首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Back analysis of a large landslide in a flysch rock mass   总被引:1,自引:1,他引:0  
Flysch is a sedimentary rock consisting of a rhythmic alternation of hard (limestone, sandstone, siltstone) and weak (marl, mudstone, claystone) layers. Because of the presence of layers with different physical properties, the mechanical characterization of heterogeneous rock masses such as flysch is a real challenge. Different methods have been proposed in the literature to characterize flysch, combining empirical classification indexes with laboratory tests. Most of these methods, however, were specifically designed for tunneling and underground excavations, and their applicability to slope stability problems is not yet fully investigated. In this study, we analyze a large landslide in a cretaceous flysch rock in order to compare the mobilized strength at failure with those predicted by the modified GSI method (Marinos and Hoek, 2001). The landslide occurred in the Savena River basin (Northern Apennines of Italy) on April 6, 2013, with a volume of about 3 million m3. Soon after the failure, geological, geotechnical, and geophysical investigations were carried out to detect the failure mechanism and define the landslide geometry. Back analyses of the failed slope were performed using both limit equilibrium and finite difference methods to estimate the in situ strength of the flysch. The results show that the mobilized rock mass cohesion is very low (c '?≈?20?÷?40 kPa) and that the modified GSI method can predict the in situ strength only assuming a disturbance factor D = 1. Moreover, the analysis shows that the linearization criteria proposed in literature to compute the equivalent Mohr-Coulomb parameters remarkably overestimate the rock mass strength.  相似文献   

2.
This study analyzed 267 landslide landforms (LLs) in the Kumamoto area of Japan from the database of about 0.4 million LLs for the whole of Japan identified from aerial photos by the National Research Institute for Earth Science and Disaster Resilience of Japan (NIED). Each LL in the inventory is composed of a scarp and a moving mass. Since landslides are prone to reactivation, it is important to evaluate the sliding-recurrence susceptibility of LLs. One possible approach to evaluate the susceptibility of LLs is slope stability analysis. A previous study found a good correlation (R 2 = 0.99) between the safety factor (F s ) and slope angle (α) of F s  = 17.3α ?0.843. We applied the equation to the analysis of F s for 267 LLs in the area affected by the 2016 Kumamoto earthquake (M j  = 7.3). The F s was calculated for the following three cases of failure: scarps only, moving mass only, and scarps and moving mass together. Verification with the 2016 Kumamoto earthquake event shows that the most appropriate method for the evaluation of LLs is to consider the failure of scarps and moving mass together. In addition, by analyzing the relationship between the factors of slope of entire landslide and slope of scarp for LLs and comparing the results with the Aso-ohashi landslide, the largest landslide caused by the 2016 Kumamoto earthquake, we also found that morphometric analysis of LLs is useful for forecasting the travel distance of future landslides.  相似文献   

3.
针对采用传统的确定性边坡稳定性分析方法进行滑裂面抗剪强度参数反演分析所需滑坡断面不少于两个的不足,基于概率可靠度理论,提出了一种结合Excel数据表和极限分析上限法的滑坡强度参数反演新方法。依托湘西朱雀洞特大滑坡进行算例分析,研究结果表明:结合Excel数据表法和极限分析上限法反演得到的滑裂面抗剪强度参数与工程现场实测数据吻合良好,验证了新分析方法的正确性和有效性;运用该法反演分析只需一个滑坡断面,可有效解决单一滑裂面抗剪强度参数反演问题,减少了计算工作量,具有广泛的适用性和良好的工程应用前景。  相似文献   

4.
This paper presents a theoretical approach to evaluate the uncertainties and the correlation of the shear strength parameters c and t (cohesion and friction coefficient), obtained in direct shear tests. The analysis is based on the hypothesis that the soil is statistically homogeneous, with shear strength normally distributed having an expected resistance which is linearly dependent on the effective normal stress. With regard to the scatters of the population of the shear strength, two further statements have been formulated for the standard deviation: (1) a constant value, independent of the effective normal stresses and (2) a value which is linearly dependent on the normal effective stresses as a consequence of a constant coefficient of variation. The investigation shows that the strength parameters are negatively correlated and the coefficient of correlation and the coefficients of variation of cohesion and friction angle are highly dependent on the number of shear tests and the normal stresses used in the tests.  相似文献   

5.
Flow-like landslides in clayey soils represent serious threats for populations and infrastructures and have been the subject of numerous studies in the past decade. However, despite the rising need for landslide mitigation with growing urbanization, the transient mechanisms involved in the solid-fluid transition are still poorly understood. One way of characterizing the solid-fluid transition is to carry out rheometrical tests on clayey soil samples to assess the evolution of viscosity with the shear stress. In this study, we carried out geotechnical and rheometrical tests on clayey samples collected from six flow-like landslides in order to assess if these clayey soils exhibit similar characteristics when they fluidize (solid-fluid transition). The results show that (1) all tested soils except one exhibit a yield-stress fluid behavior that can be associated with a bifurcation in viscosity (described by the critical shear rate \( \dot{\gamma_c} \)) and in shear modulus G; (2) the larger the amplitude of the viscosity bifurcation, the larger the associated drop in G; and (3) the water content (w) deviation from the Atterberg liquid limit (LL) seem a key parameter controlling a common mechanical behavior of these soils at the solid-fluid transition. We propose exponential laws describing the evolution of the critical shear stress τc, the critical shear rate \( \dot{\gamma_c} \), and the shear modulus G as a function of the deviation w-LL.  相似文献   

6.
Geometric parameters are useful for characterizing earthquake-triggered landslides. This paper presents a detailed statistical analysis on this issue using the landslide inventory of the 2013, Minxian, China Mw 5.9 earthquake. Based on GIS software and a 5-m resolution DEM, geometric parameters of 635 coseismic landslides (with areas larger than 500 m2) were obtained, including height, length, width, reach angle (arc tangent of the height-length ratio), and aspect ratio (length-width ratio). The fitting relationship of height and length from these data is H = 0.6164L + 0.4589, with an average reach angle of 31.65°. The landslide aspect ratios concentrate in the range of 1.4~2.6, with an average of 2.11. According to the plane geometric shapes and aspect ratios, the landslides are classified into four categories: transverse landslide (LA1, L/W ≤ 0.8), isometric landslide (LA2, 0.8 < L/W ≤ 1.2), longitudinal landslide (LA3, 1.2 < L/W ≤ 3), and elongated landslide (LA4, L/W > 3). Statistics of these four types of landslides versus ten classified control factors (elevation, slope angle, slope aspect, curvature, slope position, distance to drainages, lithology, seismic intensity, peak ground acceleration, and distance to seismogenic fault) are used to examine their possible correlations and the landslide-prone areas, which would be helpful to the landslide disaster mitigation in the affected area.  相似文献   

7.
This paper presents a new analytical criterion for brittle failure of rocks and heavily over-consolidated soils. Griffith’s model of a randomly oriented defect under a biaxial stress state is used to keep the criterion simple. The Griffith’s criterion is improved because the maximum tensile strength is not evaluated at the boundary of the defect but at a certain distance from the boundary, known as half of the critical distance. This fracture criterion is known as the point method, and is part of the theory of critical distances, which is utilised in fracture mechanics. The proposed failure criterion has two parameters: the inherent tensile strength, σ 0, and the ratio of the half-length of the initial crack/flaw to the critical distance, a/L. These parameters are difficult to measure but they may be correlated with the uniaxial compressive and tensile strengths, σ c and σ t. The proposed criterion is able to reproduce the common range of strength ratios for rocks and heavily overconsolidated soils (σ c/σ t = 3–50) and the influence of several microstructural rock properties, such as texture and porosity. Good agreement with laboratory tests reported in the literature is found for tensile and low-confining stresses.  相似文献   

8.
Rock slope instabilities are a major hazard for human activities often causing economic losses, property damages and maintenance costs, as well as injuries or fatalities. For slope stability analysis of open pit mines, series of studies must be carried out in order to identify the criteria which should take into consideration. In this research geotechnical parameters; Geological Strength Index (GSI), Rock Quality Designation (RQD), Cohesion (C), angle of internal friction (φ), uniaxial compressive strength (UCS) and Rock mass deformation modulus (Em) which are obtained from data measured within geotechnical boreholes and pore pressure (U) are considered as the criteria to evaluate stability of pit No.1 of the Gole Gohar iron mine, located in Kerman province, south east of Iran. Since human judgments and preferences are often vague and complex and decision makers cannot estimate their preferences with an exact scale, we can only give linguistic assessments instead of exact ones. So fuzzy set theory introduced into Analytical Hierarchy Process (AHP). Fuzzy AHP (FAHP) is put forward to solve such uncertain problems. In this paper, FAHP method is used to determine the weights of the criteria by decision makers and then classification of the stability of blocks are determined by TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method by the shortest distance to positive ideal solution (PIS) and the longest distance to negative ideal solution (NIS).  相似文献   

9.
The South Jingyang Plateau, with a total area of 70 km2, is located in Shaanxi Province, China. Since 1976, more than 50 landslides of different types have occurred repeatedly on the edge slopes of the plateau due to the start of diversion irrigation on the plateau, resulting in great loss of lives and property. To better understand the initiation and movement mechanisms of these loess landslides, we surveyed them and carried out a detailed investigation of a large landslide in the Xihetan area. Our field survey results revealed that although most of these landslides had a long runout with high mobility, most of the landslide materials originating from the edge slopes may have been in an unsaturated state when the landslide occurred. This suggests that the materials at the toe of the edge slope as well as on the travel path along the river terrace might have played a key role in landslide movement. To examine how the materials on the travel path were involved in the landsliding, we used a multichannel surface wave technique and surveyed shear wave velocity (V s ) profiles of the landslide deposits. We also examined the internal geometry of the deposits that outcropped on the right-side slope of the landslide foot. The longitudinal profile of V s along the direction of movement showed that terrace deposits near the toe of the edge slope may have been sheared upward, indicating that at the toe, the surface of rupture might be located inside the terrace deposits. The V s contours showed an A-shaped fold within the landslide deposits in the middle part of the travel path and became greater in the most distal toe part. The V s profile across the deposits showed a U-shaped belt, in which the soil layers have smaller V s . This belt may be the boundary between the sliding landslide debris and terrace deposits. The observed internal geometry of the landslide deposits indicates that a sliding surface developed within the sandy layer underlying the gravel layer. Therefore, we inferred that after failure, the displaced landslide materials overrode and sheared the terrace deposits along its main sliding direction, resulting in the formation of thrust folds within the terrace deposits, and greater V s on the distal toe part of the landslide.  相似文献   

10.
This research represents a novel soft computing approach that combines the fuzzy k-nearest neighbor algorithm (fuzzy k-NN) and the differential evolution (DE) optimization for spatial prediction of rainfall-induced shallow landslides at a tropical hilly area of Quy Hop, Vietnam. According to current literature, the fuzzy k-NN and the DE optimization are current state-of-the-art techniques in data mining that have not been used for prediction of landslide. First, a spatial database was constructed, including 129 landslide locations and 12 influencing factors, i.e., slope, slope length, aspect, curvature, valley depth, stream power index (SPI), sediment transport index (STI), topographic ruggedness index (TRI), topographic wetness index (TWI), Normalized Difference Vegetation Index (NDVI), lithology, and soil type. Second, 70 % landslide locations were randomly generated for building the landslide model whereas the remaining 30 % landslide locations was for validating the model. Third, to construct the landslide model, the DE optimization was used to search the optimal values for fuzzy strength (fs) and number of nearest neighbors (k) that are the two required parameters for the fuzzy k-NN. Then, the training process was performed to obtain the fuzzy k-NN model. Value of membership degree of the landslide class for each pixel was extracted to be used as landslide susceptibility index. Finally, the performance and prediction capability of the landslide model were assessed using classification accuracy, the area under the ROC curve (AUC), kappa statistics, and other evaluation metrics. The result shows that the fuzzy k-NN model has high performance in the training dataset (AUC?=?0.944) and validation dataset (AUC?=?0.841). The result was compared with those obtained from benchmark methods, support vector machines and J48 decision trees. Overall, the fuzzy k-NN model performs better than the support vector machines and the J48 decision trees models. Therefore, we conclude that the fuzzy k-NN model is a promising prediction tool that should be used for susceptibility mapping in landslide-prone areas.  相似文献   

11.
Since cross-anisotropic sand behaves differently when the loading direction or the stress state changes, the influences of the loading direction and the intermediate principal stress ratio (b = (σ 2 ? σ 3)/(σ 1 ? σ 3)) on the initiation of strain localization need study. According to the loading angle (angle between the major principal stress direction and the normal of bedding plane), a 3D non-coaxial non-associated elasto-plasticity hardening model was proposed by modifying Lode angle formulation of the Mohr–Coulomb yield function and the stress–dilatancy function. By using bifurcation analysis, the model was used to predict the initiation of strain localization under plane strain and true triaxial conditions. The predictions of the plane strain tests show that the major principal strain at the bifurcation points increases with the loading angle, while the stress ratio decreases with the loading angle. According to the loading angle and the intermediate principal stress ratio, the true triaxial tests were analyzed in three sectors. The stress–strain behavior and the volumetric strain in each sector can be well captured by the proposed model. Strain localization occurs in most b value conditions in all three sectors except for those which are close to triaxial compression condition (b = 0). The difference between the peak shear strength corresponding to the strain localization and the ultimate shear strength corresponding to plastic limit becomes obvious when the b value is near 0.4. The influence of bifurcation on the shear strength becomes weak when the loading direction changes from perpendicular to the bedding plane to parallel. The bifurcation analysis based on the proposed model gives out major principal strain and peak shear strength at the initiation of strain localization; the given results are consistent with experiments.  相似文献   

12.
Pyroxenes of general stoichiometry Mg(Ge x Si1?x )O3 were encountered in attempts to synthesise Ge-substituted talcs at 0.2 GPa, 650–700 °C. Orthopyroxenes (Pbca) of compositions x = 0.21, 0.30, and 0.34 were identified, and also a P21/c clinopyroxene of composition x = 0.63, and C2/c clinopyroxenes of compositions x = 0.91 and 1. End-member clinoenstatite MgSiO3-P21/c synthesised at 16 GPa, 1300 °C and transformed from C2/c was also included in the study. Crystal structure refinements using single-crystal XRD data showed that unit-cell parameters vary linearly with Si–Ge for the Pbca and P21/c pyroxenes, both of which have two symmetrically non-equivalent tetrahedral chains. Refinement of Si–Ge occupancies at tetrahedral sites showed that the two chains of all primitive pyroxenes have very different compositions, with XGe(TB) ? XGe(TA). This difference arises from the greater flexibility of the B-chain to rotate in response to tetrahedral expansion due to increasing Ge content. The TA-M2 shared polyhedral edge imposes significant constraints on the flexibility of the A-chain, which can accommodate much less Ge than the B-chain. Linear trends of cell parameters, site occupancies, and structural parameters for the primitive pyroxenes, when extrapolated to published data for MgGeO3Pbca, extend across the entire Si–Ge join.  相似文献   

13.
A high-pressure single-crystal X-ray diffraction study has been carried out on a P21/c natural Mg-rich pigeonite sample with composition ca. Wo6En76Fs18 using a diamond anvil-cell. The unit-cell parameters were determined at 14 different pressures to 7.14 GPa. The sudden disappearance of the b-type reflections (h + k = odd) and a strong discontinuity (about 2.8%) in the unit-cell volume indicated a first-order P21/cC2/c phase transition between 4.66 and 4.88 GPa. The P(V) data of the P21/c phase were fitted to 4.66 GPa by a third-order Birch–Murnaghan equation of state (BM3 EoS), whereas the limited number of experimental data collected within the C2/c phase between 4.88 and 7.14 GPa were fitted using the same equation of state but with K′ constrained to the value obtained for the P21/c fitting. The equation of state coefficients are V 0 = 424.66(6) Å3, K T0 = 104(2) GPa and K′ = 8(1) for the P21/c phase, and V 0 = 423.6(1) Å3, K T0 = 112.4(8) GPa, and K′ fixed to 8(1) for the C2/c phase. The axial moduli for a, b, and c for the P21/c phase were obtained using also a BM3-EoS, while for the C2/c phase only a linear calculation could be performed, and therefore the same approach was applied for comparison also to the P21/c phase. In general the C2/c phase exhibits axial compressibilities (β c > β a >> β b) lower than those of the P21/c phase (β b > β c ≈ β a; similar to those found in previous studies in clinopyroxenes and orthopyroxenes). The lower compressibility of the C2/c phase compared with that of the P21/c could be ascribed to the greater stiffness along the b direction. A previously published relationship between P c and M2 average cation radius (i.r.) has been updated using all the literature data on P21/c clinopyroxene containing large cations at M2 site and our new data. The following weighted regression was obtained: P c (GPa) = 26(4) ? 28(5) ×  i.r (Å), R 2 = 0.97. This improved equation can be used to predict the critical pressure of natural P21/c clinopyroxene samples just knowing the composition at M2 site.  相似文献   

14.
Debris flow density determined by grain composition   总被引:1,自引:1,他引:0  
Density is one of the most important parameters of debris flows. Because observing an active debris flow is very difficult, finding a method to estimate debris flow density is urgently needed for disaster mitigation engineering. This paper proposes an effective empirical equation in terms of grain size distribution (GSD) parameters based on observations in Jiangjia Gully, Yunnan Province, China. We found that the GSD follows P(D) = KD exp(? D/Dc), with μ and Dc representing the fine and coarse grains, respectively. In particular, μ is associated with some characteristic porosity of soil in the natural state and increases with increased porosity. Dc characterizes the grain size range of the flow and increases with the grain concentration. Studies show that flow density is related to both parameters in power law. Here, we propose an empirical equation for estimating flow density: ρ = 1.26μ -0.132 + 0.049Dc0.443, which provides not only an estimation of the density for a flow, but also describes the variation in density with the GSD of material composition; this provides important information related to the design of debris flow engineering structures.  相似文献   

15.
Random finite element method (RFEM) provides a rigorous tool to incorporate spatial variability of soil properties into reliability analysis and risk assessment of slope stability. However, it suffers from a common criticism of requiring extensive computational efforts and a lack of efficiency, particularly at small probability levels (e.g., slope failure probability P f ?<?0.001). To address this problem, this study integrates RFEM with an advanced Monte Carlo Simulation (MCS) method called “Subset Simulation (SS)” to develop an efficient RFEM (i.e., SS-based RFEM) for reliability analysis and risk assessment of soil slopes. The proposed SS-based RFEM expresses the overall risk of slope failure as a weighed aggregation of slope failure risk at different probability levels and quantifies the relative contributions of slope failure risk at different probability levels to the overall risk of slope failure. Equations are derived for integrating SS with RFEM to evaluate the probability (P f ) and risk (R) of slope failure. These equations are illustrated using a soil slope example. It is shown that the P f and R are evaluated properly using the proposed approach. Compared with the original RFEM with direct MCS, the SS-based RFEM improves, significantly, the computational efficiency of evaluating P f and R. This enhances the applications of RFEM in the reliability analysis and risk assessment of slope stability. With the aid of improved computational efficiency, a sensitivity study is also performed to explore effects of vertical spatial variability of soil properties on R. It is found that the vertical spatial variability affects the slope failure risk significantly.  相似文献   

16.
Accurate laboratory measurement of geo-engineering properties of intact rock including uniaxial compressive strength (UCS) and modulus of elasticity (E) involves high costs and a substantial amount of time. For this reason, it is of great necessity to develop some relationships and models for estimating these parameters in rock engineering. The present study was conducted to forecast UCS and E in the sedimentary rocks using artificial neural networks (ANNs) and multivariable regression analysis (MLR). For this purpose, a total of 196 rock samples from four rock types (i.e., sandstone, conglomerate, limestone, and marl) were cored and subjected to comprehensive laboratory tests. To develop the predictive models, physical properties of studied rocks such as P wave velocity (Vp), dry density (γd), porosity, and water absorption (Ab) were considered as model inputs, while UCS and E were the output parameters. We evaluated the performance of MLR and ANN models by calculating correlation coefficient (R), mean absolute error (MAE), and root-mean-square error (RMSE) indices. The comparison of the obtained results revealed that ANN outperforms MLR when predicting the UCS and E.  相似文献   

17.
The estimated undrained shear strength (su) is often not a unique value because it can be evaluated by various test types and/or procedures, such as different failure modes, shear strain rates, and boundary conditions. This study explores (1) the relationship between reference undrained shear strength and in situ shear wave velocity in terms of the effective overburden stress, and (2) the independent relationships to evaluate the undrained shear strength with special consideration of different directional and polarization modes (VH, HV, HH shear waves), which has not been reported. This evaluation is done via a worldwide database compiled from 43 well-documented geotechnical test sites associated with soft ground. Finally, new correlation models are proposed to estimate the undrained shear strength based on the in situ shear wave velocity as well as the plasticity index or the overconsolidation ratio. The application of the shear wave velocity–undrained shear strength relation is illustrated through two independent case studies. The proposed relationships are expected to contribute to reasonable estimates of undrained shear strength as well as offer practical guidance on even extrapolation beyond the data that is available to geotechnical engineers.  相似文献   

18.
19.
Input parameters, such as rock mass strength parameters and deformation modulus, considered in the design of underground openings involve some uncertainty. The current uncertainty in these parameters is due to the inherent variability of these parameters. To quantify these parameters and design underground openings, the statistical methods must be utilized. In this research, a statistical method was used to define the GSI of rock mass (Geological Strength Index), block volume (Vb), and joint conditions (Jc). Using the GSI distribution function obtained from field data and intact rock strength characteristics, the statistical distribution functions of rock mass parameters were defined using the Monte Carlo method. The statistical analysis of the stability in Azad-pumped storage powerhouse cavern was carried out through the point estimate method. The appropriate support system was suggested according to the support pressure and the plastic zone around the cavern. This study showed the application of the statistical method, by combining the uncertainties of the intact rock strength and discontinuity parameters, in the assessment of the strength and deformability of rock masses and the support selection process in comparison with the deterministic methods.  相似文献   

20.
A micromechanics-based approach is proposed to predict the shear failure of brittle rocks under compression. Formulation of this approach is based on an improved wing microcrack model, the Mohr-Coulomb failure criterion, and a micro-macro damage model. The improved wing microcrack model considers the effects of crack inclination angle on mechanical behaviors of rocks. The micro-macro damage model describes the relation between crack growth and axial strain. Furthermore, comparing experimental and theoretical relations between crack initiation stress and confining pressure, model parameters (i.e., μ, a, β, and φ) hardly measured by test are solved. Effects of crack inclination angle, crack size, and friction coefficient on stress-strain relation, compressive strength, internal friction angle, cohesion, shear failure plane angle, and shear strength are discussed in details. A most disadvantaged crack angle is found, which is corresponding to the smallest compressive strength, cohesion, internal friction angle, and shear strength of rocks. Rationality of the theoretical results is verified by the published experimental results. This approach provides a theoretical prediction for effects of microcrack geometry on macroscopic shear properties in brittle rocks under compression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号