首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most studies using GRACE (Gravity Recovery and Climate Experiment) data for examining water storage anomalies have rich hydrogeological databases. Here, GRACE data are analyzed for southern Mali, Africa, a region with sparse hydrogeological data. GRACE data (2002?C2008) did not overlap with observed groundwater-level data (1982?C2002). Terrestrial water storage from GRACE was corrected for soil moisture using the Global Land Data Assimilation System (GLDAS) model to obtain monthly groundwater storage anomalies and annual net recharge. Historical storage anomalies and net recharge were determined using the water-table fluctuation method for available observation wells. Average annual net recharge averaged 149.1?mm (or 16.4% of annual rainfall) and 149.7?mm (14.8%) from historical water level and GRACE data, respectively. Monthly storage anomaly lows and peaks were observed in May and September, respectively, but have a shift in peak to November using the corrected GRACE data, suggesting that the GLDAS model may poorly predict the timing of soil-water storage in this region. Notwithstanding problems with the GLDAS model, the soil moisture-corrected GRACE data accurately predict the relative timing and magnitude of groundwater-storage changes, suggesting that GRACE data are valuable for identifying long-term regional changes in groundwater storage in areas with sparse hydrogeological data.  相似文献   

2.
Terrestrial water storage (TWS), a sum total of water stored on or beneath the earth’s surface, transits in response to hydroclimatic processes such as precipitation, evapo-transpiration, runoff etc. and serves an indicator of hydrological condition of a region. We analyse spatio-temporal variance of water storage in Krishna Basin, India, derived from in-situ groundwater data and Gravity Recovery and Climate Experiment (GRACE) satellite data in order to determine physical causes of variations, and compare the variance with climatic factors such as Cumulative Rainfall Departure (CRD) and drought index i.e. Standardized Precipitation Index (SPI). GRACE satellite based TWS is found to reflect insitu groundwater changes and also shows a relationship with drought patterns as indicated by a good correlation with SPI. The largest part of TWS represents seasonal flux, and at an interannual scale, TWS depicts spatio-temporal variability in response to drought index viz. SPI. We infer that the groundwater storage derived from GRACE time-variable gravity solutions can be utilised to complement in-situ observations at basin scale and it reflects climatic forcing quite well.  相似文献   

3.
The applicability of the Gravity Recovery and Climate Experiment (GRACE) to adequately represent broad-scale patterns of groundwater storage (GWS) variations and observed trends in groundwater-monitoring well levels (GWWL) is examined in the Canadian province of Alberta. GWS variations are derived over Alberta for the period 2002–2014 using the Release 05 (RL05) monthly GRACE gravity models and the Global Land Data Assimilation System (GLDAS) land-surface models. Twelve mean monthly GWS variation maps are generated from the 139 monthly GWS variation grids to characterize the annual GWS variation pattern. These maps show that, overall, GWS increases from February to June, and decreases from July to October, and slightly increases from November to December. For 2002–2014, the GWS showed a positive trend which increases from west to east with a mean value of 12 mm/year over the province. The resulting GWS variations are validated using GWWLs in the province. For the purpose of validation, a GRACE total water storage (TWS)-based correlation criterion is introduced to identify groundwater wells which adequately represent the regional GWS variations. GWWLs at 36 wells were found to correlate with both the GRACE TWS and GWS variations. A factor f is defined to up-scale the GWWL variations at the identified wells to the GRACE-scale GWS variations. It is concluded that the GWS variations can be mapped by GRACE and the GLDAS models in some situations, thus demonstrating the conditions where GWS variations can be detected by GRACE in Alberta.  相似文献   

4.
Wei  Changshou  Du  Zhixing  Zhou  Maosheng  Zhang  Minggang  Sun  Yuchao  Liu  Yuzhen 《Hydrogeology Journal》2023,31(4):967-983

The combination of GRACE and hydrological models is widely used for quantification and time-varying analysis of groundwater storage, and several signal-processing tools have been adopted in recent years. However, the popular empirical models constrained by a priori functions, such as least squares fitting, cannot comprehensively reveal the transient variation of nonlinear or nonstationary signal sequences. An emerging self-adaptive signal-processing tool named extreme-point symmetric mode decomposition (ESMD), used with independent component analysis (ICA), has been applied to investigate spatiotemporal characteristics of GRACE-derived groundwater storage (GWS) change in the Murray-Darling Basin, Australia. Although ESMD is firstly applied to GRACE signal analysis, the result is effective and credible. ESMD can explore finer periodic components than the least-squares fitting, and the adaptive ESMD method can more sensitively estimate transient trend change and anomalies in nonlinear or nonstationary signals compared with a priori models. These findings coincide well with hydrometeorological conditions, such as “the Millennium Drought” in Australia’s mainland and the 2010–2012 La Niña event. ICA can also separate the relative independent components of groundwater storage change and qualitatively investigate the spatial weights with corresponding time coefficients. The results suggest that rainfall may be the main input source or influencing factor of groundwater circulation. Contrasting long-term trends between the northern and southern parts of the basin are attributed to the diverse physical mechanism of discharge and recharge related to spatial distribution of surface-water bodies. Although with distinct working principles, the cooperative application of ESMD and ICA can provide cross-supported and complementary conclusions from different perspectives.

  相似文献   

5.
Groundwater pumping and changes in climate-induced recharge lead to lower groundwater levels and significant changes in the water balance of a catchment. Water previously discharged as evapotranspiration can become a source of pumpage. Neglecting this effect leads to overestimated streamflow depletion. A small river basin (Sudogda River Basin, Russia) with a boreal climate and with long-term records of groundwater head and streamflow rate (showing that the measured stream depletion is less than the pumping rate) was investigated. The role of evapotranspiration in the water balance was analyzed by a hydrogeological model using MODFLOW-2005 with the STR package; the annual variation in recharge was obtained with the codes Surfbal and HYDRUS. The Sudogda River Basin was classified according to landscape and unsaturated-zone texture classes, and for each classified zone, the unsaturated-zone flow simulation was used to calculate the annual recharge dynamics for the observation period. Calibration of the regional flow model was conducted using flow and head observations jointly for two steady-state flow conditions—natural (before pumping started) and stressed (pumping). The simulations showed that pumped water originates from three sources: intercepted baseflow (75% of the annual total pumping rate), the capture of groundwater evapotranspiration discharge plus increased groundwater recharge (17%), and induced stream infiltration (8%). Additionally, multi-year precipitation records were analyzed to detect any long-term recharge and pumping water-budget changes. The results showed that increasing groundwater recharge by natural precipitation leads to (1) decreased intercepted baseflow and induced streamflow infiltration and (2) increased intercepted evapotranspiration discharge, thereby reducing stream depletion.  相似文献   

6.
This study aims to estimate artificial recharge of groundwater by using remote sensing technology, geographical information systems, and groundwater surveys. This study is part of the King Fahd project for rainfall and runoff water harvesting, within the premises of Alilb Dam in Diriyah to the west of Riyadh. Digital elevation models were obtained with the help of aerial photography from the year 2007. These models were used to delineate watershed. Average rainfall was calculated using isoheytal method, and the area of each of the storage lakes was measured using SPOT 5 satellite images from 2007. Fluctuations in groundwater levels, evaporation, and infiltration rates were used to determine the water balance for the purpose of estimating of artificial recharge. Artificial recharge rates were found to surpass natural recharge from rainfall. Recharge wells caused a reduction in the effect of evaporation on storage lakes and helped in supplying water to the groundwater reservoir. Moreover, 80% and 86% of the rainwater was found to be available for artificial recharge in Alilb at 2005 and 2007, respectively. The study recommends the establishment of strategic projects for water storage using artificial recharge wells, an increase in the number of monitoring wells around the dams, and the monitoring of hydrochemical changes in groundwater both before and after the artificial recharge. It also recommends the erection of a weather station in the northwest of Wadi Hanifa.  相似文献   

7.
降水入渗补给量随地下水埋深变化的实验研究   总被引:1,自引:0,他引:1  
李亚峰  李雪峰 《水文》2007,27(5):58-60,48
利用冉庄8m定埋深地中蒸渗仪的观测资料,根据蓄满产流理论,采用分层计算还原的方法,研究降水入渗补给量随地下水埋深的变化规律。揭示了最佳埋深和稳定点的形成机理。在试验条件下,最佳埋深出现在3m左右,降水入渗补给量随地下水埋深的增大而减小,6m以后趋于稳定。  相似文献   

8.
We have jointly analysed space gravimetry data from the GRACE space mission, satellite altimetry data and precipitation over the East African Great Lakes region, in order to study the spatiotemporal variability of hydrological parameters (total water storage, lake water volume and rainfall). We find that terrestrial water storage (TWS) from GRACE and precipitation display a common mode of variability at interannual time scale, with a minimum in late 2005, followed by a rise in 2006–2007. We argue that this event is due to forcing by the strong 2006 Indian Ocean Dipole (IOD) on East African rainfall. We also show that GRACE TWS is linked to the El Niño-Southern Oscillation cycle. Combination of the altimetry-based lake water volume with TWS from GRACE over the lakes drainage basins allows estimating soil moisture and groundwater volume variations. Comparison with the WGHM hydrological model outputs is performed and discussed.  相似文献   

9.
It is important to understand how groundwater recharge responds to precipitation variability in space and time, especially in those areas such as Yanqing Basin (China), where groundwater represents the sole water resource. A simple soil-water balance method is applied for spatio-temporal simulation of groundwater recharge in Yanqing Basin from 1981 to 2000. It was implemented on a monthly time step considering the effects of land use and soil texture. The area-average recharge associated with various land uses and soil textures was then compared with zonal analysis using a geographic information system (GIS). The main findings include: (1) the variation of groundwater recharge follows precipitation changes, either at yearly or seasonal intervals, (2) land use plays a more influential role in groundwater recharge than soil texture in this area, and (3) the water table quickly rises in response to recharge in the shallow parts of the aquifer, while there is a delay of 0.5–1.0?years where the groundwater level is at depth 4–10?m. The application demonstrates how spatio-temporal analysis can be utilized for groundwater-recharge estimation through distributed modeling and GIS.  相似文献   

10.
The study analyzes drought using Standardized Precipitation Index (SPI) and Mann-Kendall (MK) Trend Test in the context of the impacts of drought on groundwater table (GWT) during the period 1971-2011 in the Barind area, Bangladesh. The area experienced twelve moderate to extreme agricultural droughts in the years 1972, 1975, 1979, 1982, 1986, 1989, 1992, 1994, 2003, 2005, 2009 and 2010. Some of them coincide with El Niño events. Hydrological drought also occurred almost in the same years. However, relationship between all drought events and El Niño is not clear. Southern and central parts of the area frequently suffer from hydrological drought, northern part is affected by agricultural drought. Trends in SPI values indicate that the area has an insignificant trend towards drought, and numbers of mild and moderate drought are increasing. GWT depth shows strong correlation with rainy season SPI values such that GWT regaining corresponds with rising SPI values and vice versa. However, 2000 onwards, GWT depth is continuously increasing even with positive SPI values. This is due to over-exploitation of groundwater and changes in cropping patterns. Agricultural practice in Barind area based on groundwater irrigation is vulnerable to drought. Hence, adaptation measures to minimize effects of drought on groundwater ought to be taken.  相似文献   

11.

There is a scarcity of long-term groundwater hydrographs from sub-Saharan Africa to investigate groundwater sustainability, processes and controls. This paper presents an analysis of 21 hydrographs from semi-arid South Africa. Hydrographs from 1980 to 2000 were converted to standardised groundwater level indices and rationalised into four types (C1–C4) using hierarchical cluster analysis. Mean hydrographs for each type were cross-correlated with standardised precipitation and streamflow indices. Relationships with the El Niño–Southern Oscillation (ENSO) were also investigated. The four hydrograph types show a transition of autocorrelation over increasing timescales and increasingly subdued responses to rainfall. Type C1 strongly relates to rainfall, responding in most years, whereas C4 notably responds to only a single extreme event in 2000 and has limited relationship with rainfall. Types C2, C3 and C4 have stronger statistical relationships with standardised streamflow than standardised rainfall. C3 and C4 changes are significantly (p <?0.05) correlated to the mean wet season ENSO anomaly, indicating a tendency for substantial or minimal recharge to occur during extreme negative and positive ENSO years, respectively. The range of different hydrograph types, sometimes within only a few kilometres of each other, appears to be a result of abstraction interference and cannot be confidently attributed to variations in climate or hydrogeological setting. It is possible that high groundwater abstraction near C3/C4 sites masks frequent small-scale recharge events observed at C1/C2 sites, resulting in extreme events associated with negative ENSO years being more visible in the time series.

  相似文献   

12.
Meteorological impacts of El Niño events of 1982–1983 and 1997–1998 were observed in locations throughout the world. In southern Brazil, El Niño events are associated with increased rainfall and higher freshwater discharge into Patos Lagoon, a large coastal lagoon that empties into the Atlantic Ocean. Based on interdecadal meteorological and biological data sets encompassing the two strongest El Niño events of the last 50 yr, we evaluated the hypothesis that El Niño-induced hydrological changes are a major driving force controlling the interannual variation in the structure and dynamics of fishes in the Patos Lagoon estuary. High rainfall in the drainage basin of the lagoon coincided with low salinity in the estuarine area during both El Niño episodes. Total rainfall in the drainage basin was higher (767 versus 711 mm) and near-zero salinity conditions in the estuarine area lasted about 3 mo longer during the 1997–1998 El Niño event compared with the 1982–1983 event. Hydrological changes triggered by both El Niño events had similar relationships to fish species composition and diversity patterns, but the 1997–1998 event appeared to have stronger effects on the species assemblage. Although shifts in species composition were qualitatively similar during the two El Niño events, distance between El Niño and non-El Niño assemblage multivariate centroids was greater during the 1996–2000 sampling period compared with the 1979–1983 period. We provide a conceptual model of the principal mechanisms and processes connecting the atmospheric-oceanographic interactions triggered by the El Niño phenomena and their effect on the estuarine fish assemblage.  相似文献   

13.
Space-borne geodetic sensors and model-based datasets have been used to monitor groundwater changes in the Yangtze River basin (YRB). Groundwater storage variations were computed using the following datasets:? Gravity Recovery and Climate Experiment (GRACE)-derived terrestrial water storage (TWS),? Noah driven Global Land Data Assimilation System (GLDAS-Noah) model to simulate the total water content (TWC) i.e. soil moisture, ice and snow, and canopy water storage, and? Satellite altimetry-observed surface water reservoir storages.Overall, the results show that groundwater in the YRB rose by at least 3.34 km3/yr between January 2003 and December 2009. However, the estimated groundwater linear trend for the period of 2003–2009 was ?0.95 km3/yr according to the Changjiang and Southwest Rivers Water Resource Bulletin (CJSRWB). An analysis of the methodology of the CJSRWB shows that the groundwater estimate was based on the water balance approach, which has been found to be weak in inter-basin sub-surface flow. The GRACE-estimated groundwater rise is larger and suggests that the YRB is affected by seepage from Tibetan lakes through a sub-surface fault. Additionally, there is evidence showing that water loss from the Yangtze River by underground leakage through faults could also be a cause of the difference. Therefore, it is concluded that further investigation is required to determine the causation.  相似文献   

14.
The effects of rainfall and the El Niño Southern Oscillation (ENSO) on groundwater in a semi-arid basin of India were analyzed using Archimedean copulas considering 17 years of data for monsoon rainfall, post-monsoon groundwater level (PMGL) and ENSO Index. The evaluated dependence among these hydro-climatic variables revealed that PMGL-Rainfall and PMGL-ENSO Index pairs have significant dependence. Hence, these pairs were used for modeling dependence by employing four types of Archimedean copulas: Ali-Mikhail-Haq, Clayton, Gumbel-Hougaard, and Frank. For the copula modeling, the results of probability distributions fitting to these hydro-climatic variables indicated that the PMGL and rainfall time series are best represented by Weibull and lognormal distributions, respectively, while the non-parametric kernel-based normal distribution is the most suitable for the ENSO Index. Further, the PMGL-Rainfall pair is best modeled by the Clayton copula, and the PMGL-ENSO Index pair is best modeled by the Frank copula. The Clayton copula-based conditional probability of PMGL being less than or equal to its average value at a given mean rainfall is above 70% for 33% of the study area. In contrast, the spatial variation of the Frank copula-based probability of PMGL being less than or equal to its average value is 35–40% in 23% of the study area during El Niño phase, while it is below 15% in 35% of the area during the La Niña phase. This copula-based methodology can be applied under data-scarce conditions for exploring the impacts of rainfall and ENSO on groundwater at basin scales.  相似文献   

15.
The Kucuk Menderes River Basin in western Turkey has been facing continuous groundwater-level decline for decades. Previous studies have suggested that, to avoid aquifer depletion in the basin, artificial recharge structures should be constructed. To assess artificial aquifer recharge potential in one of the subbasins, a two-dimensional (2-D) groundwater model was set up using SEEP/W software. The material functions and parameters used in the model for both saturated and unsaturated conditions were taken from previous studies. The model has been calibrated under transient conditions. The excess runoff volume that could be collected in the recharge basins was estimated from flood frequency analysis. Various scenarios were simulated to observe the change in groundwater level and storage with respect to different exceedance probabilities. Simulation results suggest that a significant increase in groundwater storage is achieved by applying surface artificial-recharge methods. In addition to the recharge basins, to reinforce the effect of artificial recharge, simulations are repeated with underground dam construction at the downstream side of the basin. Although groundwater storage is increased with the addition of the dam, the increase in groundwater storage was not sufficient to warrant the construction.  相似文献   

16.
Temporal and spatial changes of the hydrological cycle are the consequences of climate variations. In addition to changes in surface runoff with possible floods and droughts, climate variations may affect groundwater through alteration of groundwater recharge with consequences for future water management. This study investigates the impact of climate change, according to the Special Report on Emission Scenarios (SRES) A1B, A2 and B1, on groundwater recharge in the catchment area of a fissured aquifer in the Black Forest, Germany, which has sparse groundwater data. The study uses a water-balance model considering a conceptual approach for groundwater-surface water exchange. River discharge data are used for model calibration and validation. The results show temporal and spatial changes in groundwater recharge. Groundwater recharge is progressively reduced for summer during the twenty-first century. The annual sum of groundwater recharge is affected negatively for scenarios A1B and A2. On average, groundwater recharge during the twenty-first century is reduced mainly for the lower parts of the valley and increased for the upper parts of the valley and the crests. The reduced storage of water as snow during winter due to projected higher air temperatures causes an important relative increase in rainfall and, therefore, higher groundwater recharge and river discharge.  相似文献   

17.
《Atmósfera》2014,27(2):103-115
This study examined precipitation in southern Brazil based on a data set provided by the Brazilian National Water Agency, covering the period from 1976 to 2010. Data were homogenized using the R software and the Climatol subroutine, which allow completing missing data. Isohyets were drawn using the Geostatistics software to obtain a semivariogram for each analysis. There was a remarkable interannual variability in this region, with positive anomalies in the warm phase (El Niño) and negative anomalies in the cold phase (La Niña) of ENSO. Also, the responses of this variability were not uniform in the entire region, since there was variability from year to year and from event to event.  相似文献   

18.
内蒙古临河区地下水补径排特征及动态变化规律   总被引:1,自引:0,他引:1       下载免费PDF全文
查明地下水的补给、径流、排泄特征及动态变化规律,可为地下水资源开发与保护提供科学依据。通过长期观测内蒙古临河区地下水变化,综合研究前人资料,分析该区地下水补给、径流和排泄特征及动态变化规律。该区属于河套灌区,人类灌溉活动对地下水的补给占全部补给量的65.5%; 人工开采及排干沟排泄等人为因素排泄占排泄总量的67.7%。通过分析该区年内地下水动态变化趋势,认为该区灌溉区地下水位动态与灌溉活动一致,城区地下水位动态主要受人工开采活动影响。  相似文献   

19.
Thunderstorms are of much importance in tropics, as this region is considered to have central role in the convective overturn of the atmosphere and play an important role in rainfall activity. It is well known that El Niño and La Niña are well associated with significant climate anomalies at many places around the globe. Therefore, an attempt is made in this study to analyze variability in thunderstorm days and rainfall activity over Indian region and its association with El Niño and La Niña using data of thunderstorm day’s for 64 stations well distributed all over India for the period 1981–2005 (25 years). It is seen that thunderstorm activity is higher and much variable during pre-monsoon (MAM) and southwest monsoon (JJAS) than the rest of the year. Positive correlation coefficients (CCs) are seen between thunderstorms and rainfall except for the month of June during which the onset of the southwest monsoon sets over the country. CCs during winter months are highly correlated. Composite anomalies in thunderstorms during El Niño and La Niña years suggest that ENSO conditions altered the patterns of thunderstorm activity over the country. Positive anomalies are seen during pre-monsoon (MAM) and southwest monsoon months (JAS) during La Niña years. Opposite features are seen in southwest monsoon during El Niño periods, but El Niño favors thunderstorm activity during pre-monsoon months. There is a clear contrast between the role of ENSO during southwest monsoon and post-monsoon on thunderstorm activity over the country. Time series of thunderstorms and precipitation show strong association with similarities in their year-to-year variation over the country.  相似文献   

20.
Zheng  Gang  Li  Qinghan  Cheng  Xuesong  Liu  Xiaomin  Jia  Jianwei  Jiao  Ying  Ha  Da 《Hydrogeology Journal》2023,31(4):947-965

Artificial recharge is an effective remediation measure for controlling groundwater level and subsidence in many coastal cities in China. Hydraulic parameters estimated by pumping tests are often used in the design of both pumping and recharge systems. However, the hydraulic parameters in the recharge process have been found to differ from those in the pumping process and should be studied in greater detail. Eight single-well pumping and recharge tests were conducted within a confined aquifer in a soft soil area in the city of Tianjin, and the differences in wellbore storage influences and well losses between the recharge and pumping processes were examined. Furthermore, based on the Hantush and Jacob model, an algorithm combining the Levenberg–Marquardt algorithm (LMA) and genetic algorithm (GA) was employed for estimation of the hydraulic parameters. The results illustrated that the combined algorithm eliminating wellbore storage influences could provide hydraulic parameters from which the groundwater level variation could be accurately simulated. The hydraulic conductivity and specific storage values obtained in the pumping tests were higher than those obtained in the recharge tests. In addition to slight plugging of the recharge well, the specific storage differences could be explained by the compression and rebound deformation characteristics of sand in the confined aquifer. The specific storage estimated by pumping tests should be adjusted when applied in groundwater recharge calculation.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号