首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis of aerial photographs and historic charts indicates that the barrier beach at Brigantine, NJ has migrated landward 300 to 400 m since 1869, primarily as a result of overwash during hurricanes and winter storms. A series of vibracores from the backbarrier salt marsh reveals a millennial-scale stratigraphic record of overwash deposition. Carbon-14 (C-14) and Cesium-137 (Cs-137) radioisotopic methods were used to date overwash deposits (washovers). The ages of recent washovers are consistent with deposition during intense storms in 1938, 1944, 1950, and 1962. An additional overwash deposit recovered in five of the sediment cores was likely deposited by an intense hurricane strike in 1821 or possibly in 1788. Two prehistoric overwash fans were likely deposited by intense storms striking the New Jersey Coast in the 7th to 14th centuries and 6th to 7th centuries A.D. The landward barrier migration indicates that the older overwash sediments were likely transported a considerably greater distance than the more recent overwash fans. The greater distance of transport may indicate that the prehistoric storms that deposited overwash fans across the study site were more intense than the most intense storm to strike this coast in the historic period, the hurricane of 1821. The spatially variable occurrence of overwash deposition at this site points to a need for multisite stratigraphic surveys of extensive stretches of the coast in order to develop reliable records of past intense storm frequency from backbarrier environments.  相似文献   

2.
Extensive vibracoring of both flood- and ebb-tidal deltas along the central Gulf Coast of the Florida peninsula reveals a strong overall similarity with subtle distinctions between flood and ebb varieties. Although the coast in question is microtidal, the inlets range from tide-dominated to distinctly wave-dominated. Both types of tidal deltas overlie a muddy sand interpreted to have been deposited in a back-barrier environment. The sharp contact at the base of the tidal delta sequence is typically overlain by a thin shell gravel layer. The ebb-tidal delta sequence is characterized by fine quartz sand with shell gravel in various concentrations; coarse and massive at the margins of the main ebb channel, and finer and imbricated at the marginal flood channels. The flood-tidal deltas are characterized by the same facies but with a small amount of mud. Shelly facies on the channels on flood deltas are not as well developed as on the ebb deltas. The combination of the stratigraphic sequence and the lithofacies make tidal deltas readily identifiable in the ancient record. The differences between flood and ebb varieties are subtle but consistent.  相似文献   

3.
Central Luconia is a geological province of the Sarawak Basin, offshore NW Borneo, characterised by extensive development of Miocene to Recent carbonate build-ups. In the subsurface, many of these build-ups are reservoirs for hydrocarbons. This study focuses on shelf-wide stratigraphic architecture, from which implications are drawn for the stratigraphic-sealing potential of the deltaic clastics. A stratigraphic model is proposed whereby clastic sediments surrounding the carbonate build-ups are interpreted as stacked low-relief deltas deposited in response to high-frequency oscillation of the sea level. The deltas are shown to have frequently prograded beyond carbonate build-ups. As a result of interaction between eustacy and deposition, deltaic topsets are juxtaposed against carbonate build-ups, providing migration routes for hydrocarbons. Most of the carbonate reservoirs are consequently underfilled, with hydrocarbon columns limited to the youngest onlapping stratigraphic sequence.  相似文献   

4.
Twelve washover deposits were cored on the west-central Gulf Coast of Florida to provide data to permit development of a model to help identify washover facies in the stratigraphic record. Typical modern washover stratigraphy displays landward-dipping plane beds comprised of well-sorted sand with distinct laminae of shells and heavy minerals. Five subfacies are delineated which show variations in composition, texture, and bioturbation throughout the washover facies. These subfacies represent differences in flow conditions during overwash, position relative to sea level, and variable degrees of reworking after deposition. Three shell assemblages aid in identification of washover deposits. Backbarrier sediments composed of shoreface/open water species or mixed shoreface/backbarrier species may potentially be washover in origin. Sediments with purely backbarrier/quiet water shell species are likely to have been deposited independently of washover activity. Examination of washover deposits of differing ages reveals that preservation of washover stratigraphy is not exclusively a function of time. Reworking of small-scale stratification can occur in as short as a decade; however, this same stratification was found to be preserved in deposits several hundred years old. Destruction of original washover signatures is related to the position of the deposits relative to sea level, and the rate and depth of burial. Even after the destruction of small-scale stratigraphic features, washover deposits may still be identified as such due to their texture, composition, and shell assemblages. Key features in recognizing the facies after bioturbation and reworking are: (1) the presence of clean sand in otherwise muddy backbarrier sediments, (2) the landward thinning of the facies, and (3) the presence of shoreface shells or mixed shoreface/backbarrier shells on landward portions of the barrier island system. If reworking is severe and/or there are limited subsurface data, distinguishing washovers from genetically similar deposits (e.g. flood tidal deltas and spillover deposits) in the stratigraphic record is difficult and when considered out of stratigraphic context may not be recognizable.  相似文献   

5.
Nearly 200 km of high-resolution ground penetrating radar (GPR) data were acquired along the Outer Banks barrier island system of North Carolina, USA. GPR data combined with lithofacies and biofacies data reveal multiple depositional facies including inlet channel, flood-tide delta, overwash, peat and inner shelf. Previously undocumented paleo-inlet channels constitute a significant portion of the shallow geologic framework between Oregon Inlet and Cape Hatteras. GPR data reveal the complex stratigraphy associated with multiple sequences of cut-and-fill within inlet channels. Two types of paleochannels (non-migrating and migrating) were classified based on geometry and fill-patterns. Sediments and foraminifera collected from vibracores were correlated to GPR data to define the regional shallow stratigraphic framework. Channel-fill facies are characterized by clinoform packages, sometimes bounded by erosional surfaces, indicating variable sediment transport directions from the ocean and sound sides. Channels are incised into older flood-tide delta deposits corresponding to older inlet activity when barriers existed further seaward. Flood-tide delta deposits are capped with marsh peat and overwash units. Migrating inlet facies occur under the widest portions of the island, whereas narrow portions of the island are underlain by the non-migrating inlet facies or flood-tide delta/overwash facies. This geologic/geomorphic relationship is attributed to the successional stage of island evolution during transgression, and sediment transport processes associated with the different inlet types. The radar facies, lithofacies, and biofacies provide a comprehensive dataset that will permit more precise identification of barrier island facies in the geologic record.  相似文献   

6.
The study of past changes in sea level, and of historical and pre-historical coastal evolution, using coastal sediment stratigraphies is well-established over a range of geographic areas, in both seismic and aseismic settings. In the eastern Mediterranean, however, such studies are less common, and, notably, the use of sediment geochemistry, and its combination with lithostratigraphic studies to analyze palaeoenvironmental and palaeo-sea-level change, has not been explored to any significant extent, despite the fact that geochemical data have been successfully used elsewhere to aid in the identification of sea-level changes. Here, we use a combined geochemical, stratigraphic and microfossil approach to reconstruct late Holocene coastal evolution and sea-level change at two sites near Gythio in the southern Peloponnese, Greece. The sites show stratigraphic and geochemical evidence of the presence in Late Helladic times (ca. 1500 BC) of barrier-protected coastal lagoonal/wetland environments, which have gradually infilled over the last ca. 3500 yr. Archaeological remains and ceramic and charcoal-bearing horizons within the sediment sequences indicate Late Roman occupation of the area, although there is no sedimentary evidence of significant pre-Roman activity at the study sites. An apparent brackish wetland peat deposit at − 3.4 m (overlain by anoxic lagoonal clays) at Kamares (Kato Vathi) Bay shows a calibrated radiocarbon age of 1640–1440 BC, suggesting a relative sea-level rise of 0.8–1 mm/yr in this area over the past 3500 yr, in good agreement with previous archaeological and sea-level modelling studies. There is no evidence, based on the stratigraphic, microfossil or geochemical record, of sudden marine flooding events related to local or regional seismic activity, despite the presence of the area in a seismically active zone known to be subject to periodic earthquakes and tsunami. The data highlight the utility of combining geochemical and stratigraphic studies in the reconstruction of coastal evolution and the study of palaeo-sea-level changes, particularly in sequences (such as those described here) where microfossils are poorly preserved.  相似文献   

7.
Gradients in salt marsh ecosystems that result from reduced tidal inundation time in the high marsh offer an opportunity to assess the importance of predation as a selective agent (indexed by the time-averaged record of unsuccessful predation, which integrates potentially confounding short-term – inter-seasonal and inter-annual – fluctuations in predation pressure). Spatial patterns in selection pressure are expected to decrease landward from the seaward edge of the marsh. Interaction between shell-breaking predators and their snail prey, Littoraria irrorata, however, generated a pattern in the frequency of sublethal injury (shell repair), standardized for snail size, that did not follow this simple, single-variable prediction of decreasing repair frequencies with distance from the seaward edge of the marsh, based on inundation time alone. Patterns of repair frequency increased landward from the seaward edge of the marsh, only declining as predicted after a zone of dense stands of salt marsh grass. The interaction of tidal inundation time and primary habitat structure ( e.g. physical vegetative barriers to dispersion of predators into the marsh) is hypothesized to shape selection gradients in salt marshes, as inferred from the record of unsuccessful predation.  相似文献   

8.
Most of the islands in the Lakshadweep are marked by storm beaches on the eastern seaward shores and sandy beaches on the western lagoonal shores. The storm beaches consist of up to 3–4 sets almost at the same level and extend up to a distance of 5–12 km on some of the islands. They largely comprise uncemented pebbles, shingles, cobbles and boulders. The tracks for cyclones (1891–1960) show that the islands are normally hit by post-monsoon (November) cyclones from the east. The waves generated by these cyclones have formed the storm beaches. Radiocarbon dates of the storm beaches range from modern to 2975 ± 100 BP and indicate clustering between 3000 to 2000 BP and present to 500 BP. The younger storm beaches towards the shore suggest that parts of the islands have grown by about 30 m in the last 2780 years (Chetlat), 120 m in 1620 years (Kiltan) and even 100 m in 470 years (Minicoy). The absence of the storm beaches on some of the islands, younger beaches towards the shore and the clustering of ages, and the lack of lateral and chronological continuity may be explained by periodic stormy conditions rather than by the changes in the sea level. The number of storms in the Arabian Sea has varied from a minimum of 1 in 1949 to 10 in 1893, 1926 and 1930. It is very likely that such changes would have occurred in the past also.  相似文献   

9.
Large sections of the western Irish coast are characterised by a highly compartmentalised series of headland-embayment cells in which sand and gravel beaches are backed by large vegetated dune systems. Exposure to modally high-energy swell renders most of these beaches dissipative in character. A mesotidal range (c. 3.5–4.5 m) exists along much of the coast. Analysis of instrumental wind records from three locations permitted the identification of a variety of storm types and the construction of storm catalogues. Few individual storms were recorded at all three stations indicating a lack of regional consistency in storm record. Of the total storms recorded, only a small percentage are potentially damaging (onshore directed) and even fewer span a high tide and thus potentially induce a measurable morphological response at the coast.

Through a combination of historical records, meteorological records, field observations and wave modelling we attempt to assess the impact of storms. Quantifiable records of coastal morphology (maps, air photos and beach profiles) are few in number and do not generally record responses that may be definitely attributed to specific storms. Numerical wave simulations and observations at a variety of sites on the west Irish coast, however, provide insights into instantaneous and medium term (decadal) storm responses in such systems.

We argue that beaches and dunes that are attuned to modally high-energy regimes require extreme storms to cause significant morphological impact. The varying orientation of beaches, a spatially nonuniform storm catalogue and the need for a storm to occur at high water to produce measurable change, impart site-specific storm susceptibility to these embayments. Furthermore, we argue that long-period wave energy attenuation across dissipative shorefaces and beaches reduces coastal response to distant storms whereas short-period, locally generated wind waves are more likely to cause major dune and beach erosion as they arrive at the shoreline unrefracted.

This apparently variable response of beach and dune systems to storm forcing at a decadal scale over a coastline length of 200 km urges caution in generalising regarding regional-scale coastal responses to climatic change.  相似文献   


10.
The sedimentary record of 130 km of microtidal (0.9 m tidal range) high wave energy (1.5 m average wave height) barrier island shoreline of the Cape Lookout cuspate foreland has been evaluated through examination of 3136 m of subsurface samples from closely spaced drill holes. Holocene sedimentation and coastal evolution has been a function of five major depositional processes: (1) eustatic sea-level rise and barrier-shoreline transgression; (2) lateral tidal inlet migration and reworking of barrier island deposits; (3) shoreface sedimentation and local barrier progradation; (4) storm washover deposition with infilling of shallow lagoons; and (5) flood-tidal delta sedimentation in back-barrier environments.

Twenty-five radiocarbon dates of subsurface peat and shell material from the Cape Lookout area are the basis for a late Holocene sea-level curve. From 9000 to 4000 B.P. eustatic sea level rose rapidly, resulting in landward migration of both barrier limbs of the cuspate foreland. A decline in the rate of sea-level rise since 4000 B.P. resulted in relative shoreline stabilization and deposition of contrasting coastal sedimentary sequences. The higher energy, storm-dominated northeast barrier limb (Core and Portsmouth Banks) has migrated landward producing a transgressive sequence of coarse-grained, horizontally bedded washover sands overlying burrowed to laminated back-barrier and lagoonal silty sands. Locally, ephemeral tidal inlets have reworked the transgressive barrier sequence depositing fining-upward spit platform and channel-fill sequences of cross-bedded, pebble gravel to fine sand and shell. Shoreface sedimentation along a portion of the lower energy, northwest barrier limb (Bogue Banks) has resulted in shoreline progradation and deposition of a coarsening-up sequence of burrowed to cross-bedded and laminated, fine-grained shoreface and foreshore sands. In contrast, the adjacent barrier island (Shackleford Banks) consists almost totally of inlet-fill sediments deposited by lateral tidal inlet migration. Holocene sediments in the shallow lagoons behind the barriers are 5–8 m thick fining-up sequences of interbedded burrowed, rooted and laminated flood-tidal delta, salt marsh, and washover sands, silts and clays.

While barrier island sequences are generally 10 m in thickness, inlet-fill sequences may be as much as 25 m thick and comprise an average of 35% of the Holocene sedimentary deposits. Tidal inlet-fill, back-barrier (including flood-tidal delta) and shoreface deposits are the most highly preservable facies in the wave-dominated barrier-shoreline setting. In the Cape Lookout cuspate foreland, these three facies account for over 80% of the sedimentary deposits preserved beneath the barriers. Foreshore, spit platform and overwash facies account for the remaining 20%.  相似文献   


11.
A large deficit in the coastal sediment budget, high rates of relative sea-level rise (~0.9 cm/year), and storm-induced current and wave erosion are forcing barrier shoreface retreat along the periphery of the Mississippi River delta plain. Additionally, conversion of interior wetlands to open water has increased the bay tidal prism, resulting in degradation of barrier islands due to inlet widening, formation of new inlets, and sediment sequestration at ebb-tidal deltas. Single-beam bathymetric surveys along a 165-km stretch of south-central Louisiana barrier coast, from Raccoon Point in Terrebonne Parish to Sandy Point in Plaquemines Parish, were conducted in 2006. These data, combined with historical bathymetry from three time periods (dating to the 1880s), provide a series of digital elevation models that were used to calculate sediment volumetric changes and determine long-term erosional-depositional trends. Dominant patterns during the 125-year period include (1) erosion of ~1.6 × 109 m3 from the shoreface, forcing up to 3 km of shoreface retreat, (2) sediment deposition in coastal bights and at ebb-tidal deltas, and (3) a combined increase in tidal inlet cross-sectional area from ~41,400 m2 to ~139,500 m2. Bathymetric and shoreline change datasets separated by shorter time periods (sub-annual) demonstrate that these long-term trends are driven by processes associated with major hurricane impacts, and that rates of shoreface erosion are an order of magnitude greater during active hurricane seasons compared to long-term trends.  相似文献   

12.
Coastal-morphological, geophysical (ground-penetrating radar [GPR]), and sedimentological data document extreme storm events along the sandy barriers of Maine's south–central (Hunnewell and Flat Point barriers) and southwestern (Saco Bay barriers) coastal compartments. The Hunnewell barrier contains four equally spaced buried storm scarps behind the exposed scarp of the Blizzard of 1978, a 100-year storm that eroded more than 100 m of shoreline, causing extensive property loss. These scarps dip 3–5° steeper than the normal beachface slope and consist of sands with more than 50% heavy minerals. The heavy minerals produce distinct subsurface reflections that facilitate the location of buried supratidal parts of storm scarps and the mapping of ancient poststorm shoreline positions. The imaged scarps likely formed within the past 1.5–2.0 ka BP. The Flat Point barrier consists of a prograded sequence overlain by a laterally extensive, seaward-thinning layer of freshwater peat and capped by aeolian sands. This stratigraphy suggests that the bog varied in size through time, contracting during overwash events and aeolian deposition and expanding across washover sheets during extended periods of barrier stability. The main overwash event accompanied by barrier planation and wetland expansion may be linked to the first historical storm in New England, the “Great Colonial Hurricane” of 1635.

Evidence of near-modern and mid-Holocene storm events along Saco Bay includes washover units and marsh ridges. Washovers interfinger with saltmarsh peat that ranges in age from 4.5 ka BP to modern. The presence of isolated sandy ridges behind existing and former tidal inlets reflects overtopping of marshes and high intertidal mudflats during major storms. Radiocarbon ages indicate that this process took place at different locations along the Saco Bay barrier complex from 3 to 1 ka BP.  相似文献   


13.
Results from historical (1855–2005) shoreline change analysis conducted along the Chandeleur Islands, Louisiana demonstrate that tropical cyclone frequency dominates the long-term evolution of this barrier island chain. Island area decreased at a rate of −0.16 km2/year for the relatively quiescent time period up until 1996, when an increase in tropical cyclone frequency accelerated this island area reduction to a rate of −1.01 km2/year. More frequent hurricanes also affected shoreline retreat rates, which increased from −11.4 m/year between 1922 and 1996 to −41.9 m/year between 1982 and 2005. The erosional impact caused by the passage of Hurricane Katrina in 2005 was unprecedented. Between 2004 and 2005, the shoreline of the northern islands retreated −201.5 m/year, compared with an average retreat rate of −38.4 m/year between 1922 and 2004. A linear regression analysis of shoreline change predicts that, as early as 2013, the backbarrier marsh that serves to stabilize the barrier island chain will be completely destroyed if storm frequency observed during the past decade persists. If storm frequency decreases to pre-1996 recurrence intervals, the backbarrier marsh is predicted to remain until 2037. Southern portions of the barrier island chain where backbarrier marsh is now absent behave as ephemeral islands that are destroyed after storm impacts and reemerge during extended periods of calm weather, a coastal behavior that will eventually characterize the entire island chain.  相似文献   

14.
The ˜4000 m thick and ∼20 Myr deep-water sedimentary fill of the Upper Cretaceous Magallanes Basin was deposited in three major phases, each with contrasting stratigraphic architecture: (1) the oldest deep-water formation (Punta Barrosa Formation) comprises tabular to slightly lenticular packages of interbedded sandy turbidites, slurry-flow deposits, and siltstone that are interpreted to record lobe deposition in an unconfined to weakly ponded setting; (2) the overlying, 2500 m thick and shale-dominated Cerro Toro Formation includes a succession of stacked conglomeratic and sandstone channel-fill deposits with associated finer-grained overbank deposits interpreted to record deposition in a foredeep-axial channel-levee system; (3) the final phase of deep-water sedimentation is characterized by sandstone-rich successions of highly variable thickness and cross-sectional geometry and mudstone-rich mass transport deposits (MTDs) that are interpreted to record deposition at the base-of-slope and lower slope segments of a prograding delta-fed slope system. The deep-water formations are capped by shallow-marine and deltaic deposits of the Dorotea Formation.These architectural changes are associated with the combined influences of tectonically driven changes and intrinsic evolution, including: (1) the variability of amount and type of source material, (2) variations in basin shape through time, and (3) evolution of the fill as a function of prograding systems filling the deep-water accommodation. While the expression of these controls in the stratigraphic architecture of other deep-water successions might differ in detail, the controls themselves are common to all deep-water basins. Information about source material and basin shape is contained within the detrital record and, when integrated and analyzed within the context of stratigraphic patterns, attains a more robust linkage of processes to products than stratigraphic characterization alone.  相似文献   

15.
Small, steep, uplifting coastal watersheds are prolific sediment producers that contribute significantly to the global marine sediment budget. This study illustrates how sedimentation evolves in one such system where the continental shelf is largely sediment-starved, with most terrestrial sediment bypassing the shelf in favor of deposition in deeper basins. The Santa Barbara–Ventura coast of southern California, USA, is considered a classic area for the study of active tectonics and of Tertiary and Quaternary climatic evolution, interpretations of which depend upon an understanding of sedimentation patterns. High-resolution seismic-reflection data over >570 km2 of this shelf show that sediment production is concentrated in a few drainage basins, with the Ventura and Santa Clara River deltas containing most of the upper Pleistocene to Holocene sediment on the shelf. Away from those deltas, the major factor controlling shelf sedimentation is the interaction of wave energy with coastline geometry. Depocenters containing sediment 5–20 m thick exist opposite broad coastal embayments, whereas relict material (bedrock below a regional unconformity) is exposed at the sea floor in areas of the shelf opposite coastal headlands. Locally, natural hydrocarbon seeps interact with sediment deposition either to produce elevated tar-and-sediment mounds or as gas plumes that hinder sediment settling. As much as 80% of fluvial sediment delivered by the Ventura and Santa Clara Rivers is transported off the shelf (some into the Santa Barbara Basin and some into the Santa Monica Basin via Hueneme Canyon), leaving a shelf with relatively little recent sediment accumulation. Understanding factors that control large-scale sediment dispersal along a rapidly uplifting coast that produces substantial quantities of sediment has implications for interpreting the ancient stratigraphic record of active and transform continental margins, and for inferring the distribution of hydrocarbon resources in relict shelf deposits.  相似文献   

16.
The mainpurpose of this article is to demonstrate the utility of stratal slice images for exploring the sequence stratigraphy and sedimentology of complex depositional systems. A seismic sedimentological study was performed to map sediment dispersal characteristics of the Neogene Shawan Formation in the Chepaizi Uplift of the Junggar Basin, China. The Chepaizi Uplift is developed on the Carboniferous igneous rock basement that lies at the western boundary of the Junggar Basin. The data sources primarily include lithology, well-logging and seismic data. In the main target strata, the Neogene Shawan Formation can be divided into three fourth-order sequences (SQN1s1, SQN1s2, and SQN1s3), and the sequence SQN1s1 is subdivided into three fifth-order sequences (SQN1s11, SQN1s12, and SQN1s13). Based on the established fine-sequence stratigraphic framework, the sedimentary facies types have been identified, they are shallow braided-river deltas, fan deltas, littoral and sublittoral lakes, braided rivers, and terminal fans. Then, stratal slices have been used to clearly depict the boundaries of sedimentary facies. Accurate results have been obtained that characterize braided river channels, terminal fans, littoral and sublittoral lake beaches, and subaqueous distributary channels in the braided-river delta front. Additionally, this seismic sedimentology study reflects variations in source area and evolution history.  相似文献   

17.
滨海湿地是介于陆地生态系统和水生生态系统之间的特殊生态系统,是珍贵的湿地资源,具有重要的生态系统功能。掌握滨海湿地的分布状况对于我国滨海湿地自然资源的保护和管理意义重大。文章基于2018—2019年“哨兵2号”卫星10 m分辨率多光谱影像,完成广东、广西和海南滨海湿地的遥感制图;对岩石海岸、砂石海滩、淤泥质海滩、潮间盐水沼泽、红树林、河口水域、河口三角洲/沙洲/沙岛、海岸性咸水湖、海岸性淡水湖、浅海水域共10个亚类建立解译标志,通过目视解译,对滨海湿地进行分类和统计。研究结果显示:广东、广西和海南滨海湿地面积共计1 377 140 hm2,各地滨海湿地面积与岸线长度基本呈正相关,海岸线越长,滨海湿地面积越大,各地典型滨海湿地的类型也不相同。  相似文献   

18.
The Cumberland Basin, a 118 km2 estuary at the head of the Bay of Fundy which has an average tidal range of about 11m, contains large tracts of salt marsh (15% of the area below highest high water). Low marsh (below about 0·9 m above mean high water) is composed almost exclusively of Spartina alterniflora while the vegetation on high marsh is more diverse but dominated by Spartina patens. Because of its higher elevation, high marsh is flooded infrequently for short periods by only extreme high tides. Low marsh is inundated much more frequently by water as much as 4m deep for periods as long as 4 h per tide. Temporal variability in the occurrence of extreme tides influences the flooding frequency of high marsh for any given month and year. Using a modification of Smalley's method, the mean annual net aerial primary production (NAPP) of low and high marsh is estimated to be 272 and 172 g C m?2, respectively. Vegetation turnover times average 1·0 and 2·0 y for low and high marsh, respectively. Because of abundant tidal energy, much of the low marsh production appears to be exported and distributed widely about the estuary. Since high levels of turbidity suppress phytoplankton production, salt marshes produce approximately half of the carbon fixed photosynthetically in the Cumberland Basin. It is concluded that salt marshes play a major ecological role in the Cumberland Basin.  相似文献   

19.
Sediment accumulation rates were determined at several sites throughout Nauset Marsh (Massachusetts, U.S.A.), a back-barrier lagoonal system, using feldspar marker horizons to evaluate short-term rates (1 to 2 year scales) and radiometric techniques to estimate rates over longer time scales (137Cs,210Pb,14C). The barrier spit fronting theSpartina-dominated study site has a complex geomorphic history of inlet migration and overwash events. This study evaluates sediment accumulation rates in relation to inlet migration, storm events and sea-level rise. The marker horizon technique displayed strong temporal and spatial variability in response to storm events and proximity to the inlet. Sediment accumulation rates of up to 24 mm year−1were recorded in the immediate vicinity of the inlet during a period that included several major coastal storms, while feldspar sites remote from the inlet had substantially lower rates (trace accumulation to 2·2 mm year−1). During storm-free periods, accumulation rates did not exceed 6·7 mm year−1, but remained quite variable among sites. Based on137Cs (3·8 to 4·5 mm year−1) and210Pb (2·6 to 4·2 mm year−1) radiometric techniques, integrating sediment accumulation over decadal time scales, the marsh appeared to be keeping pace with the relative rate of sea-level rise from 1921 to 1993 of 2·4 mm year−1. At one site, the210Pb-based sedimentation rate and rate of relative sea-level rise were nearly similar and peat rhizome analysis revealed thatDistichlis spicatarecently replaced this onceS. patenssite, suggesting that this portion of Nauset Marsh may be getting wetter, thus representing an initial response to wetland submergence. Horizon markers are useful in evaluating the role of short-term events, such as storms or inlet migration, influencing marsh sedimentation processes. However, sampling methods that integrate marsh sedimentation over decadal time scales are preferable when evaluating a systems response to sea-level rise.  相似文献   

20.
陆架海岸台风沉积记录及信息提取   总被引:3,自引:2,他引:1  
长时间尺度风暴强度–频率关系与气候变化相关联,而器测记录和历史记载难以提供充分的信息,因此从沉积记录中提取风暴信息成为一个前沿科学问题。在应用上,这项研究可为海岸带城市群应对未来气候和海面变化提供决策依据。本文回顾了台风沉积记录研究进展,显示陆架泥质沉积、海滩及海岸沙丘、潮滩、潟湖、巨砾是台风事件记录的良好载体,可通过层序形态和物质特性分析而识别。同时,还需进一步完善分析方法,以区分台风、冬季风暴、河流洪水和海啸等不同类型的极端事件沉积。在台风强度信息提取方面,陆架泥质沉积所含贝壳–粗颗粒沉积物可作为海底再悬浮强度的指标,但需更多实测数据的率定;海滩及海岸沙丘顶部的台风沉积分布高程指示了台风激浪流的上冲高度,而台风巨砾的重量可以与近岸波浪的波高建立联系。以上数据经过换算后可以得出台风强度的信息,虽然这些间接的沉积学信息还不足以建立风暴强度–频率关系,但有助于台风强度大数据的建立。潮滩、潟湖沉积连续性好,可构成台风事件的时间序列,然而关于台风强度却是多解的,台风最大风力、持续时间、移动路径、登陆地点的不同组合可能产生同样的事件沉积。我们建议,应发展台风信息提取的新方法,来解决这个问题。进行现代过程模拟,根据已知的台风事件资料构建沉积物输运堆积模型,使之能够复演事件沉积的特征;进行多个地点事件沉积的反演模拟,在此情形下,即便每个站位的结果是多解的,但针对多个站位上求取其解的交集之后,多解性将下降,这种模拟方法可称之为“解空间收缩法”;采用大数据融合方式,将其他来源的台风强度数据纳入模拟体系,可进一步降低风暴信息提取的不确定性。动力过程模拟与大数据融合方法的建立,有助于获得与沉积记录同样时间尺度的台风强度–频率关系曲线,进而分析台风动态与气候变化的关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号