首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stability of magnetic flux tubes embedded vertically in a convection zone is investigated. For thin tubes, the dominant instability is of the convective type, i.e. it is driven by buoyancy forces associated with displacements along the tube. The stability is determined by = 8P/B 2; if c the tube is convectively stable, otherwise it is unstable, where the critical value c depends on the stratification of the convection zone. For a solar convection zone model, c = 1.83, corresponding to a magnetic field strength of 1350 G at the surface of the Sun. It is concluded that the flux tubes making up the small scale field of the Sun are probably hydrodynamically stable.In tubes with > c, the instability is expected to transform the tube either into a state of vanishing surface field strength (in the case of an upward flow), or one with a field strength higher than the original value (if the instability sets in as a downward flow). Following Parker, we suggest that this effect is related to the concentrated nature of the observed solar fields.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

2.
The contribution to the galactic abundance of He and heavy elements by stellar nucleosynthesis is calculated as a function of time, keeping account of present knowledge about stellar and galactic evolution. A model is used which distinguishes the phase of the contracting halo from the subsequent history of the disc. Various uncertainties involved both in stellar and in galactic evolutionary theory are discussed. The amount of4He produced by stars of different masses and ejected in interstellar medium is fairly well known from stellar theory, while we have assumed its primordial abundance as a free parameter, ranging from 0 up to 0.4. We find that stellar activity provides a significant contribution to the cosmic4He, though not sufficient to explain the observed abundance. The best agreement with observational data (Y 0.26 andY now0.28) is obtained starting with a primordial abundanceY =(0.20–0.23), which is consisten with the Big-Bang theory predictions and with recent observational estimates. The contribution to the abundance of heavy elements depends on the last stellar stages and on the final explosion mechanism, which are only now beginning to be understood. Nevertheless, in the framework of present theories, we individuate a stellar evolutionary scheme reproducing the observedZ abundances for Populationi and Populationii stars, with the correctly estimated Y/Z value. In this scheme, only stars belonging to two narrow mass ranges (10m/m 15 andm/m 80) are allowed to eject metal-enriched matter, possibly with the solar (C+O)/(Si+Fe) ratio.  相似文献   

3.
Two new equations of state obtained for matter constituting isothermal neutron star core by using isentropic nature of matter for the equalities =2 and =3 (where 's are usual adiabatic exponents) have been utilised to discuss the internal temperature of core. The temperature of matter has been obtained asT=T a(P+E)/. Variation ofT/T a(t) with energy density has been discussed for these new equations of state and some standard equations of state for nuclear matter.  相似文献   

4.
    
The structure of stars more massive than about 1.2M is characterized by a convective core. We have studied the evolution with age and mass of acoustic frequencies if high radial ordern and low degree for models of stars of 1, 1.5 and 2M . Using a polynomial approximation for the frequency, the p-mode spectrum can be characterized by derived global asteroseimic coefficients, i.e. the mean separationv 0v n, v n,–1, and the small frequency separationv 0,2v n,=0 v n,–1,=2 . The diagram(v 0,(v 0,2/v 0 plotted along the evolutionary tracks would help to separate the effects of age and mass. We study of sensitivity of these coefficients and other observable quantities, like the radius and luminosity, the stellar parameters in the vicinity of 1M and 2M ; this sensitivity substantially depends on the stellar mass and must be taken into account for asteroseismic calibration of stellar clusters. Considering finally some rapid variations of the internal structure, we show that the second frequency difference2 v=v n, –2v n,–1, +v n,–2, exhibits and oscillatory behaviour well related to the rapid variation of the adiabatic exponent in the HeII ionization zone.A more complete discussion is given in Audard N, Provost J, Seismological properties of intermediate-mass stars,A&A, 1993, in press.  相似文献   

5.
An explicit finite-difference method is employed to study the MHD free convection heat generating fluid past an impulsively started vertical infinite plate when a strong magnetic field is applied perpendicular to the plate. The velocity and temperature profiles are shown on graphs and the results are discussed in terms of the non-dimensional parameters e (Hall parameter), i (ionslip parameter), (heat source parameter), and Gr (Grashof number).  相似文献   

6.
Observation of the adiabatic behaviour of energetic particle pitch-angle distributions in the magnetosphere (Lyons, 1977, and others) in the past indicated the development of pronounced minima or drift-loss cones on the pitch-angle distributions centred at 90° in connection with storm-time changes in magnetospheric convection and magnetic field. Using a model of a drift-modified loss-cone distribution (MLCD) of the butterfly type, the linear stability of electromagnetic whistler or ion-cyclotron waves propagating parallel to the magnetic field has been investigated. The instability is shown to be quenched at high frequencies < m =A/(A+1), whereA is the thermal anisotropy. This quenching becomes stronger the higher are the respective parallel hot particle thermal velocityA h and cold plasma densityn c . Particles around pitch-angles 90° are identified as generating electromagnetic cyclotron waves near the marginally stable frequency m . It is concluded that the absence of electromagnetic VLF and ELF noise during times when MLCD develops is the result of the shift of the unstable spectrum to low frequencies.  相似文献   

7.
The phase relation of the poloidal and toroidal components of the solar-cycle general magnetic fields, which propagate along isorotation surfaces as dynamo waves, is investigated to infer the structure of the differential rotation and the direction of the regeneration action of the dynamo processes responsible for the solar cycle. It is shown that, from the phase relation alone, (i) the sign of the radial gradient of the differential rotation (/r) can be determined in the case that the radial gradient dominates the differential rotation, and (ii) the direction of the regeneration action can be determined in the case that the latitudinal gradient (/) dominates the differential rotation. Examining the observed poloidal and toroidal fields, it is concluded that (i) the / should dominate the differential rotation, and (ii) the determined sign of the regeneration factor (positive [negative] in the northern [southern] hemisphere) describing the direction of the regeneration action requires that the surface magnetic fields should originate from the upper part of the convection zone according to the model of the solar cycle driven by the dynamo action of the global convection.  相似文献   

8.
We show that the overall densityg() of asymptotic acoustic frequencies of a star obeys a Weyl lawg() D–1, whereD is the dimensionality of the oscillating stellar configuration. For realistic stars with a finite non-zero surface sound speed,D is equal to the actual dimensionality of the star,D=3. For formal models with a vanishing sound velocity at the surface, heuristic arguments lead to a dimensionality parameterD=4.5. The empirical frequencies of Eddington's standard model are found to be consistent with the latter distribution, with reasonable agreement already occurring in the low-frequency range > i 2× fundamental radial mode. We argue that real stars obey this 3.5-power law in some finite frequency interval i << f , f being a very high frequency critically depending on the surface sound velocity, while the full asymptotic law, withD=3, holds for > f .  相似文献   

9.
We studied grain formation process and flow structure around cool luminous mass-loss stars. The nucleation and growth theory of Yamamoto and Hasegawa was extended to the case of expanding gas flow.The envelope was assumed to be steady, spherically symmetric, in thermal and radiative equilibrium, optically thin, and driven by radiation pressure on grains. For oxygen rich stars, Mg-silicate was found to be the first condensate which can drive the gas effectively. The following stellar parameters were chosen; stellar massM *=1M , effective temperatureT *=3000K, stellar luminosityL * from 7.5×103 to 2.0×104 L , and mass-loss rate |M| from 1.0×10–6 to 1.0×10–4 M yr–1.Main results of calculations are as follows; (1) grain condensation temperatureT c9801080 K; (2) total gas pressure at the condensation pointP t6×10–116×10–9 atm; (3) scale parameterA c1036×104; and (4) final grain sizer f=400Å1m. For the smaller |M| or the largerL *, these values are the smaller. We recognized two types of flow solutions (1) Dust driven flow for large |M|, which reaches the sonic point near the condensation point; and (2) Modified Parker flow for small |M| for which grain sizer f is almost independent of |M|.A comparison with observational results ofL * and gas terminal velocityV suggests that Mg-silicate grains are of submicron size, which are effective for interstellar extinction in visible and infrared. Fe-grains condense in the rarefied outflow with a size probably smaller than 100Å, which may contribute for interstellar ultraviolet extinction. The envelope has three-layer structure inner dense region with small outflow velocity, grain formation layer and outer rarefied region with fast outflow velocity.No flow solutions exist forM * greater than a critical stellar massM *cr for a given stellar luminosityL * and mass-loss rate |M|.For example, critical stellar massM *cr=1.8M forL *=104 L ,T *=3000 K, and |M|=10-5 M yr-1.  相似文献   

10.
It is currently believed that it is impossible to construct a radiative sunspot model in magnetohydrostatic equilibrium unless magnetic fields below the surface are excessively large (> 100 kG). This belief is based on results obtained using the mixing length theory of convection. We wish to point out that by using a different theory of convection, due to Öpik (1950), it is possible to compute a radiative sunspot model in which the field becomes no greater than 9000 G. By applying two boundary conditions, (i) depth of spot equals depth of convection zone, (ii) magnetic field has zero gradient at the base of the spot, we show that a radiative spot has a unique effective temperature for a given Wilson depression, . For = 650 km, we find T e = 3800K ; for = 150 km, T e = 3950K. According to our model, spots having T e cooler than these values should not exist.  相似文献   

11.
As a consequence of the Taylor–Proudman balance, a balance between the pressure, Coriolis and buoyancy forces in the radial and latitudinal momentum equations (that is expected to be amply satisfied in the lower solar convection zone), the superadiabatic gradient is determined by the rotation law and by an unspecified function of r, say, S(r), where r is the radial coordinate. If the rotation law and S(r) are known, then the solution of the energy equation, performed in this paper in the framework of the ML formalism, leads to a knowledge of the Reynolds stresses, convective fluxes, and meridional motions. The ML-formalism is an extension of the mixing length theory to rotating convection zones, and the calculations also involve the azimuthal momentum equation, from which an expression for the meridional motions in terms of the Reynolds stresses can be derived. The meridional motions are expanded as U r(r,)=P 2(cos)2(r)/r 2+P 4(cos)4(r)/r 2 +..., and a corresponding equation for U (r,). Here is the polar angle, is the density, and P 2(cos), P 4(cos) are Legendre polynomials. A good approximation to the meridional motion is obtained by setting 4(r)=–H2(r) with H–1.6, a constant. The value of 2(r) is negative, i.e., the P 2 flow rises at the equator and sinks at the poles. For the value of H obtained in the numerical calculations, the meridional motions have a narrow countercell at the poles, and the convective flux has a relative maximum at the poles, a minimum at mid latitudes and a larger maximum at the equator. Both results are in agreement with the observations.  相似文献   

12.
We discuss the hypothesis suggested by Mazurek (1979) that neutrino oscillations (v e v ) could transfer leptonic zero-point energy (e -,v e ; <4/3) to baryons during the gravitational collapse of a massive star (M10M ) and that subsequently the collapse ends in a stellar explosion (>4/3). The estimation of the lengths of neutrino oscillations if occuring in vacuum or dense matter, respectively, shows, however, that vacuum oscillations can be suppressed in dense matter and, therefore, should have no influence on the neutrino emission of neutron stars.  相似文献   

13.
Durney  Bernard R. 《Solar physics》2000,197(2):215-226
The integrals, Ii(t) = GL ui j × B i dv over the volume GL are calculated in a dynamo model of the Babcock–Leighton type studied earlier. Here, GL is the generating layer for the solar toroidal magnetic field, located at the base of the solar convection zone (SCZ); i=r, , , stands for the radial, latitudinal, and azimuthal coordinates respectively; j = (4)-1 × B, where B is the magnetic field; ur,u are the components of the meridional motion, and u is the differential rotation. During a ten-year cycle the energy cycle I(t)dt needs to be supplied to the azimuthal flow in the GL to compensate for the energy losses due to the Lorentz force. The calculations proceed as follows: for every time step, the maximum value of |B| in the GL is computed. If this value exceeds Bcr (a prescribed field) then there is eruption of a flux tube that rises radially, and reaches the surface at a latitude corresponding to the maximum of |B| (the time of rise is neglected). This flux tube generates a bipolar magnetic region, which is replaced by its equivalent axisymmetric configuration, a magnetic ring doublet. The erupted flux can be multiplied by a factor Ft, i.e., by the number of eruptions per time step. The model is marginally stable and the ensemble of eruptions acts as the source for the poloidal field. The arbitrary parameters Bcr and Ft are determined by matching the flux of a typical solar active region, and of the total erupted flux in a cycle, respectively. If E(B) is the energy, in the GL, of the toroidal magnetic field B = B sin cos , B (constant), then the numerical calculations show that the energy that needs to be supplied to the differential rotation during a ten-year cycle is of the order of E(Bcr), which is considerably smaller than the kinetic energy of differential rotation in the GL. Assuming that these results can be extrapolated to larger values of Bcr, magnetic fields 104 G, could be generated in the upper section of the tachocline that lies below the SCZ (designated by UT). The energy required to generate these 104 G fields during a cycle is of the order of the kinetic energy in the UT.  相似文献   

14.
The Fourier coefficients of the hydrodynamic variables are calculated for the limit-cycle models of classical Cepheids having periods from 7.2 to 10.9 days. In adiabatically pulsating layers of the stellar envelope, each Fourier harmonic of orderk 8 is shown to be identified with a corresponding standing wave, so that the pulsation motions of the adiabatic layers may be represented as a superposition of standing waves. Each Fourier harmonic of orderk may also be identified with the eigenfunction of orderl of the linear adiabatic wave equation when the resonance condition l /0 =k is fulfilled. The spectra of the oscillatory moment of inertia and the spectra of kinetic energy obey the power law for the Fourier harmonics of orderk 15, the spectrum slope being steeper for shorter pulsation periods. In the helium and hydrogen ionizing regions all of the Fourier harmonics drive the pulsation instability, whereas in the radiative damping region the mechanical work done by each Fourier harmonic is negative. In classical Cepheids having periods shorter than 10 days the period dependence of the secondary bump is due to phase changes of the second order Fourier harmonic in the outer nonadiabatic layers of the stellar envelope. At a pulsation period of II 9.7 days the second order Fourier harmonic is identified with the second overtone. At periods II > 10 days the second order Fourier harmonic tends to be attracted by the fundamental mode in such a way that their phases coincide in the outer layers of the stellar envelope.  相似文献   

15.
Recent developments in the theory of instability by magnetic buoyancy are discussed in an astrophysical context and, where appropriate, extended to provide a more unified picture. Emphasis is placed on the effects of density stratification and rotation, which are usually stabilizing. In one strongly-stratified and rapidly-rotating parameter régime, however, it is possible to render a magnetic field configuration unstable by increasing the statically-stable stratification, although increasing it beyond a certain limit eventually stabilizes the system, as one would intuitively expect.We find that stratification exerts a strongly stabilizing influence in the solar radiative interior, despite the high thermal diffusivity . Rotation plays a rather minor role. We emphasize the importance of a doubly-diffusive parameter D * involving the ratio of to , the magnetic diffusivity, and find that magnetic buoyancy instability typically requires field strengths in excess of about 50 000 G. The development time ties in with the rise-time of buoyant flux tubes in a stably-stratified environment calculated by Parker (1974, 1975). A reasonable gradient of molecular weight in the central core could only stabilize a (mainly) toroidal field strong enough to affect the neutrino flux if the magnetic diffusivity were rather smaller than is usually supposed, for otherwise such a field would be subject to either a doubly-diffusive magnetic instability, which would initially take the form of overstable buoyancy oscillations, or rapid ohmic decay.In the solar convection zone we find that the rotation of the Sun has an extremely strong and suppressing influence on magnetic buoyancy instability, and that this is only likely to occur for large field strengths of about 1000 G in the top half of the zone.  相似文献   

16.
It is shown that, at neutral points of force-free magnetic fields, the electric current density must vanish. This property is independent of whether the neutral points are isolated or (e.g.) fill lines or surfaces. One implication is the fact that in a cold pressureless plasma the formation of neutral current sheets cannot be adiabatically slow. The field-line topology in the neighbourhood of neutral points is discussed. At neutral points of force-free magnetic fields in general three constant- surfaces, defined by the equation ×B=B, with the same value of intersect orthogonally. If, during a time-development, the magnetic field gradient matrix B i/x j becomes singular at a neutral point, the field topology can change qualitatively — in general connected with the merger of two or more neutral points into one and/or the splitting up of one neutral point into several others. This can be interpreted as implying the transition from a quasi-static evolution to a dynamical state in which magnetic energy is released.  相似文献   

17.
The object of this paper is to investigate the behavior of a magnetic field in a viscous fluid cosmological model. It has been assumed that the expansion () is proportional to the eigenvalue 1 of the shear tensor i j and the coefficient of shearing viscosity is proportional to the scalar of expansion. The paper also discusses the behavior of the model when the magnetic field tends to zero and comments on some other physical properties.  相似文献   

18.
Some peculiarities in the behaviour of a model self-gravitating system described by hydrodynamical equations and isothermal equation of state connected with the presence of thermodynamical fluctuations in real systems were investigated in numerical experiment. The values of density and velocity , , respectively, were computed by numerical code perturbed on each time-step and in each computational cell by random values , for modeling such fluctuations. Perturbed values i = i + i ,v i = i + v i were used to initiate the next step of computations. This procedure is equivalent to an introduction into original hydrodynamical equations of Langevin sources which are random functions. It is shown that these small fluctuations (= v =0,2 =v 2 = 10–8) grow many times in marginally-stable state.  相似文献   

19.
Makarov  V.I.  Tlatov  A.G.  Callebaut  D.K.  Obridko  V.N. 《Solar physics》2002,206(2):383-399
Lockwood, Stamper, and Wild (1999) argued that the average strength of the magnetic field of the Sun has doubled in the last 100 years. They used an analysis of the geomagnetic index aa. We calculated the area of polar zones of the Sun, A pz, occupied by unipolar magnetic field on H synoptic magnetic charts, following Makarov (1994), from 1878 to 2000. We found a gradual decrease of the annual minimum latitude of the high-latitude zone boundaries, 2m, of the global magnetic field of the Sun at the minimum of activity from 53° in 1878 down to 38° in 1996, yielding an average decrease of 1.2° per cycle. Consequently the area of polar zones A pz of the Sun, occupied by unipolar magnetic field at the minimum activity, has risen by a factor of 2 during 1878–1996. This means that the behavior of the index aa and consequently the magnetic flux from the Sun may be explained by an increase of the area of polar caps with roughly the same value of the magnetic field in this period. The area of the unipolar magnetic field at the poles (A pz) may be used as a new index of magnetic activity of the Sun. We compared A pz with the aa, the Wolf number W and A* -index (Makarov and Tlatov, 2000). Correlations based on `11-year' averages are discussed. A temperature difference of about 1° between the Maunder Minimum and the present time was deduced. We have found that the highest latitude of the polar zone boundaries of the large-scale magnetic field during very low solar activity reaches about 60°, cf., the Maunder Minimum. It is supposed that the 2m-latitude coincides with the latitude where r=0, with (r,) being the angular frequency of the solar rotation. The causes of the waxing and waning of the Sun's activity in conditions like Maunder Minimum are discussed.  相似文献   

20.
I give an interpretation of a result of Simpsonet al. (1988) on the variation with kinetic energyT i of the mean pathlengthX m (T i ) of the galactic cosmic rays (CGRs) in the range 0.1T i 10.0 GeV nucl–1. I argue that the data onX m (T i ) may be interpreted in terms of a model of GCR diffusion on the one-dimensional Alfvén-wave turbulence, having a cutoff in the spectrum at frequencies h , where h is the proton gyrofrequency. The cutoff results in changing of the character of variation of the GCR diffusion coefficientD(T i )T a in the rangeT i 1 GeV nucl–1 towards some more complicated variation at 0.1T i 1.0 GeV nucl–1 due to the peculiarities of the pitch-angle scattering at 900.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号