首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Tully–Fisher Relationship (TFR) is utilized to identify anomalous redshifts in normal spiral galaxies. Three redshift anomalies are identified in this analysis: (1) several clusters of galaxies are examined, in which late type spirals have significant excess redshifts relative to early-type spirals in the same clusters; (2) galaxies of morphology similar to ScI galaxies are found to have a systematic excess redshift relative to the redshifts expected if the Hubble Constant is 72 km s−1 Mpc−1; (3) individual galaxies, pairs, and groups are identified which strongly deviate from the predictions of a smooth Hubble flow. These redshift deviations are significantly larger than can be explained by peculiar motions and TFR errors. It is concluded that the redshift anomalies identified in this analysis are consistent with previous claims for large non-cosmological (intrinsic) redshifts.  相似文献   

2.
Pure luminosity evolution models for galaxies provide an unacceptable fit to the redshifts and colors of faint galaxies. In this paper we demonstrate, using HST morphological number counts derived both from the I 814-band of WFPC2 in the Medium Deep Survey (MDS) and the Hubble Deep Field (HDF) and from the H 1.6-band of NICMOS, and ground-based spectroscopic data of the Hawaii Deep Field and the Canada-France Redshift Survey, that number evolution is necessary for galaxies, regardless of whether the cosmic geometry is flat, open, or Λ-dominated. Furthermore, we show that the number evolution is small at redshifts of z<1, but large at z>1, and that this conclusion is valid for all the three cosmological models under consideration. If the universe is open or Λ-dominated, the models, which are subject to the constraint of the conservation of the comoving mass density of galaxies, naturally predict a population of star-forming galaxies with the redshift distribution peaking at z=2∼ 3, which seems to be consistent with the recent findings from Lyman-break photometric selection techniques. If the cosmological model is flat, however, the conservation of the comoving mass density is invalid. Hence, in order to account for the steep slope of B-band number counts at faint magnitudes in the flat universe, such a star-forming galaxy population has to be introduced ad hoc into the modelling alongside the merger assumption. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.

We have produced a sample of 58 edge-on spiral galaxies at redshifts z ~ 1 selected in the Hubble Ultra Deep Field. For all galaxies we have analyzed the 2D brightness distributions in the V606 and i775 filters and measured the radial (hr) and vertical (hz) exponential scale lengths of the brightness distribution. We have obtained evidence that the relative thickness of the disks of distant galaxies, i.e., the ratio of the vertical and radial scale lengths, on average, exceeds the relative thickness of the disks of nearby spiral galaxies. The vertical scale length hz of the stellar disks of galaxies shows no big changes at z = 1. The possibility of the evolution of the radial scale length hz for the brightness distribution with redshift is discussed.

  相似文献   

4.
We discuss the detection of redshifted line and continuum emission at radio wavelengths using a Square Kilometer Array (SKA), specifically from low-excitation rotational molecular line transitions of CO and HCN (molecular lines), the recombination radiation from atomic transitions in almost-ionized hydrogen (radio recombination lines; RRLs), OH and H2O maser lines, as well as from synchrotron and free–free continuum radiation and HI 21-cm line radiation. The detection of radio lines with the SKA offers the prospect to determine the redshifts and thus exact luminosities for some of the most distant and optically faint star-forming galaxies and active galactic nuclei, even those galaxies that are either deeply enshrouded in interstellar dust or shining prior to the end of reionization. Moreover, it provides an opportunity to study the astrophysical conditions and resolved morphologies of the most active regions in galaxies during the most active phase of star formation at redshift z 2. A sufficiently powerful and adaptable SKA correlator will enable wide-field three-dimensional redshift surveys at chosen specific high redshifts, and will allow new probes of the evolution of large-scale structure (LSS) in the distribution of galaxies. The detection of molecular line radiation favours pushing the operating frequencies of SKA up to at least 26 GHz, and ideally to 40 GHz, while very high redshift maser emissions requires access to about 100 MHz. To search for LSS the widest possible instantaneous field of view would be advantageous.  相似文献   

5.
In the last couple of decades hundreds of studies have explored the nature of star‐forming galaxies at different redshifts. This contribution focuses on X‐shooter observations of star‐burst galaxies at 0 < z < 6 from commissioning runs, science verification, and regular observations, and demonstrates the capability of the new instrument in this competitive field. Observations of gravitationally lensed galaxies show that X‐shooter has no limitation in the redshift desert (1.4 < z < 2) where the strong optical emission lines are shifted to the near‐IR region. Physical properties of galaxies, such as masses, metallicities, abundance ratios, and star formation rates can be derived from observations with relatively short integration times for faint galaxies. The simultaneous UV to near‐IR spectral coverage makes derivation of physical quantities more reliable because there are no differential slit losses as may occur when observations from different optical and near‐IR instruments are used. Over the entire redshift range, spectra of faint galaxies will allow us to better measure stellar ages and dominating ionisation sources compared to broad band spectral energy distribution measurements (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
7.
Images of the Hubble Ultra Deep Field are analyzed to obtain a catalog of galaxies for which the angular sizes, surface brightness, photometric redshifts, and absolute magnitudes are found. The catalog contains a total of about 4000 galaxies identified at a high signal-to-noise ratio, which allows the cosmological relations angular size—redshift and surface brightness-redshift to be analyzed. The parameters of the evolution of linear sizes and surface brightness of distant galaxies in the redshift interval 0.5–6.5 are estimated in terms of a grid of cosmological models with different density parameters (Ω V ; Ω m ). The distribution of photometric redshifts of galaxies is analyzed and possible superlarge inhomogeneities in the radial distribution of galaxies are found with scale lengths as large as 2000 Mpc.  相似文献   

8.
It is more appropriate to study the dynamics and evolution of compact groups using a sample of isolated compact groups in the nearby vicinity of which there are no accordant redshift galaxies. To look for isolated compact groups we inspected the environment of 78 Shakhbazian compact groups, with known redshifts. We found that 26 of nearby groups with V < 40000 km s−1 are isolated compact groups in the vicinity of which up to a projected distance of 1 Mpc there are no accordant redshift galaxies. For four of them, the redshift of only two members are known, so their being groups is not certain. In the vicinities of eleven distant groups (V > 40000 km s−1) no accordant redshift galaxies are detected as well. The reason for this may be the faintness of galaxies there. These groups may possibly be isolated.  相似文献   

9.
According to the convention normally followed the redshifts of the galaxies in a cluster are assumed to be of purely dopplerian origin. The resulting velocity dispersion, when used in the virial theorem, leads to a very large proportion of dark matter to be present in the galaxy clusters. However, the recently proposed model of velocity dependent cosmic drag cause redshifts of photons and it is necessary to develop a procedure to determine the true velocity dispersion from the gross redshift data. A method for this has been presented in the paper. Coma and Perseus clusters have been investigated using this procedure and theM/L ratios for both were found to be approximately of the order of 30, i.e., approximately the order ofM/L ratios for individual galaxies. A study of them -z relation indicates that the galaxies with higher redshifts have fainter magnitudes. Distortion of the redshift plots and the typical elongation of the core regions along the line-of-sight is also explained.  相似文献   

10.
We present results of an investigation of clustering evolution of field galaxies between a redshift of z ∼ 1 and the present epoch. The current analysis relies on a sample of ∼ 14000 galaxies in two fields of the COMBO 17 survey. The redshift distribution extends to z ∼ 1. The amplitude of the three-dimensional correlation function can be estimated by means of the projected correlation function w(r p ). The validity of the deprojection was tested on the Las Campanas Redshift Survey (LCRS). In a flat cosmology with non-zero cosmological constant for bright galaxies (M B ≤-18) the clustering growth is proportional to (1+z) -2. However, the measured clustering evolution clearly depends on Hubble type. While locally the clustering strength of early type galaxies is equal to that of the bright galaxies, at high redshifts they are much stronger clustered, and thus the clustering has to evolve much more slowly. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
A new version of the magnetic-tape catalog of ABELL clusters of galaxies is used to obtain redshift estimators and to generate two samples of clusters. A procedure for searching for superclusters of galaxies is applied and the results are given in tabular and graphic form. For a lmited homogeneous sample (distance 60–275 Mpc, galactic latitude B > 35°), 12 multiplets, having member clusters with known redshifts, are found. It is shown that the spatial covariance function for rich clusters has the form ξ = (r0/r)γ with r0 = 22.4 ± 1.8 Mpc and γ = 1.90 ± 0.25 for 3 Mpc ≲ r ≲ 80 Mpc.  相似文献   

12.
We present the results of optical identifications and spectroscopic redshift measurements for galaxy clusters from the second Planck catalogue of Sunyaev–Zeldovich sources (PSZ2) located at high redshifts, z ≈ 0.7?0.9. We used the data of optical observations with the Russian–Turkish 1.5-mtelescope (RTT-150), the Sayan Observatory 1.6-m telescope, the Calar Alto 3.5-m telescope, and the 6-m SAO RAS telescope (BTA). The spectroscopic redshift measurements were obtained for seven galaxy clusters, including one cluster, PSZ2 G126.57+51.61, from the cosmological sample of the PSZ2 catalogue. In the central regions of two clusters, PSZ2 G069.39+68.05 and PSZ2 G087.39?34.58, we detected arcs of strong gravitational lensing of background galaxies, one of which is at redshift z = 4.262. The data presented below roughly double the number of known galaxy clusters in the second Planck catalogue of Sunyaev–Zeldovich sources at high redshifts, z ≈ 0.8.  相似文献   

13.
Galaxies of redshiftz ≲ 1000 km s−1 are investigated. In the South Galactic Hemisphere there are two large concentrations of these galaxies. One is in the direction of the centre of the Local Group, roughly aligned with M 31 and M 33. The other concentration is centred almost 80 degrees away on the sky and involves the next nearest galaxies to the Local Group, NGC 55, NGC 300 and NGC 253. The large scale and isolation of these concentrations, and the continuity of their redshifts require that they are all galaxies at the same, relatively close distance of the brightest group members. The fainter members of the group have higher redshifts, mimicking to some extent a Hubble relation. But if they are all at the same average distance the higher redshifts must be due to a cause other than velocity. The redshifts of the galaxies in the central areas of these groups all obey a quantization interval of δcz0 = 72.4 kms−1. This is the same quantization found by William Tifft, and later by others, in all physical groups and pairs which have been tested. The quantization discovered here, however, extends over a larger interval in redshift than heretofore encountered. The majority of redshifts used in the present analysis are accurate to ± 8 km s−1. The deviation of those redshifts from multiples of 72.4 km s-1 averages ±8.2 km s−1. The astonishing result, however, is that for those redshifts which are known more accurately, the deviation from modulo 72.4 drops to a value between 3 and 4 km s−1! The amount of relative velocity allowed these galaxies is therefore implied to be less than this extremely small value.  相似文献   

14.
The most accurate data on galaxy types, corrected apparent magnitudes and redshifts as given in the Sandage-TammanRevised Shapley-Ames catalog are analyzed. It is shown that Sb galaxies of the same luminosity class as M31 and M81 define a narrow Hubble relation withH 0=65 –6 +15 km s–1 Mpc–1.In contrast, Sc galaxies deviate strongly towars higher redshift from a linear, log redshift—apparent magnitude relation. Not all this deviation can be selection effect due to increasing volume sampled at increasing redshift (Malmquist bias). Physical associations of groups of galaxies in theRSA Catalog are used to establish the existence of various amounts of excess (non-velocity) redshifts among Sc and allied types of galaxies.Independent distances fromHi line width — luminosity criterion (Tully-Fisher) are analyzed. It is shown that this criterion gives much smaller distances than redshifts do for galaxies which deviate above the Hubble line. Unless the Tully-Fisher relation gives too small distances for more luminous galaxies, this confirms the excess redshift to be intrinsic to the Galaxy. But it is next demonstrated, that for low redshift galaxies, there is no discrepancy between redshift and Tully-Fisher distance even though there is a wide range of absolute magnitudes.If Tully-Fisher distances are accepted, the onlly alternative to having a Hubble constant which increases strongly with distance is to have a component of the higher redshift Sc's contributed by a non-recessional redshift. Streaming motions would have to be large, increase with distance and be always in the receding sence. It is shown here that the Sc's which deviate most from the Hubble relation and have the largest discrepancies with Tully-Filsher distances lie predominantly in the sky toward very nearby groups of galaxies. If they were at these closer distances the discordant galaxies, mostly ScI's, would have dwarfish physical properties but not so unprecedented as the large sizes which result from redshift distances.Finally the interaction of specific high redshift ScI's with nearby galaxies is presented as an independent proof that ScI's are generally small, low luminosity galaxies. This result furnishes insight into the long standing puzzle of how apparently distant ScI's can interact with nearby galaxies such as in Stephan's Quintet, Seyfert's Sextet and NGC 4151/4156.  相似文献   

15.
The submillimeter (submm) extragalactic background light (EBL) traces the integrated star formation history throughout the cosmic time. Deep blank-field 850 μm and 1.4 GHz surveys and optical follow-up have been only able to determine the redshift of ∼20% of the submm EBL. The majority (80%) of the submm EBL is still below the confusion and sensitivity limits of current submm and radio instruments. We break through these limits with stacking analyses on our deep 850 μm image in the GOODS-N and find that the submm EBL mostly comes from galaxies at redshifts around 1.0. This redshift is much lower than the redshift of z=2–3 previously implied from radio identified submm sources. This result significantly decreases the number of high redshift galaxies that may be seen by ALMA.  相似文献   

16.
We analyze the properties of a sample of optically polarized radio galaxies with a wide range of redshifts. The galaxies were selected both from our survey and from the literature. The aim of this work is checking whether high linear polarization is a general property of high redshift radio galaxies and how it depends on redshift. This provides a critical test on the suggestion that a considerable fraction of rest frame UV light in high redshift radio galaxies is scattered nuclear radiation. Our results show that radio galaxies withz > 0.7 are strongly polarized and that there is a strong dependence of the degree of linear polarization on the redshift. We discuss the possible origin of this correlation. Our results provide support to the validity of the Radio Quasar and Radio Galaxies unifying schemes.  相似文献   

17.
The redshift dependence of spectral index in powerful radio galaxies   总被引:1,自引:0,他引:1  
We present and discuss in this paper the rest frame radio spectra (1–25 GHz) of a sample of fourteen radio galaxies atz >2 from the newly defined MRC/1Jy complete sample of 558 radio sources. These galaxies are among the most powerful radio sources known and range in luminosity from 1028-1028·8 watt Hz-1 at 1 GHz. We find that the median rest frame spectral index of this sample of galaxies atz >2 is significantly steeper than that of a matched luminosity sample of 3CRR galaxies which are at a much lower redshift (0.85 <z < 1.7). This indicates that spectral index correlates primarily with redshift, at least in the luminosity range considered here. The difference between the distributions of rest frame spectral curvatures for the two samples does not appear to be statistically significant. We suggest a new explanation for the steeper spectra of radio galaxies at high redshift involving steeper electron energy spectra at injection. Electron energy spectra are expected to steepen in a first-order Fermi acceleration process, at both non-relativistic and relativistic shock fronts, as the upstream fluid velocity decreases. This may well be the case at high redshifts: the hotter and denser circum-galactic medium at high redshifts could result in slower speeds for the hotspot and the jet material behind it. The smaller sizes of radio sources at higher redshifts provide support to this scenario. Since deceased.  相似文献   

18.
We discuss observations of the first galaxies, within cosmic reionization, at centimeter and millimeter wavelengths. We present a summary of current observations of the host galaxies of the most distant QSOs (z∼6). These observations reveal the gas, dust, and star formation in the host galaxies on kpc-scales. These data imply an enriched ISM in the QSO host galaxies within 1 Gyr of the big bang, and are consistent with models of coeval supermassive black hole and spheroidal galaxy formation in major mergers at high redshift. Current instruments are limited to studying truly pathologic objects at these redshifts, meaning hyper-luminous infrared galaxies (L FIR ∼1013 L ). ALMA will provide the one to two orders of magnitude improvement in millimeter astronomy required to study normal star forming galaxies (i.e. Ly-α emitters) at z∼6. ALMA will reveal, at sub-kpc spatial resolution, the thermal gas and dust—the fundamental fuel for star formation—in galaxies into cosmic reionization.  相似文献   

19.
We present a one-zone model of star formation in elliptical galaxies that includes thermal feedback from supernovae and a temperature dependent star formation efficiency. The modulation of feedback with the total mass results in the triggering of late episodes of star formation in low-mass galaxies. These small `bursts' can occur as late as at redshifts z ∼ 0.5 but they do not change significantly the optical and NIR color-magnitude relation (CMR) of cluster galaxies, both locally and out to moderate redshifts, in agreement with the observations. However, they introduce a large scatter at the faint end of the NUV-Optical CMR, as recently found in cluster Abell 851 (z = 0.41). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
A composite sample of NIR-selected galaxies having extended multicolor coverage has been used to probe the cosmological evolution of the blue luminosity function and of the stellar mass function. The bright fraction of the sample has spectroscopic redshifts, and the remaining fraction well-calibrated photometric redshifts. The resulting blue luminosity function shows an increasing brightening with redshift respect to the local luminosity function. Hierarchical CDM models predictions are in agreement only at low and intermediate redshifts but fail to reproduce the observed brightening at high redshifts (z ∼ 2–3). This brightening marks the epoch where starburst activity triggered by galaxy interactions could be an important physical mechanism for the galaxy evolution. At the same time the NIR galaxy sample has been used to trace the evolution of the cosmological stellar mass density up to ∼3. A clear decrease of the average mass density is apparent with a fraction ∼15% of the local value at z ∼ 3. UV bright star-forming galaxies are substancial contributors to the evolution of the stellar mass density. Although these results are globally consistent with Λ–CDM scenarios, they tend to underestimate the mass density produced by more massive galaxies present at z > 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号