide data to be used in landslide hazard assessments.  相似文献   

19.
利用证据权法实现滑坡易发性区划   总被引:2,自引:0,他引:2       下载免费PDF全文
依托“5.12”特大地震的抗震救灾工作,以汶川地震12个极重灾县市为研究对象,在1:5万滑坡详细调查、编录和遥感影像解译的基础上,利用DEM数据,ETM影像及基础地质数据,使用证据权法完成了研究区滑坡易发性评价因子的提取与制图以及相关性统计分析,实现了1:5万的滑坡易发性区划。  相似文献   

20.
In many regions, the absence of a landslide inventory hampers the production of susceptibility or hazard maps. Therefore, a method combining a procedure for sampling of landslide-affected and landslide-free grid cells from a limited landslide inventory and logistic regression modelling was tested for susceptibility mapping of slide- and flow-type landslides on a European scale. Landslide inventories were available for Norway, Campania (Italy), and the Barcelonnette Basin (France), and from each inventory, a random subsample was extracted. In addition, a landslide dataset was produced from the analysis of Google Earth images in combination with the extraction of landslide locations reported in scientific publications. Attention was paid to have a representative distribution of landslides over Europe. In total, the landslide-affected sample contained 1,340 landslides. Then a procedure to select landslide-free grid cells was designed taking account of the incompleteness of the landslide inventory and the high proportion of flat areas in Europe. Using stepwise logistic regression, a model including slope gradient, standard deviation of slope gradient, lithology, soil, and land cover type was calibrated. The classified susceptibility map produced from the model was then validated by visual comparison with national landslide inventory or susceptibility maps available from literature. A quantitative validation was only possible for Norway, Spain, and two regions in Italy. The first results are promising and suggest that, with regard to preparedness for and response to landslide disasters, the method can be used for urgently required landslide susceptibility mapping in regions where currently only sparse landslide inventory data are available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号