首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 730 毫秒
1.
ProcessofsourcedynamicsoftheJingtaiearthquake(M=6.2)Xue-BinDU(杜学彬);Zhi-DeYAN(闫志德)andMing-WuZOU(邹明武)(EarthquakeResearchInstitu...  相似文献   

2.
ResearchonthecompletenessofearthquakedataintheChinesemainland(I)──NorthChinaWei-QiongHUANG(黄玮琼);Wen-XiangLI;(李文香)andXue-FengC...  相似文献   

3.
ResearchontheseismogenicenvironmentfordeepearthquakeandthecauseofearthquakesinXinjianganditsadjacentareasQiangLI(李强);Rui-Feng...  相似文献   

4.
Gravitational effect of water circulation in the northwest Yunnan   总被引:1,自引:0,他引:1  
GravitationaleffectofwatercirculationinthenorthwestYunnanMin-YuJIA;(贾民育)Shao-AnSUN;(孙少安)Ai-MinXIANG;(项爱民)andDong-ZhiLIU(刘冬至)(...  相似文献   

5.
Discussiononuncertainties,attenuationofground motionandaseismicdesigncriterionTian-ZhongZHANG(张天中);Yun-ShengMA(马云生)andXiSHU(舒...  相似文献   

6.
CalculationofbvalueanditsapplicationinearthquakepredictionHua-ChenDUAN(段华琛);Chang-QingFAN(范长青)andYue-MinXU(许跃敏)(Seismological...  相似文献   

7.
INTRODUCTIONKazkeaertefaultzoneabout 1 0 0kilometerslong (Fig .1 ) ,istheeasternlimbofthelatestdefor mationbeltofthenorthernmarginofPamirs (ChenJie ,etal,1 997) .Manymoderatelystrongearth quakesoccurredalongthiszone (FengXianyue ,etal,1 987) .ThelateQuaternarydeformation…  相似文献   

8.
CroundverticaldeformationinearthquakeofGonghe,QinghaiProvinceShou-WenGONG(巩守文)andFeng-YingGUO(郭逢英)(SecondCrustalDeformationMo...  相似文献   

9.
Methodofexpectedearthquakelossesestimationbasedonthefrequencyofseismicsiteintensity高孟潭Meng-TanGAO(InstituteofGeophysics,State...  相似文献   

10.
Tomographicdeterminationof3-Dcrustalstructure──Jointinversionofexplosionandearthquake dataXian-KangZHANG(张先康);Zhuo-XinYANG(杨卓...  相似文献   

11.
The mechanical properties of elastomers can change significantly due to air temperature variations. In particular, prolonged exposure to subzero temperatures can result in rubber crystallization, with a considerable increase in the shear stiffness of the material. As a result, the seismic response of structures with elastomeric isolators can be strongly influenced by air temperature. Current seismic codes, indeed, require an upper and lower bound analysis, using suitable modification factors, to account for the changes in the cyclic behavior of elastomeric isolators due to air temperature variations. In this study, the sensitivity of the cyclic behavior of elastomeric isolators to air temperature variations is investigated based on the experimental results of an extensive test program on six different elastomeric compounds for seismic isolators, characterized by a shear modulus ranging from 0.5 to 1.2 MPa at 100% shear strain and 20°C. The cyclic tests have been performed on small-size specimens, subjected to shear strain amplitudes and frequency of loading typical for elastomeric seismic isolators, at seven different air temperatures, ranging from 40 to −20°C. The effects of rubber crystallization due to prolonged exposure to low-temperatures have been also investigated. A finite element model for the evaluation of the temperature contour map inside a full-size elastomeric isolator exposed to low air temperatures has been also developed. In the paper, the experimental outcomes are compared with the modification factors provided by the current seismic codes to account for the temperature effects on the mechanical properties of elastomeric isolators.  相似文献   

12.
Based on large set of observational data (for ∼100 years), it has been demonstrated that the air temperature at midlatitudes in the years close to solar activity maximum is on average higher than in other years by DT = 0.11–0.15 degrees at many meteorological stations. The DT parameter is negative and smaller in magnitude near the equator and poles. A correct (in the energetic sense) physical mechanism by which solar and geomagnetic activities affect the ground level air temperature has been proposed.  相似文献   

13.
Under normal temperature, the creep experiments with complete samples of Gabbro and Marble rocks are made under uniaxial compression. It is found that at the instantaneous creeping stage, AE activities increase with loading; at the steady creeping stage, large AE signals may appear at lower background of AE action, andm—value which shows the relationship between AE amplitude and frequency keeps stable on the low value or decreases; at the accelerate creeping stage, AE activities increase andm—value decreases quickly or decreases again after recovery. These experimental results are related to the quality of the samples. In this paper, AE activities during three stages of creeping process are connected with the seismic patterns (for exampleb—value, foreshocks). Finally, it is pointed out the possibility that the foreshock—mainshock—aftershock earthquake sequence has been formed by the mechanism of creep fracture of crustal rocks. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,13, 104–112, 1991. This subject is sponsored by the Chinese Joint Seismological Science Foundation.  相似文献   

14.
Emissions from aircraft engines include carbon dioxide, water vapour, nitrogen oxides, sulphur components and various other gases and particles. Such emissions from high-flying global civil subsonic air traffic may cause anthropogenic climate changes by an increase of ozone and cloudiness in the upper troposphere, and by an enhanced greenhouse effect. The absolute emissions by air traffic are small (a few percent of the total) compared to surface emissions. However, the greenhouse effect of emitted water and of nitrogen oxides at cruise altitude is potentially large compared to that of the same emissions near the earth’s surface because of relatively large residence times at flight altitudes, low background concentrations, low temperature, and large radiative efficiency. Model computations indicate that emission of nitrogen oxides has doubled the background concentration in the upper troposphere between 40○N and 60○N. Models also indicate that this causes an increase of ozone by about 5-20%. Regionally, the observed annual mean change in cloudiness is 0.4%. It is estimated that the resultant greenhouse effect of changes in ozone and thin cirrus cloud cover causes a climatic surface temperature change of 0.01-0.1 K. These temperature changes are small compared to the natural variability. Recent research indicates that the emissions at cruise altitude may increase the amount of stratospheric aerosols and polar stratospheric clouds and thereby have an impact on the atmospheric environment. Air traffic is increasing about 5-6% per year, fuel consumption by about 3%, hence the effects of the related emissions are expected to grow. This paper surveys the state of knowledge and describes several results from recent and ongoing research.  相似文献   

15.
Interannual variability in the thermal structure of lakes is driven by interannual differences in meteorological conditions. Dynamic or mechanistic models and empirical or statistical methods have been used to integrate the physical processes in lakes enabling the response of the thermal structure to changes in air temperature to be determined. Water temperature records for Lake Mendota, WI., are possibly the most extensive for any dimictic lake in the world and allowed both approaches to be used. Results from both techniques suggest the mixed layer temperature increases with increasing air temperature. Results from the empirical approach suggested epilimnion temperatures increase 0.5 to 1.0°C per 1.0°C increase in air temperature compared to 0.4 to 0.85°C estimated from a dynamical model (DYRESM). Increased air temperatures are related to significant warming in deep water temperatures in the absence of stratification; however, mid summer hypolimnion temperatures are expected to change very little or increase only slightly in response to climatic warming. Both approaches suggest increases in air temperatures increase the length of summer stratification; results from the dynamic model suggest an increase of approximately 5 days per 1°C increase in air temperature. Longer stratification is reflected in shallower late summer thermocline depths. With these quantitative relationships and forecast increases in air temperature for the 2 × CO2 climatic scenario (Greenhouse Effect) from three General Circulation Models, projections are made describing the changes in the future mean thermal structure of moderate to large sized lakes.  相似文献   

16.
Stephen B. Shaw 《水文研究》2017,31(21):3729-3739
There remains continued use of non‐linear, logistic regression models for predicting water temperature from air temperature. A dominant feature of these non‐linear models is an upper bound on river water temperature. This upper bound is often attributed to a large increase in evaporative cooling at high air temperatures, but the exact conditions under which such an increase may occur have not been thoroughly explored. To better understand the appropriateness of the non‐linear model for predicting river water temperatures, it is essential to understand the physical basis for the upper bound and when it should and should not be included in the statistical model. This paper applies and validates an energy balance model against 8 river systems spread across different climate regions of the United States. The energy balance model is then used to develop a diagram relating vapour pressure deficit and air temperature to water temperature. With knowledge of present or future vapour pressure deficit (difference between saturation and actual vapour content in the atmosphere) conditions in a given climate, the diagram can be used to predict the likelihood of an upper bound in the air–water temperature relationship. This investigation offers a fundamental physical explanation of the most appropriate form of statistical models that should be used for predicting future water temperature from air temperature in different geographic regions with different climate conditions. In general, climatic regions that have only a slight increase in vapour pressure deficit with increasing air temperature (typically humid regions) would not be expected to have an upper bound. Conversely, climatic regions in which vapour pressure deficit sharply increases with increasing air temperature (typically arid regions) would be expected to have an upper bound.  相似文献   

17.
The functional relation between theδ18O values in the shell of gastropod Gyraulus sibirica and the air temperature in the warm half-yearly period, and that between Sr/Ca ratio and the precipitation in the warm half-yearly period were established by calibrating the δ18O and δ13C values, Sr/Ca ratio and Mg/Ca ratio in the shell Gyraulus sibirica, as well as the total organic carbon (TOC) and its δ13C values in the Xingcuo Lake sediment in the eastern Tibetan Plateau. The sequences of air temperature and precipitation in the last 200 years in the region were quantitatively recuperated on this basis. The results showed the following: (i) There was a negative correlativity between Sr/Ca ratio and the precipitation in the warm half-yearly period, its correlation coefficient was 0.86. (ii) There was an obviously positive correlativity between indexδ18O and the running average temperature in the warm half-yearly period, its correlation coefficient was 0.89. (iii) Evolution of the air temperature and the precipitation in the last 200 years can be divided into three phases distinctly. The precipitation in the later mid-19th century was 220 mm higher than that today; the air temperature in the warm half-yearly period was 2℃ lower than that of the present. The precipitation in the minimum air temperature period of the early 20th century was below that today by 60 mm, and the air temperature in the warm half-yearly period was 3.4℃ lower than that today. (iv) An evidently warming and drying trend existed in the last five decades.  相似文献   

18.
Meteorologic-driven processes exert large and diverse impacts on lakes’ internal heating, cooling, and mixing. Thus, continued global warming and climate change will affect lakes’ thermal properties, dynamics, and ecosystem. The impact of climate change on Lake Tahoe (in the states of California and Nevada in the United States) is investigated here, as a case study of climate change effects on the physical processes occurring within a lake. In the Tahoe basin, air temperature data show upward trends and streamflow trends indicate earlier snowmelt. Precipitation in the basin is shifting from snow to rain, and the frequency of intense rainfall events is increasing. In-lake water temperature records of the past 38 years (1970–2007) show that Lake Tahoe is warming at an average rate of 0.013°C/year. The future trends of weather variables, such as air temperature, precipitation, longwave radiation, downward shortwave radiation, and wind speed are estimated from predictions of three General Circulation Models (GCMs) for the period 2001–2100. Future trends of weather variables of each GCM are found to be different to those of the other GCMs. A series of simulation years into the future (2000–2040) is established using streamflows and associated loadings, and meteorologic data sets for the period 1994–2004. Future simulation years and trends of weather variables are selected so that: (1) future simulated warming trend would be consistent with the observed warming trend (0.013°C/year); and (2) future mixing pattern frequency would closely match with the historical mixing pattern frequency. Results of 40-year simulations show that the lake continues to become warmer and more stable, and mixing is reduced. Continued warming in the Tahoe has important implications for efforts towards managing biodiversity and maintaining clarity of the lake.  相似文献   

19.
 Four co-ignimbrite plumes were generated along the flow path of the pyroclastic flow of 7 August 1980 at Mount St. Helens. Three of the plumes were generated in discrete pulses which can be linked to changes in slope along the channel. One plume was generated at the mouth of the channel where the flow decelerated markedly as it moved onto the lower slopes of the pumice plain. Plume generation here may be triggered by enhanced mixing due to a hydraulic jump associated with an abrupt slope change. Measurements of plume ascent velocity and width show that the co-ignimbrite plumes increased in velocity with height. The plumes have initial velocities of 1–2 m/s. Two of the plumes reached a velocity maximum (4.6 and 8.8 m/s, respectively, at heights of 270 and 315 m above the flow) and thereafter decelerated. The other plumes reached velocities of 6.2 and 13 m/s. The four plumes become systematically less energetic downstream as measured by their ascent rates, which can be interpreted as a consequence of decreasing interaction of the pyroclastic flow front with the atmosphere. Theoretical models of both co-ignimbrite plumes and discrete co-ignimbrite clouds assume that there is no initial momentum, and both are able to predict the observed acceleration stage. The rising plumes mix with and heat air and sediment out particles causing their buoyancy to increase. Theoretical models agree well with observations and suggest that the initial motion of the ascending material is best described as a discrete thermal cloud which expands as it entrains air, whereas the subsequent motion of the head may become influenced by material supplied from the following plume. The models agree well with observations for an initial temperature of the ash and air mixture in the range of 500–600 K, which is in turn consistent with the measured initial ash temperature of around 920 K. Ash masses of 3.4×105 to 1.8×106 kg are estimated. Received: 11 January 1996 / Accepted: 7 October 1996  相似文献   

20.
库尔勒断层氡气观测及观测资料分析初探   总被引:1,自引:1,他引:0  
王艳  李德成 《内陆地震》1998,12(1):73-77
简要介绍了库尔勒断层氡气测孔周围的地质构造条件及仪器设置,并对两年多的观测资料进行分析。认为A道较好地记录到1995年3月19日和硕Ms5.1级地震及5月2日乌苏Ms5.8级地震前的突跳异常;同时利用B道氡资料与气温,气压作了多元回归分析,认为B道连续两年多出现的长时间,大幅度变化的异常现象主要是受气温,气压季节性变化的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号