首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Sediment yield from a catchment can be simulated using lumped and distributed models. However, for field applications, a reliable and simple method is required. The Universal Soil Loss Equation (USLE) is an empirical procedure developed by Wischmeier and Smith in 1965 from statistical analysis of erosion data from a large number of plot studies under different conditions. This model enables the planners to locate the potential erosion zones in a watershed and to try alternative combinations of cropping and management practices for effecting erosion control within specific limits. In the present study, USLE was used to identify the erosion potential zones of Hire Nadi catchment, in Yelberga taluk, Koppal District of Karnataka. In order to automize the estimation of USLE parameters, a geographical information system, Integrated Land and Water Information System (ILWIS), was used.  相似文献   

2.
Soil erosion which occurs at spatially varying rate is a widespread threat to sustainable resource management at watershed scale. Thus estimation of soil loss and identification of critical area for implementation of best management practice is central to success of soil conservation programme. The present study focuses application of most widely used Universal Soil Loss Equation (USLE) to determine soil erosion and prioritization of micro-watersheds of Upper Damodar Valley Catchment (UDVC) of India. Annual average soil loss for the entire basin is 23.17 t/ha/yr; for micro-watersheds. High soil loss is observed in 345 micro-watersheds, medium in 159 micro-watersheds and low soil loss is observed in 201 micro-watersheds. It is found that, out of 705 micro-watersheds of UDVC, 453 micro-watersheds are in agreement with AISLUS suggested priority which is based on observed sediment yield, 116 micro-watersheds under predict and 136 micro-watersheds over predict the priority. Geographic Information System (GIS) is applied to prepare various layers of USLE parameters which interactively estimate soil erosion at micro-watershed level. The main advantage of the GIS methodology is in providing quick information on the estimated value of soil loss for any part of the investigated area.  相似文献   

3.
This paper describes the use of the Arc/Info and ArcView GIS tools to estimate soil erosion with Universal Soil Loss Equation (USLE). Calculations are be done by using capabilities available. This study start with a digital elevation model (DEM) of Shaanxi, which was created by digitizing contour and spot heights from the topographic map on 1∶250 000 scale and grid themes for the USLEK andC factors. It is note worthy that USLEK can be obtained by adding the K factor as an attribute to a soil theme's table. TheC can be obtained from tables or using the information about land use and management given by USLE program. A land use theme can be used to add theC factors as an attribute field. The purpose of this study is to establish spatial information of soil erosion using USLE and GIS and discuss the analysis of the soil erosion and slope failures in GIS and formulate the possible framework.  相似文献   

4.
Application of GIS to estimate soil erosion using RUSLE   总被引:9,自引:0,他引:9  
This paper describes the use of the Arc/Info and ArcView GIS tools to estimate soil erosion with Universal Soil Loss Equation (USLE).Calculations are be done by using capabilities available.This study start with a digital elevation model(DEM) of Shaanxi,which was created by digitizing contour and spot heights from the topographic map on 1:250000 scale and grid themes for the USLE K and C factors.It is note worthy that USLE K can be obtained by adding the K factor as an attribute to a soil theme‘s table.The C can be obtained from tables or using the information about land use and management given by USLE program.A land use theme can be used to add the C factors as an attribute field.The purpose of this study is to establish spatial information of soil erosion using USLE and GIS and discuss the analysis of the soil erosion and slope failures in GIS and formulate the possible framework.  相似文献   

5.
The focus of soil erosion research in the Alps has been in two categories: (i) on-site measurements, which are rather small scale point measurements on selected plots often constrained to irrigation experiments or (ii) off-site quantification of sediment delivery at the outlet of the catchment. Results of both categories pointed towards the importance of an intact vegetation cover to prevent soil loss. With the recent availability of high-resolution satellites such as IKONOS and QuickBird options for detecting and monitoring vegetation parameters in heterogeneous terrain have increased. The aim of this study is to evaluate the usefulness of QuickBird derived vegetation parameters in soil erosion models for alpine sites by comparison to Cesium-137 (Cs-137) derived soil erosion estimates. The study site (67 km2) is located in the Central Swiss Alps (Urseren Valley) and is characterised by scarce forest cover and strong anthropogenic influences due to grassland farming for centuries. A fractional vegetation cover (FVC) map for grassland and detailed land-cover maps are available from linear spectral unmixing and supervised classification of QuickBird imagery. The maps were introduced to the Pan-European Soil Erosion Risk Assessment (PESERA) model as well as to the Universal Soil Loss Equation (USLE). Regarding the latter model, the FVC was indirectly incorporated by adapting the C factor. Both models show an increase in absolute soil erosion values when FVC is considered. In contrast to USLE and the Cs-137 soil erosion rates, PESERA estimates are low. For the USLE model also the spatial patterns improved and showed “hotspots” of high erosion of up to 16 t ha−1 a−1. In conclusion field measurements of Cs-137 confirmed the improvement of soil erosion estimates using the satellite-derived vegetation data.  相似文献   

6.
为了给合理地利用土地资源和科学地进行环境保护提供依据,利用多源遥感影像数据,结合气象数据、土壤属性数据与DEM,对河北北部地区生态系统的土壤保持量进行了评估,并参考《森林生态系统服务功能评估规范》,对生态系统保护土壤肥力的价值与固土价值进行了评估.结果表明,研究区2008年度生态系统的土壤保持总量达到7.55亿t,对应...  相似文献   

7.
Soil erosion is one of the major causes of land degradation in arid areas. Soil erosion models, e.g. the revised universal soil loss equation (RUSLE), use arithmetical expressions to explore relationships among various processes occurring in the terrain. The established model includes soil parameters, slope, climate and human activities to estimate the water erosion rate and sediment yield. In this study, an approach was adopted to integrate RUSLE model and geographic information system to detect erosion vulnerability and determine the soil erosion risk in the study area. The study area is situated in the Eastern Desert, Egypt. Ground truth data were examined to represent two regions: Luxor-Suhag and Suhag–ElMinya. These regions are exampled by four dry valleys named Sannor, Tarfa, Asyut and Qena, which are planned for agricultural development. The results indicate high risk of water erosion and sediment load discharge into the cultivated land in Luxor–Suhag region. The other region of Suhag–ElMinya is moderately affected by water and sediment load discharge. A higher soil erosion rate was found in Qena wadi followed by Asyut, then Tarfa and Sannur, respectively.  相似文献   

8.
This study attempts to identify and forecast future land cover (LC) by using the Land Transformation Model (LTM), which considers pixel changes in the past and makes predictions using influential spatial features. LTM applies the Artificial Neural Networks algorithm) in conducting the analysis. In line with these objectives, two satellite images (Spot 5 acquired in 2004 and 2010) were classified using the Maximum Likelihood method for the change detection analysis. Consequently, LC maps from 2004 to 2010 with six classes (forest, agriculture, oil palm cultivations, open area, urban, and water bodies) were generated from the test area. A prediction was made on the actual soil erosion and the soil erosion rate using the Universal Soil Loss Equation (USLE) combined with remote sensing and GIS in the Semenyih watershed for 2004 and 2010 and projected to 2016. Actual and potential soil erosion maps from 2004 to 2010 and projected to 2016 were eventually generated. The results of the LC change detections indicated that three major changes were predicted from 2004 to 2016 (a period of 12 years): (1) forest cover and open area significantly decreased at rates of almost 30 and 8 km2, respectively; (2) cultivated land and oil palm have shown an increment in sizes at rates of 25.02 and 5.77 km2, respectively; and, (3) settlement and Urbanization has intensified also by almost 5 km2. Soil erosion risk analysis results also showed that the Semenyih basin exhibited an average annual soil erosion between 143.35 ton ha?1 year?1 in 2004 and 151 in 2010, followed by the expected 162.24 ton ha?1 year?1. These results indicated that Semenyih is prone to water erosion by 2016. The wide range of erosion classes were estimated at a very low level (0–1 t/ha/year) and mainly located on steep lands and forest areas. This study has shown that using both LTM and USLE in combination with remote sensing and GIS is a suitable method for forecasting LC and accurately measuring the amount of soil losses in the future.  相似文献   

9.
缅甸中部干旱地区土壤侵蚀的分析   总被引:3,自引:0,他引:3  
李红旮  崔伟宏 《遥感学报》2000,4(3):233-238246
伊落瓦底江中游是缅甸中部著名的干热地带,地壤流失严重。在研究中,首先利用遥感图像(1995年的TM图像,1998年的TM和SPOT图像)进行判读和土壤侵蚀地面实况的野外验证。同时,根据影响封侵蚀的生态环境因子,建立实验区的数字高程模型和窨数据库。然后,在地理信息系统(GIS)中进行土壤侵蚀测定以及生态环境因子相关分析。影响土壤侵镅的生态环境因子很多,但植被和耕作方式是人们可以控制的因子。在此基础上  相似文献   

10.
The study area is characterized by low and fluctuating rainfall pattern, thin soil cover, predominantly rain-fed farming with low productivity coupled with intensive mining activities, urbanization, deforestation, wastelands and unwise utilization of natural resources causing human induced environmental degradation and ecological imbalances, that warrant sustainable development and optimum management of land resources. Spatial information related to existing geology, land use/land cover, physiography, slope and soils has been derived through remote sensing, collateral data and field survey and used as inputs in a widely used erosion model (Universal Soil Loss Equation) in India to compute soil loss (t/ha/yr) in GIS. The study area has been delineated into very slight (<5 t/ha/yr), slight (5–10 t/ha/yr), moderate (10–15 t/ha/yr), moderately severe (15–20 t/ha/yr), severe (20–40 t/ha/yr) and very severe (>40 t/ha/yr) soil erosion classes. The study indicate that 45.4 thousand ha. (13.7% of TGA) is under moderate, moderately severe, severe and very severe soil erosion categories. The physiographic unit wise analysis of soil loss in different landscapes have indicated the sensitive areas, that has helped to prioritize development and management plans for soil and water conservation measures and suitable interventions like afforestation, agro-forestry, agri-horticulture, silvipasture systems which will result in the improvement of productivity of these lands, protect the environment from further degradation and for the ecological sustenance.  相似文献   

11.
The Digital Elevation Model (DEM) is one of the important parameters of soil erosion assessment and notable uncertainties are found in using different resolutions of the DEM. Revised Universal Soil Loss Equation model has been applied to analyze the effect of open-source DEMs with different resolution and accuracy on the uncertainties of soil erosion modelling in a part of the Narmada river basin in Madhya Pradesh in central India. Selected open-source DEMs are GTOPO30 (1 km), SRTM (30 and 90 m), CARTOSAT (30 m) and ASTER (30 m), used for estimating erosion rate. Results with better accuracy are achieved with the high-resolution DEMs (30 m) with higher vertical accuracy than the coarse resolution DEMs with lower accuracy. This study has presented potential uncertainties introduced by the open-source DEMs in soil erosion modelling for better understanding of appropriate selection and acceptable errors for researchers.  相似文献   

12.
ABSTRACT

To assess the effects of the Grain for Green Program (GGP) on soil erosion is essential to support better land management policies in the Chinese Loess Plateau. Studies on the evaluation of the effects of the GGP on soil erosion have garnered heightened attention. However, few studies examined the efficiency of GGP on soil erosion control through spatial relationship analysis. Thus, this study focuses on analyzing the spatial variation relationship between soil erosion and GGP in northern Shaanxi, Chinese Loess Plateau, from 1988 to 2015. The Universal Soil Loss Equation was used to quantify changes in soil erosion at the regional and watershed scales, and the Geographically Weighted Regression model was used to analyze the spatial relationships between land use and land cover (LULC) and soil erosion. Our results indicated that the major characteristic of LULC change during the GGP was a rapid increase of vegetation area and a rapid decrease of cropland. Bare lands contributed to the most serious soil loss, followed by croplands and sparse grasslands. The GGP had a globally positive influence on the decrease in soil erosion over the study area, but the amount of soil erosion in western and northern regions maintained a severe level. Spatial heterogeneity in the nature of the relationships among different vegetation, croplands, and soil erosion was also observed. The change rate of wood and the change rate of soil erosion in northern sub-watershed represented a negative relationship, while the change rate of sparse grassland was negatively correlated to the change rate of soil erosion in 21 sub-watersheds, account for 72% of the study area. The GGP implemented in northern sub-watersheds were more effective for soil erosion control than southern sub-watersheds. We propose that current areas of vegetation can support soil erosion control in the whole northern Shaanxi, but local-scale ecological restoration can be considered in northern sub-watersheds.  相似文献   

13.
The present study evaluates the effectiveness and suitability of cover management factors (C factor) generated through different techniques like land use/land cover-based arbitrary value (CLULC), Normalised Different Vegetation Index-based methods CNDVI1 and CNDVI2 and Modified Soil Adjusted Vegetation Index 2-based method (CMSAVI2). The C factors generated using these four methods were tested in the calculation and assessment of annual average soil loss from an upland forested subwatershed in the Baram river basin using the Revised Universal Soil Loss Equation (RUSLE). The four cover management factor maps generated by this analysis show some variation among the results. The LULC method uses a single arbitrary value for each LULC type mapped in the subwatershed. The other three methods show a range of C values within each mapped LULC type. The effects of these variations were tested in the RUSLE by keeping the factors such as rainfall erosivity (R), soil erodibility (K), slope-length and steepness (LS) constant. The maximum annual average soil loss is 1191 t. ha?1. y?1 based on the CLULC. Soil losses estimated with other three methods are very different compared to those estimated with the CLULC method. The highest calculated soil loss values were 1832, 1674 and 1608 t. ha?1. y?1 in the study area based, respectively, on CNDVI1, CNDVI2 and CMSAVI2 C factors. These maximum values represent the worst pixel scenario values of soil loss in the region. The statistical analysis performed indicates different relationship between the parameters and suggests the acceptance of the methodology based on CNDVI2 for the study area, instead of a single value method such as CLULC. Among the other two methods, the CMSAVI2 was found to be more consistent than the CNDVI1 method, but both methods lead to over-prediction of annual soil loss rate and therefore need to be reconsidered before applied in the RUSLE.  相似文献   

14.
通过利用Terra/Aqua卫星上搭载的MODIS传感器计算获取的16d合成植被指数产品(MOD13A2),进一步按照最大值合成法计算月合成光谱植被指数,按照USLE模型月模式评价江西省2005年土壤侵蚀,并与传统的USLE模型年模式计算的结果进行了比较。  相似文献   

15.
长江上游小流域土壤侵蚀动态模拟与分析   总被引:1,自引:0,他引:1  
以长江上游甘肃省尚沟流域为研究区,在遥感影像和GIS空间分析技术支撑下,根据USLE因子算法生成各因子栅格图,借助地图代数运算,估算了尚沟流域1998年和2004年的土壤侵蚀量,并对2004年土壤侵蚀与其环境背景因子进行叠加和空间统计分析。在此基础上,构建了与GIS软件平台集成的地理元胞自动机,模拟了该流域2004年、2010年和2020年土壤侵蚀空间演化情形。结果表明:研究区平均侵蚀量从1998年的6598.1t/km2下降到2004年的5923.3t/km2,侵蚀面积净减少172.3hm2,输沙量减少9.15×104t;1300~1400m的海拔高程带、25~35°坡度带、南坡和旱耕地是发生水土流失的主要区域;经模拟,2010年总侵蚀面积为93.49km2,侵蚀总量73.15×104t,侵蚀模数为5126t/km2,土壤侵蚀状况总体上将有所减缓。  相似文献   

16.
Soil erosion is the most important factor in land degradation and influences desertification in semi-arid areas. A comprehensive methodology that integrates revised universal soil loss equation (RUSLE) model and GIS was adopted to determine the soil erosion risk (SER) in semi-arid Aseer region, Saudi Arabia. Geoenvironmental factors viz. rainfall (R), soil erodibility (K), slope (LS), cover management and practice factors were computed to determine their effects on average annual soil loss. The high potential soil erosion, resulting from high denuded slope, devoid of vegetation cover and high intensity rainfall, is located towards the north western part of the study area. The analysis is investigated that the SER over the vegetation cover including dense vegetation, sparse vegetation and bushes increases with the higher altitude and higher slope angle. The erosion maps generated with RUSLE integrated with GIS can serve as effective inputs in deriving strategies for land planning/management in the environmentally sensitive mountainous areas.  相似文献   

17.
In the analysis of soil loss equation, the researchers have suggested two methods of deriving the slope steepness parameter. One method is having percentage slope term, while the other method is having sinθ as its term. In this paper, both the methods were analysed and compared in soil loss computation using Revised Universal Soil Loss Equation, over a Gangapur catchment area in India, having steep slopes. The soil loss rates derived were 0.98 million tonnes per year in case of steepness parameter derived by sinθ and 1.226 million tonnes per year in case of steepness parameter derived by percentage slope term. The observed rate of soil loss is 1.23 million tonnes per year. This methodology of soil loss estimation was also validated with similar catchment of Punegaon dam. It is concluded that for medium to steep terrain, percentage slope method estimates more accurate soil loss than other empirical methods for slope steepness estimation.  相似文献   

18.
In the present study, the rainfall-runoff relationship is determined using USDA Soil Conservation Service (SCS) method. The coefficient of determination (R2) is 0.99, which indicates a high correlation between rainfall and runoff. The runoff potential map was prepared by assigning individual class weight and scores input map. Annual spatial soil loss estimation was computed using Morgan, Morgan and Finney mathematical model in conjunction with remote sensing and GIS techniques. Higher soil erosion was found to occur in the northern part of the Tons watershed. The soil texture in the affected area is coarse loamy to loamy skeletal and soil detachment is higher. Moreover the land use has open forests, which does not reduce the impact of rainfall. The average soil loss for all the four sub-watersheds was calculated, and it was found that the maximum average soil loss of 24.1 t/ha occurred in the sub-watershed 1.  相似文献   

19.
区域尺度海河流域水土流失风险评估   总被引:10,自引:1,他引:9  
李晓松  吴炳方  王浩  张瑾 《遥感学报》2011,15(2):372-387
借鉴USLE的因子选择及综合方法,在遥感和GIS的支撑下对海河流域的水土流失风险进行评估,并对其空间分布特征进行分析.结果表明:海河流域山区水土流失风险显著高于平原地区,北三河山区水土流失风险最低,太行山区最高,永定河上游介于两者之间;水土流失风险"很低"等级主要分布在小于5°的平坦地区,"中"、"高"水土流失风险面积...  相似文献   

20.
In the present study, efforts have been made to identify and map areas affected by various soil degradation processes in Hanumangarh district of western Rajasthan. Soil degradation processes were identified by using IRS-1B satellite image of the year 1998, SOI toposheets, ground truth verification and soil studies. The kind, extent and degree of soil degradation have been mapped in an area of 9703 km2. The study reveals that the soil degradation problems were mainly due to wind erosion/deposition and water-logging, followed by salinity/alkalinity, water erosion and wind and water erosion combinedly. Nearly 38.7% area is subjected to slight and moderate degradation, which can easily be combated by adopting the suggested techniques and 17.1% area is free of hazard. Soil degradation processes have resulted in the loss of organic carbon, available Phosphorus and Potassium. Soil degradation due to water logging/salinization has also shown a significant increase in electrical conductivity and available potassium content of soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号