首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Lawrence Livermore National Laboratory (LLNL) uses a cost-effective sampling (CES) methodology to evaluate and review ground water contaminant data and optimize the site's ground water monitoring plan. The CES methodology is part of LLNL's regulatory approved compliance monitoring plan (Lamarre et al. 1996). It allows LLNL to adjust the ground water sampling plan every quarter in response to changing conditions at the site. Since the use of the CES methodology has been approved by the appropriate regulatory agencies, such adjustments do not need additional regulatory approval. This permits LLNL to respond more quickly to changing conditions. The CES methodology bases the sampling frequency for each location on trend, variability, and magnitude statistics describing the contaminants at that location, and on the input of the technical staff (hydrologists, chemists, statisticians, and project leaders). After initial setup is complete, each application of CES takes only a few days for as many as 400 wells. Effective use of the CES methodology requires sufficient data, an understanding of contaminant transport at the site, and an adequate number of monitoring wells downgradient of the contamination. The initial implementation of CES at LLNL in 1992 produced a 40% reduction in the required number of annual routine ground water samples at LLNL. This has saved LLNL $390,000 annually in sampling, analysis, and data management costs.  相似文献   

2.
The vapor intrusion impacts associated with the presence of chlorinated volatile organic contaminant plumes in the ground water beneath residential areas in Colorado and New York have been the subject of extensive site investigations and structure sampling efforts. Large data sets of ground water and indoor air monitoring data collected over a decade-long monitoring program at the Redfield, Colorado, site and monthly ground water and structure monitoring data collected over a 19-month period from structures in New York State are analyzed to illustrate the temporal and spatial distributions in the concentration of volatile organic compounds that one may encounter when evaluating the potential for exposures due to vapor intrusion. The analysis of these data demonstrates that although the areal extent of structures impacted by vapor intrusion mirrors the areal extent of chlorinated volatile organic compounds in the ground water, not all structures above the plume will be impacted. It also highlights the fact that measured concentrations of volatile organic compounds in the indoor air and subslab vapor can vary considerably from month to month and season to season. Sampling results from any one location at any given point in time cannot be expected to represent the range of conditions that may exist at neighboring locations or at other times. Recognition of this variability is important when designing sampling plans and risk management programs to address the vapor intrusion pathway.  相似文献   

3.
Robowell is an automated process for monitoring selected ground water quality properties and constituents by pumping a well or multilevel sampler. Robowell was developed and tested to provide a cost-effective monitoring system that meets protocols expected for manual sampling. The process uses commercially available electronics, instrumentation, and hardware, so it can be configured to monitor ground water quality using the equipment, purge protocol, and monitoring well design most appropriate for the monitoring site and the contaminants of interest. A Robowell prototype was installed on a sewage-treatment plant infiltration bed that overlies a well-studied u neon fined sand and gravel aquifer at the Massachusetts Military Reservation, Cape Cod, Massachusetts, during a time when two distinct plumes of constituents were released. The prototype was operated from May 10 to November 13, 1996, and quality-assurance/quality-control measurements demonstrated that the data obtained by the automated method was equivalent to data obtained by manual sampling methods using the same sampling protocols. Water level, specific conductance, pH, water temperature, dissolved oxygen, and dissolved ammonium were monitored by the prototype as the wells were purged according to U.S. Geological Survey (LJSGS) ground water sampling protocols. Remote access to the data record, via phone modem communications, indicated the arrival of each plume over a few days and the subsequent geochemical reactions over the following weeks. Real-time availability of the monitoring record provided the information needed to initiate manual sampling efforts in response to changes in measured ground water quality, which proved the method and characterized the screened portion of the plume in detail through time. The methods and the case study described are presented to document the process for future use.  相似文献   

4.
Ground water at the Norman Landfill Research Site is contaminated by a leachate plume emanating from a closed, unlined landfill formerly operated by the city of Norman, Oklahoma, Ground water contaminated by the leachate plume is known to be elevated in the concentration of many, organic and inorganic constituents. Specific conductance, alkalinity, chloride, dissolved organic carbon, boron, sodium, strontium, and deuterium in ground water are considered to be indicators of the leachate plume at this site.
Leaf samples of broad-leafed cottonwood, Populus deltoides , were collected from 57 sites around the closed landfill. Cottonwood, a phreatophyte or "well plant," functions as a & surrogate well and serves as a ground water quality sampler. The leaf samples were combusted to ash and analyzed by instrumental neutron activation for 35 elements and by prompt-gamma instrumental neutron activation, for boron. A monitoring well was located within a few meters of a sampled cottonwood tree at 15 of the 57 sites, and ground water samples were collected from these monitoring wells simultaneously with a leaf sample. The chemical analyses of the ground water and leaf samples from these 15 sites indicated that boron, bromine, sodium, and strontium concentrations in leaves were significantly correlated with leachate indicator constituents in ground water. A point-plot map of selected percentiles indicated high concentrations of boron, bromine, and sodium in leaf ash from sites downgradient of the most recent landfill and from older landfills nearby.
Data from leaf analysis greatly extended the known areal extent of the leachate plume previously determined from a network of monitoring wells and geophysical surveys. This phytosgeochemical study provided a cost-effective method for assessing the extent of a leachate plume from an old landfill. Such a method may be useful as a preliminary sampling tool to guide the design of hydrogeochemical and geophysical studies.  相似文献   

5.
A simple, effective method for the installation and sampling of vertically discrete points in a dynamic beach environment was developed and tested on the eastern shore of Lake Michigan, The installation permitted the vertical resolution of a ground water plume discharging to the lake and allowed monitoring of temporal variations during relatively calm and stormy periods of the year. These installations permit the definition of vertical heterogeneities such as oxidation-reduction conditions and geochemical characteristics that are expected to impact the transport and fate of ground water contaminants discharged to the surface water.  相似文献   

6.
The screened auger is a laser-slotted, hollow-stem auger through which a representative sample of ground water is pumped from an aquifer and tested for water-quality parameters by appropriate field-screening methods. Screened auger sampling can be applied to ground water quality remedial investigations, providing:(1) a mechanism for determining a monitoring well's optimal screen placement in a contaminant plume; and (2) data to define the three-dimensional configuration of the contaminant plume.
Screened auger sampling has provided an efficient method for investigating hexavalent chromium and volatile organic compound contamination in two sandy aquifers in Cadillac, Michigan. The aquifers approach 200 feet in thickness and more than 1 square mile in area. A series of screened auger borings and monitoring wells was installed, and ground water was collected at 10-foot intervals as the boreholes were advanced to define the horizontal and vertical distribution of the contaminant plumes. The ability of the screened auger to obtain representative ground water samples was supported by the statistical comparison of field screening results and subsequent laboratory analysis of ground water from installed monitoring wells.  相似文献   

7.
Spatial interpolation methods for nonstationary plume data   总被引:1,自引:0,他引:1  
Plume interpolation consists of estimating contaminant concentrations at unsampled locations using the available contaminant data surrounding those locations. The goal of ground water plume interpolation is to maximize the accuracy in estimating the spatial distribution of the contaminant plume given the data limitations associated with sparse monitoring networks with irregular geometries. Beyond data limitations, contaminant plume interpolation is a difficult task because contaminant concentration fields are highly heterogeneous, anisotropic, and nonstationary phenomena. This study provides a comprehensive performance analysis of six interpolation methods for scatter-point concentration data, ranging in complexity from intrinsic kriging based on intrinsic random function theory to a traditional implementation of inverse-distance weighting. High resolution simulation data of perchloroethylene (PCE) contamination in a highly heterogeneous alluvial aquifer were used to generate three test cases, which vary in the size and complexity of their contaminant plumes as well as the number of data available to support interpolation. Overall, the variability of PCE samples and preferential sampling controlled how well each of the interpolation schemes performed. Quantile kriging was the most robust of the interpolation methods, showing the least bias from both of these factors. This study provides guidance to practitioners balancing opposing theoretical perspectives, ease-of-implementation, and effectiveness when choosing a plume interpolation method.  相似文献   

8.
Cone penetrometer tests and HydroPunch® sampling were used to define the extent of volatile organic compounds in ground water. The investigation indicated that the combination of these techniques is effective for obtaining ground water samples for preliminary plume definition. HydroPunch samples can be collected in unconsolidated sediments and the analytical results obtained from these samples are comparable to those obtained from adjacent monitoring wells. This sampling method is a rapid and cost-effective screening technique for characterizing the extent of contaminant plumes in soft sediment environments. Use of this screening technique allowed monitoring wells to be located at the plume boundary, thereby reducing the number of wells installed and the overall cost of the plume definition program.  相似文献   

9.
A natural gradient tracer test using perdeuterated MTBE was conducted in an anaerobic aquifer to determine the relative importance of dispersion and degradation in reducing MTBE concentrations in ground water. Preliminary ground water chemistry and hydraulic conductivity data were used to place the tracer within an existing dissolved MTBE plume at Port Hueneme, California. Following one year of transport, the tracer plume was characterized in detail.
Longitudinal dispersion was identified as the dominant mechanism for lowering the perdeuterated MTBE concentrations. The method of moments was used to determine the longitudinal and lateral dispersion coefficients (0.85 m2/day and 0.08 m2/day, respectively). A mass-balance analysis, carried out after one year of transport, accounted for 110% of the injected mass and indicated that no significant mass loss occurred. The plume structure created by zones of higher and lower hydraulic conductivity at the site was complex, consisting of several localized areas of high tracer concentration in a lower concentration plume. This is important because the aquifer has generally been characterized as exhibiting fairly minor heterogeneity. In addition, the tracer plume followed a curved flowpath that deviated from the more macroscopic direction of ground water flow inferred from local ground water elevation measurements and the behavior of the existing plume. Understanding the mass balance, plume structure, curvature of the tracer plume, and consequently natural attenuation behavior required the detailed sampling approach employed in this study. These data imply that a detailed understanding of site hydrogeology and an extensive sampling network may be critical for the correct interpretation of monitored natural attenuation of MTBE.  相似文献   

10.
The recognition and assurance of the quality of ground water monitoring data are crucial to the correct assessment of the magnitude and extent of a ground water contamination problem. This article addresses an approach being developed to systematically evaluate the quality of a given set of ground water monitoring data collected during site investigation/ remedial action efforts. The system consists of a checklist of criteria, grouped into four major categories, which can be applied to laboratory or field measurements.
The first category, basis of measurement, considers whether the appropriate sampling, boring and/or analytical methods were chosen to obtain the measurement and the limitations of each method. Secondly, application of the method is assessed. This includes examination of the extent to which procedures were correctly performed, the use of quality control measures and calibration, and possible sources of error in the measurements. Third, evaluation of applied statistical methods is made, with consideration given to which statistics are meaningful in a given context and whether measurements are reproducible. The final category, corroborative information, considers whether independent data or other information are available that add credibility to the values measured.
In this approach, a "high quality" data value is defined as one in which accuracy is supported by meeting the preceding criteria. When accompanied by precision information, high quality data allow for defensible assessments and actions. This evaluation system is useful in developing monitoring programs and in guiding documentation of field and laboratory methods during data collection. It relies heavily on experienced judgment and can be catalyst for the beneficial exchange of knowledge and ideas among ground water professionals.  相似文献   

11.
The progressive packer/zone sampling method was used to identify the bottom of a plume of volatile organic compounds (VOCs) in the parts-per-million (ppm) range using one well in each of three separate locations. The method involves progressively drilling a 20-foot length of borehole through casing, setting an inflatable packer at the top of the drilled zone, purging the zone of three volumes of water using the airlift method, sampling the zone in situ through the packer string using a bailer, then repeating the procedure.
A plume consisting of chlorinated VOCs, alcohols, and vinyl chloride occurs in a low-yielding fractured bedrock aquifer located in the Passaic Formation at a site in central New Jersey. The thickness of the plume in total VOC concentrations exceeding 1 ppm was determined using the progressive packer/zone sampling method to a depth of 200 feet. The first borehole was completed as a monitoring well in the "hottest" zone encountered during testing. Additional wells were then clustered with this exploratory well to delineate the plume in the parts-per-billion (ppb) range. Cross contamination from previously sampled zones was not a problem as long as total VOCs in the ppm range were targeted and the sample interval was properly purged.
Instead of using a multiple well cluster consisting of an indefinite number of wells to determine the bulk thickness of a plume at a specific location, information from one borehole may suffice during the exploratory phase. Costs to the client and cross contamination potential to the aquifer can be minimized by limiting the number of boreholes needed for vertical delineation.  相似文献   

12.
13.
A new methodology is proposed to optimize monitoring networks for identification of the extent of contaminant plumes. The optimal locations for monitoring wells are determined as the points where maximal decreases are expected in the quantified uncertainty about contaminant existence after well installation. In this study, hydraulic conductivity is considered to be the factor that causes uncertainty. The successive random addition (SRA) method is used to generate random fields of hydraulic conductivity. The expected value of information criterion for the existence of a contaminant plume is evaluated based on how much the uncertainty of plume distribution reduces with increases in the size of the monitoring network. The minimum array of monitoring wells that yields the maximum information is selected as the optimal monitoring network. In order to quantify the uncertainty of the plume distribution, the probability map of contaminant existence is made for all generated contaminant plume realizations on the domain field. The uncertainty is defined as the sum of the areas where the probability of contaminant existence or nonexistence is uncertain. Results of numerical experiments for determination of optimal monitoring networks in heterogeneous conductivity fields are presented.  相似文献   

14.
Data from an existing network of ground water monitoring wells at the U.S. Department of Energy (DOE) Hoe Creek Underground Coal Gasification (UCG) Experimental Site indicated that organic contaminants, particularly phenols produced during gasification experiments, were threatening neighboring ground water resources. The existing monitoring well network was sparse and further definition of the extent and direction of contaminant migration was needed. Additionally, water level data, important in determining flow directions, was incomplete. A field program was designed and implemented to locate and define the organic contamination and expand the existing ground water monitoring program. The program utilized field analysis of phenol for contaminant detection and well location, followed by completion using gas-drive ground water samplers/piezometers. Geophysical logging was used to permit optimum placement of the samplers. The geologic aspects of the site posed some interesting problems to the installation of the samplers. The contaminant plume edge was defined in the east, west and south directions during the field program. Further work is needed in the north direction.  相似文献   

15.
Hydrogeologic and ground water quality data obtained from a gas-driven multilevel sampler system and a polyvinyl chloride (PVC) monitoring well nest with the same aquifer communication intervals are compared. All monitoring points are in close proximity to each other. The study was conducted at an eight-acre uncontrolled hazardous waste site. The site is located in an alluvial valley composed of approximately 40 feet of alluvium overlying shale bedrock. The ground water at the site is contaminated with various organic constituents. A ground water monitoring network consisting of 26 conventional monitoring wells, nine observation well points, and six multilevel gas-driven samplers was established to characterize the hydrogeologic regime and define the vertical and horizontal extent of contamination in the vicinity of the abandoned chemical plant. As part of this study, a multilevel monitoring system was installed adjacent to a well nest. The communication zones of the multilevel samplers were placed at the same elevation as the sand packs of the well nest. The multilevel sampler system and well nest are located in a contaminated area directly downgradient of the site. A comparison of the vertical head distribution and ground water quality was performed between the well nest and the multilevel sampling system. The gas-driven multilevel sampling system consists of three gas-driven samplers that monitor separate intervals in the unconsolidated materials. The well nest, composed of two PVC monitoring wells in separate boreholes, has the same communication interval as the other two gas-driven samplers. Hydraulic head information for each multilevel sampler was obtained using capillary tubing. This was compared with heads obtained from the well nest utilizing an electric water level indicator. Chemical analyses from the PVC and multilevel sampler wells were performed and compared with one another. The analyses included organic acids, base neutrals, pesticides, PCBs, metals, volatile organics, TOX, TOC, CN, pH and specific conductance.  相似文献   

16.
Alight nonaqueous phase liquid (LNAPL) ground water contaminant plume has been discovered by purely geophysical means at the former Wurtsmith Air Force Base (AFB) near Oscoda, Michigan. It is located near another plume called FT-02, which is a well-studied area undergoing natural bioremediation. The plume was discovered by ground penetrating radar (GPR) profiling while extending a long line from FT-02 to establish background variability around that plume. The new plume was apparent because of a high-conductivity "shadow' or GPR reflection attenuation observed below the conductive zone at the top of the aquifer, identical to the pattern observed at the FT-02 plume. Further GPR surveys were conducted by students of a Western Michigan University geophysics field course to outline the proximal part of the plume. The GPR survey was supplemented by an electromagnetic induction (EM) survey which showed a group of four cables crossing the area. Finally, a magnetometer survey was conducted to search for any buried steel objects which might have been missed by the EM survey. The results of the three geophysical surveys were then used by students of a University of Michigan field course to guide subsurface soil and fluid sampling, which verified the presence of residual LNAPL product and ground water with conductivities 2.5 to 3.3 times above background. The plume source is in the vicinity of a vaulted underground storage tank (UST) formerly used for the collection of waste solvents and fuels for subsequent use in the fire training exercises at FT-02. This newly discovered LNAPL plume, along with other "mature' plumes, fits the electrical model which predicts conductive ground water below the decomposing but electrically resistive LNAPLs. Finally, this is a fine example of the cooperative use of a dedicated research site for training by students of two different universities.  相似文献   

17.
Multiple working hypotheses can be used to evaluate permissible alternative hydrogeological interpretations at sites with limited subsurface control. This approach was applied to test the viability of three conceptual aquifer system architecture models coupled with three hypothesized source locations for a 1,4-dioxane plume in a heterogeneous glacial aquifer system in Washtenaw County, Michigan. The three alternative conceptual models characterized the site hydrogeology with increasingly complex distributions of hydrostratigraphic units: (A) an effective aquifer, (B) a layered confined aquifer, and (C) a discretely heterogeneous aquifer model. Each was incorporated into an independently calibrated numerical ground water flow (MODFLOW) model. Steady-state and transient flow simulations of the alternative models were evaluated using both hydraulic flow field characteristics observed under natural conditions and the perturbed response after local remedial pumping activity began. Three plausible locations where 1,4-dioxane could have entered the aquifer system were identified using historical information at the site: (1) manufacturing waste water disposal lagoons, (2) a 60 foot (18 m) deep kettle lake, and (3) a shallow impoundment on a local stream. Advective transport modeling (MODPATH) was used to assess the consistency of the hypothesized source locations with observed contaminant migration pathways inferred from the mapped location of the plume. Evaluation of the nine combinations of hydrogeologic conceptualizations and 1,4-dioxane source locations led to elimination of four working hypotheses and discounting of two others, leading to reduced overall uncertainty and the development of new insights into the system behavior.  相似文献   

18.
An abandoned creosote facility in Conroe, Texas, has become a field site for the National Center for Ground Water Research (NCGWR) at Rice University. Ground-water contamination in the shallow aquifer beneath the site was characterized by sampling soils and water quality at 14 monitoring wells and 35 boreholes. Results from six sampling trips over two years for inorganic and organic chemical concentrations in the ground water show wells around the site were contaminated to levels above 800 μg/l for naphthalene, 400 μg/1 for methyl naphthalene, and 150 μg/1 for dibenzofuran. Conservative constituents, traced by chloride concentrations up to 75 mg/l, have migrated 300 ft (90 m) downgradient of the site. Organic contaminants have been adsorbed and microbially degraded in their migration from the waste source as evidenced by their attenuated concentrations. Detailed field pump tests have been performed to evaluate hydraulic conductivity at several of the shallow wells. The U.S. Geological Survey (USGS) Solute Transport Model (Konikow and Bredehoeft, 1978) has been used to predict chloride plume patterns and evaluate parameters which govern transport processes at the Conroe waste site.  相似文献   

19.
The Hydropunch™ is a stainless steel and Teflon® sampling tool that is capable of collecting a representative ground water sample without requiring the installation of a ground water monitoring well. To collect a sample, the Hydropunch (Patent #4669554) is connected to a small-diameter drive pipe and either driven or pushed hydraulically to the desired sampling depth. As the tool is advanced, it remains in the closed position, which prevents soil or water from entering the Hydropunch. Once the desired sampling depth is obtained, the tool is opened to the aquifer by pulling up the drive pipe approximately 1.5 feet (0.46m). In the open position, ground water can flow freely into the sample chamber of the tool. When the sample chamber is full, the Hydropunch is pulled to the surface. As the tool is retracted, check valves close and trap the ground water in the sample chamber. At the surface the sample is transferred from the Hydropunch to an appropriate sample container. The tool is a fast, inexpensive alternative for collecting ground water samples from a discrete interval. It is excellent for vertical profiling or defining the areal extent of a contaminant plume.  相似文献   

20.
The importance of obtaining depth-specific ground water samples is now well recognized among practitioners and scientists alike. Many methods and technologies are available for level discrete or depth-specific ground water sampling in consolidated aquifers. All methods have their associated advantages and drawbacks, however. One common disadvantage is that they are expensive. A large number of point discrete ground water samples were required for a UK research project aimed at quantifying natural attenuation processes in ground water contaminated by a former coal carbonization plant. Based on experience from a previous project to develop novel level accurate sampling methodologies for use in existing boreholes, the Ground Water Protection and Restoration Research Unit (GWPRRU) produced and tested a low-cost design multiport sock sampler for ground water monitoring. The sock sampler design allowed the recovery of multiple depth-specific ground water samples from depths of 150 feel (45 m) from individual boreholes in the sandstone aquifer at the field site. Because of their use of inexpensive materials, simple design, installation and use that does not require gravel packs, packers, or grouting, sock samplers were found to be the most cost effective, convenient, and reliable method of obtaining multiple depth-specific ground water samples at the project field site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号