首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Forest canopy cover (CC) and above-ground biomass (AGB) are important ecological indicators for forest monitoring and geoscience applications. This study aimed to estimate temperate forest CC and AGB by integrating airborne LiDAR data with wall-to-wall space-borne SPOT-6 data through geostatistical modeling. Our study involved the following approach: (1) reference maps of CC and AGB were derived from wall-to-wall LiDAR data and calibrated by field measurements; (2) twelve discrete LiDAR flights were simulated by assuming that LiDAR data were only available beneath these flights; (3) training/testing samples of CC and AGB were extracted from the reference maps inside and outside the simulated flights using stratified random sampling; (4) The simple linear regression, ordinary kriging and regression kriging model were used to extend the sparsely sampled CC/AGB data to the entire study area by incorporating a selection of SPOT-6 variables, including vegetation indices and texture variables. The regression kriging model was superior at estimating and mapping the spatial distribution of CC and AGB, as it featured the lowest mean absolute error (MAE; 11.295% and 18.929 t/ha for CC and AGB, respectively) and root mean squared error (RMSE; 17.361% and 21.351 t/ha for CC and AGB, respectively). The predicted and reference values of both CC and AGB were highly correlated for the entire study area based on the estimation histograms and error maps. Finally, we concluded that the regression kriging model was superior and more effective at estimating LiDAR-derived CC and AGB values using the spatially-reduced samples and the SPOT-6 variables. The presented modeling workflow will greatly facilitate future forest growth monitoring and carbon stock assessments for large areas of temperate forest in northeast China. It also provides guidance on how to take full advantage of future sparsely collected LiDAR data in cases where wall-to-wall LiDAR coverage is not available from the perspective of geostatistics.  相似文献   

2.
森林地上生物量遥感反演方法综述   总被引:9,自引:0,他引:9  
刘茜  杨乐  柳钦火  李静 《遥感学报》2015,19(1):62-74
森林地上生物量反演对理解和监测生态系统及评估人类生产生活的影响有着重要作用,日益发展的遥感技术使全球及大区域的生物量估算成为可能。近年来,不同的遥感技术和反演方法被广泛用于估算森林生物量。本文首先总结了现有的全球及区域生物量产品及其不确定性,然后综述了3类方法在森林地上生物量遥感反演中的应用,即基于单源数据的参数化方法、基于多源数据的非参数化方法和基于机理模型的反演方法,阐述了各类反演方法的特点、优势及局限性。最后从机理模型研究、多源遥感数据协同、生物量季节变化研究和遥感数据源不断丰富4个方面对今后的生物量遥感反演研究进行了展望。  相似文献   

3.
黄克标  庞勇  舒清态  付甜 《遥感学报》2013,17(1):165-179
结合机载、星载激光雷达对GLAS(地球科学激光测高系统)光斑范围内的森林地上生物量进行估测,并利用MODIS植被产品以及MERIS土地覆盖产品进行了云南省森林地上生物量的连续制图。机载LiDAR扫描的260个训练样本用于构建星载GLAS的森林地上生物量估测模型,模型的决定系数(R2)为0.52,均方根误差(RMSE)为31Mg/ha。研究结果显示,云南省总森林地上生物量为12.72亿t,平均森林地上生物量为94Mg/ha。估测的森林地上生物量空间分布情况与实际情况相符,森林地上生物量总量与基于森林资源清查数据的估测结果相符,表明了利用机载LiDAR与星载ICESatGLAS结合进行大区域森林地上生物量估测的可靠性。  相似文献   

4.
Forest plantations are an important source of terrestrial carbon sequestration. The forest of Robinia pseudoacacia in the Yellow River Delta (YRD) is the largest artificial ecological protection forest in China. However, more than half of the forest has appeared different degrees of dieback and even death since the 1990s. Timely and accurate estimation of the forest aboveground biomass (AGB) is a basis for studying the carbon cycle of forests. Light Detecting and Ranging (LiDAR) has been proved to be one of the most powerful methods for forest biomass estimation. However, because of an irregular and overlapping shape of the broadleaved forest canopy in a growing season, it is difficult to segment individual trees and estimate the tree biomass from airborne LiDAR data. In this study, a new method was proposed to solve this problem of individual tree detection in the Robinia pseudoacacia forest based on a combination of the Unmanned Aerial Vehicle-Light Detecting and Ranging (UAV-LiDAR) with the Backpack-LiDAR. The proposed method mainly consists of following steps: (i) at a plot level, trees in the UAV-LiDAR data were detected by seed points obtained by an individual tree segmentation (ITS) method from the Backpack-LiDAR data; (ii) height and diameter at breast height (DBH) of an individual tree would be extracted from UAV and Backpack LiDAR data, respectively; (iii) the individual tree AGB would be calculated through an allometric equation and the forest AGB at the plot level was accumulated; and (iv) the plot-level forest AGB was taken as a dependent variable, and various metrics extracted from UAV-LiDAR point cloud data as independent variables to estimate forest AGB distribution in the study area by using both multiple linear regression (MLR) and random forest (RF) models. The results demonstrate that: (1) the seed points extracted from Backpack-LiDAR could significantly improve the overall accuracy of individual tree detection (F = 0.99), and thus increase the forest AGB estimation accuracy; (2) compared with MLR model, the RF model led to a higher estimation accuracy (p < 0.05); and (3) LiDAR intensity information selected by both MLR and RF models and laser penetration rate (LP) played an important role in estimating healthy forest AGB.  相似文献   

5.

Background

Accurate estimation of aboveground forest biomass (AGB) and its dynamics is of paramount importance in understanding the role of forest in the carbon cycle and the effective implementation of climate change mitigation policies. LiDAR is currently the most accurate technology for AGB estimation. LiDAR metrics can be derived from the 3D point cloud (echo-based) or from the canopy height model (CHM). Different sensors and survey configurations can affect the metrics derived from the LiDAR data. We evaluate the ability of the metrics derived from the echo-based and CHM data models to estimate AGB in three different biomes, as well as the impact of point density on the metrics derived from them.

Results

Our results show that differences among metrics derived at different point densities were significantly different from zero, with a larger impact on CHM-based than echo-based metrics, particularly when the point density was reduced to 1 point m?2. Both data models-echo-based and CHM-performed similarly well in estimating AGB at the three study sites. For the temperate forest in the Sierra Nevada Mountains, California, USA, R2 ranged from 0.79 to 0.8 and RMSE (relRMSE) from 69.69 (35.59%) to 70.71 (36.12%) Mg ha?1 for the echo-based model and from 0.76 to 0.78 and 73.84 (37.72%) to 128.20 (65.49%) Mg ha?1 for the CHM-based model. For the moist tropical forest on Barro Colorado Island, Panama, the models gave R2 ranging between 0.70 and 0.71 and RMSE between 30.08 (12.36%) and 30.32 (12.46) Mg ha?1 [between 0.69–0.70 and 30.42 (12.50%) and 61.30 (25.19%) Mg ha?1] for the echo-based [CHM-based] models. Finally, for the Atlantic forest in the Sierra do Mar, Brazil, R2 was between 0.58–0.69 and RMSE between 37.73 (8.67%) and 39.77 (9.14%) Mg ha?1 for the echo-based model, whereas for the CHM R2 was between 0.37–0.45 and RMSE between 45.43 (10.44%) and 67.23 (15.45%) Mg ha?1.

Conclusions

Metrics derived from the CHM show a higher dependence on point density than metrics derived from the echo-based data model. Despite the median of the differences between metrics derived at different point densities differing significantly from zero, the mean change was close to zero and smaller than the standard deviation except for very low point densities (1 point m?2). The application of calibrated models to estimate AGB on metrics derived from thinned datasets resulted in less than 5% error when metrics were derived from the echo-based model. For CHM-based metrics, the same level of error was obtained for point densities higher than 5 points m?2. The fact that reducing point density does not introduce significant errors in AGB estimates is important for biomass monitoring and for an effective implementation of climate change mitigation policies such as REDD + due to its implications for the costs of data acquisition. Both data models showed similar capability to estimate AGB when point density was greater than or equal to 5 point m?2.
  相似文献   

6.
估算森林地上生物量(AGB)对于全球实现碳中和目标至关重要。本文以美国缅因州Howland森林为研究区域,借助地面实测样地数据,对比分析协同不同数据源(高光谱和LiDAR)和机器学习算法(随机森林、支持向量机、梯度提升决策树和K最邻近回归)的研究,以改善Howland森林的生物量估计精度。结果表明,采用LiDAR和高光谱植被指数变量模型的最佳精度分别为0.874和0.868,协同高光谱和LiDAR变量并采用梯度提升决策树回归模型的精度为0.927,即多源遥感数据要优于单一数据源。高光谱和LiDAR数据的协同使用对于提高类似于Howland地区或更广泛区域的生物量估计的准确性,具有普遍的适用性与一定的应用前景。  相似文献   

7.
结合树龄信息的遥感森林生态系统生物量制图   总被引:10,自引:0,他引:10  
森林生态系统是陆地生态系统中的重要组成部分,其中的地上生物量(AGB,Aboveground Biomass)在全球气候变化和碳循环研究中起着重要的作用。本文利用ETM^+遥感影像,首先建立了实测叶面积指数(LAI,Leaf Area Index)与实测生物量数据的回归关系,基于遥感叶面积指数图像得到初步地上生物量空间分布图;同时在短波植被指数(SWVI,Short Wave Vegetation Index)与实测树龄之间建立了回归关系,在此基础上得到了树龄空间分布图。然后通过将植被指数(VI,Vegetation Index),LAI,树龄等变量针对不同的树种类型进行逐步回归,得到了较好的回归模型,并结合土地利用/土地覆盖估算了贵州省黎平县的地上生物量,绘制了其空间分布图。统计结果显示:总体森林生态系统的AGB与LAI和RSR(Reduced Simple Ratio)之间有一定的相关关系(R^2=0.895);杉木林的AGB与LAI和归一化植被指数(NDVI,Normalized Difference Vegetation Index)之间有较强的相关性(R^2=0.93);针叶树种的LAI与年龄是AGB较好的估算因子(R^2=0.937);阔叶林的AGB与年龄有一定的相关性(R^2=0.792);混交林的AGB与LAI和SR(Simple Ratio)有较强的相关性(R^2=0.931)。结果表明,将树龄和土地覆盖/土地利用类型的信息加入到地上生物量估算模型的建立中,是一种改善利用多光谱遥感估算精度的较好的方法。结合土地覆盖/土地利用类型的高分辨率的树龄空间分布图,可为森林生态系统的可持续发展和管理提供科学的论据。  相似文献   

8.
机器学习算法在森林地上生物量估算中的应用   总被引:1,自引:0,他引:1  
森林地上生物量是森林生产力的重要评价指标,对其进行高效监测对维持全球碳平衡和保护生态系统具有重要意义。本文首先基于冠层高度模型数据,通过分水岭分割算法得到单木冠幅边界;然后在单木冠幅范围内提取23个LiDAR变量,结合佩诺布斯科特试验森林的87组实测数据,利用随机森林和支持向量机建立森林地上生物量估算模型;最后对样地模型估算的结果进行了比较,讨论了预测结果及其精度。结果表明:本文选用的随机森林模型和支持向量机模型在估算森林地上生物量的应用中获得了较高的精度;并且,随机森林模型在基于机载雷达数据估测森林地上生物量中的估算精度更高,模型泛化能力更强,制图精度也更好,具有更好的适用性。  相似文献   

9.

Background

Worldwide, forests are an important carbon sink and thus are key to mitigate the effects of climate change. Mountain moist evergreen forests in Mozambique are threatened by agricultural expansion, uncontrolled logging, and firewood collection, thus compromising their role in carbon sequestration. There is lack of local tools for above-ground biomass (AGB) estimation of mountain moist evergreen forest, hence carbon emissions from deforestation and forest degradation are not adequately known. This study aimed to develop biomass allometric equations (BAE) and biomass expansion factor (BEF) for the estimation of total above-ground carbon stock in mountain moist evergreen forest.

Methods

The destructive method was used, whereby 39 trees were felled and measured for diameter at breast height (DBH), total height and the commercial height. We determined the wood basic density, the total dry weight and merchantable timber volume by Smalian’s formula. Six biomass allometric models were fitted using non-linear least square regression. The BEF was determined based on the relationship between bole stem dry weight and total dry weight of the tree. To estimate the mean AGB of the forest, a forest inventory was conducted using 27 temporary square plots. The applicability of Marzoli’s volume equation was compared with Smalian’s volume equation in order to check whether Marzoli’s volume from national forest inventory can be used to predict AGB using BEF.

Results

The best model was the power model with only DBH as predictor variable, which provided an estimated mean AGB of 291?±?141 Mg ha?1 (mean?±?95% confidence level). The mean wood basic density of sampled trees was 0.715?±?0.182 g cm?3. The average BEF was of 2.05?±?0.15 and the estimated mean AGB of 387?±?126 Mg ha?1. The BAE from miombo woodland within the vicinity of the study area underestimates the AGB for all sampled trees. Chave et al.’s pantropical equation of moist forest did not fit to the Moribane Forest Reserve, while Brown’s equation of moist forest had a good fit to the Moribane Forest Reserve, having generated 1.2% of bias, very close to that generated by the selected model of this study. BEF showed to be reliable when combined with stand mean volume from Marzoli’s National Forestry Inventory equation.

Conclusion

The BAE and the BEF function developed in this study can be used to estimate the AGB of the mountain moist evergreen forests at Moribane Forest Reserve in Mozambique. However, the use of the biomass allometric model should be preferable when DBH information is available.
  相似文献   

10.
Estimation of forest aboveground biomass (AGB) is informative of the role of forest ecosystems in local and global carbon budgets. There is a need to retrospectively estimate biomass in order to establish a historical baseline and enable reporting of change. In this research, we used temporal spectral trajectories to inform on forest successional development status in support of modelling and mapping of historic AGB for Mediterranean pines in central Spain. AGB generated with ground plot data from the Spanish National Forest Inventory (NFI), representing two collection periods (1990 and 2000), are linked with static and dynamic spectral data as captured by Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) sensors over a 25 year period (1984–2009). The importance of forest structural complexity on the relationship between AGB and spectral vegetation indices is revealed by the analysis of wavelet transforms. Two-dimensional (2D) wavelet transforms support the identification of spectral trajectory patterns of forest stands that in turn, are associated with traits of individual NFI plots, using a flexible algorithm sensitive to capturing time series similarity. Single-date spectral indices, temporal trajectories, and temporal derivatives associated with succession are used as input variables to non-parametric decision trees for modelling, estimation, and mapping of AGB and carbon sinks over the entire study area. Results indicate that patterns of change found in Normalized Difference Vegetation Index (NDVI) values are associated and relate well to classes of forest AGB. The Tasseled Cap Angle (TCA) index was found to be strongly related with forest density, although the related patterns of change had little relation with variability in historic AGB. By scaling biomass models through small (∼2.5 ha) spatial objects defined by spectral homogeneity, the AGB dynamics in the period 1990–2000 are mapped (70% accuracy when validated with plot values of change), revealing an increase of 18% in AGB irregularly distributed over 814 km2 of pines. The accumulation of C calculated in AGB was on average 0.65 t ha−1 y−1, equivalent to a fixation of 2.38 t ha−1 y−1 of carbon dioxide.  相似文献   

11.
WorldView-2纹理的森林地上生物量反演   总被引:1,自引:0,他引:1  
使用高空间分辨率卫星WorldView-2的多光谱遥感影像,构建植被指数和纹理因子等遥感因子与森林地上生物量的关系方程,并计算模型估测精度和均方根误差,探索高分辨率数据的光谱与纹理信息在温带森林地上生物量估测应用中的潜力。以黑龙江省凉水自然保护区温带天然林及天然次生林为研究对象,通过灰度共生矩阵(GLCM)、灰度差分向量(GLDV)及和差直方图(SADH)对高分辨率遥感影像进行纹理信息提取,并利用外业调查的74个样地地上生物量与遥感因子建立参数估计模型。提取的遥感因子包括6种植被指数(比值植被指数RVI、差值植被指数DVI、规一化植被指数NDVI、增强植被指数EVI、土壤调节植被指数SAVI和修正的土壤调节植被指数MSAVI)以及3类纹理因子(GLCM、GLDV和SADH)。为避免特征变量个数较多对估测模型造成过拟合,利用随机森林算法对提取的遥感因子进行特征选择,将最优的特征变量输入模型参与建模估测。采用支持向量回归(SVR)进行生物量建模及验证,结果显示选入模型的和差直方图均值(sadh_mean)、灰度共生矩阵方差(glcm_var)和差值植被指数(DVI)等遥感因子对森林地上生物量有较好的解释效果;植被指数+纹理因子组合的模型获得较精确的AGB估算结果(R2=0.85,RMSE=42.30 t/ha),单独使用植被指数的模型精度则较低(R~2=0.69,RMSE=61.13 t/ha)。  相似文献   

12.
Understanding forest biomass dynamics is crucial for carbon and environmental monitoring, especially in the context of climate change. In this study, we propose a robust approach for monitoring aboveground forest biomass (AGB) dynamics by combining Landsat time-series with single-date inventory data. We developed a Random Forest (RF) based kNN model to produce annual maps of AGB from 1988 to 2017 over 7.2 million ha of forests in Victoria, Australia. The model was internally evaluated using a bootstrapping technique. Predictions of AGB and its change were then independently evaluated using multi-temporal Lidar data (2008 and 2016). To understand how natural and anthropogenic processes impact forest AGB, we analysed trends in relation to the history of disturbance and recovery. Specifically, change metrics (e.g., AGB loss and gain, Years to Recovery - Y2R) were calculated at the pixel level to characterise the patterns of AGB change resulting from forest dynamics. The imputation model achieved a RMSE value of 132.9 Mg ha−1 (RMSE% = 46.3%) and R2 value of 0.56. Independent assessments of prediction maps in 2008 and 2016 using Lidar-based AGB data achieved relatively high accuracies, with a RMSE of 108.6 Mg ha−1 and 135.9 Mg ha−1 for 2008 and 2016, respectively. Annual validations of AGB maps using un-changed, homogenous Lidar plots suggest that our model is transferable through time (RMSE ranging from 109.65 Mg ha−1 to 112.27 Mg ha−1 and RMSE% ranging from 25.38% to 25.99%). In addition, changes in AGB values associated with forest disturbance and recovery (decrease and increase, respectively) were captured by predicted maps. AGB change metrics indicate that AGB loss and Y2R varied across bioregions and were highly dependent on levels of disturbance severity (i.e., a greater loss and longer recovery time were associated with a higher severity disturbance). On average, high severity fire burnt from 200 Mg ha−1 to 550 Mg ha−1 of AGB and required up to 15 years to recover while clear-fell logging caused a reduction in 250 Mg ha−1 to 600 Mg ha−1 of AGB and required nearly 20 years to recover. In addition, AGB within un-disturbed forests showed statistically significant but monotonic trends, suggesting a mild gradual drop over time across most bioregions. Our methods are designed to support forest managers and researchers in developing forest monitoring systems, especially in developing regions, where only a single date forestry inventory exists.  相似文献   

13.
GLAS星载激光雷达和Landsat/ETM+数据的森林生物量估算   总被引:1,自引:0,他引:1  
基于大脚印激光雷达数据和野外观测数据,该文提出一种获取脚印点内森林生物量的新思路,并结合陆地卫星数据应用于长白山地区森林地上生物量估算。首先,基于3种森林类型(针叶林、阔叶林和针阔混交林),采用多元逐步回归方法建立激光雷达波形指数与脚印点内实测平均树高的回归模型,估算全部脚印点内的平均树高;然后根据脚印点内样方的野外观测数据(平均树高和平均胸径)以及它们与样方生物量的拟合方程估算没有野外调查数据对应的脚印点的生物量;最后对3种森林类型的脚印点森林生物量在各森林覆盖度条件下进行分层分区统计得到生物量等级图。验证比较遥感估算的生物量与野外调查数据推算的生物量,总体误差在0~30(t·hm~(-2))之间,均方根误差为14.66(t·hm~(-2))。  相似文献   

14.
Winter wheat biomass was estimated using HJ CCD and MODIS data, combined with a radiation use efficiency model. Results were validated with ground measurement data. Winter wheat biomass estimated with HJ CCD data correlated well with observed biomass in different experiments (coefficients of determination R2 of 0.507, 0.556 and 0.499; n?=?48). In addition, R2 values between MODIS estimated and observed biomass are 0.420, 0.502 and 0.633. Even if we downscaled biomass estimated using HJ CCD data to MODIS pixel size (9?×?9 HJ CCD pixels to approximate that MODIS pixel), R2 values between estimated and observed biomass were still higher than those from MODIS. We conclude that estimation with remote sensing data, such as the HJ CCD data with high spatial resolution and shorter revisit cycle, can show more detail in spatial pattern and improve the application of remote sensing on a local scale. There is also potential for applying the approach to many other studies, including agricultural production estimation, crop growth monitoring and agricultural ecosystem carbon cycle studies.  相似文献   

15.
This study tested the use of machine learning techniques for the estimation of above-ground biomass (AGB) of Sonneratia caseolaris in a coastal area of Hai Phong city, Vietnam. We employed a GIS database and multi-layer perceptron neural networks (MLPNN) to build and verify an AGB model, drawing upon data from a survey of 1508 mangrove trees in 18 sampling plots and ALOS-2 PALSAR imagery. We assessed the model’s performance using root-mean-square error, mean absolute error, coefficient of determination (R2), and leave-one-out cross-validation. We also compared the model’s usability with four machine learning techniques: support vector regression, radial basis function neural networks, Gaussian process, and random forest. The MLPNN model performed well and outperformed the machine learning techniques. The MLPNN model-estimated AGB ranged between 2.78 and 298.95 Mg ha?1 (average = 55.8 Mg ha?1); below-ground biomass ranged between 4.06 and 436.47 Mg ha?1 (average = 81.47 Mg ha?1), and total carbon stock ranged between 3.22 and 345.65 Mg C ha?1 (average = 64.52 Mg C ha?1). We conclude that ALOS-2 PALSAR data can be accurately used with MLPNN models for estimating mangrove forest biomass in tropical areas.  相似文献   

16.
Tomo-SAR technique has been used for hemi-boreal forest height and further forest biomass estimation through allometric equation. Backscattering coefficient especially in longer wavelength (L- or P-band) is thought as a useful parameter for hemi-boreal forest biomass retrieval. The aim of this paper is to assess the performance of vertical backscattering power and backscattering coefficient for hemi-boreal forest aboveground biomass (AGB) estimation with airborne P-band data. The test site locates in southern Sweden called Remningstorp test site, and the in-situ forest AGB ranges from 14 t/ha to 245 t/ha at stand level. Multi-baseline P-band Pol-InSAR data in repeat-path mode collected during March and May in 2007 at Remningstorp test site was used. We found that the correlation coefficient (R) between backscattering coefficient of P-band HH polarization and the in-situ forest biomass reached 0.87. The R for P-band VV backscattering power at 5 m is 0.71 and 10 m is 0.72. Backscattering coefficient in HH polarization and vertical backscattering power at 5 m and 10 m were applied to construct a model for hemi-boreal forest AGB estimation by backward step-wise regression and cross-validation approach. The results showed that the estimated forest AGB ranges from 19 to 240 t/ha, and the constructed model obtained a higher R and smaller RMSE, the value of R is 0.91, RMSE is 30.43 t/ha at Remningstorp test site.  相似文献   

17.
Synthetic Aperture Radar (SAR) texture has been demonstrated to have the potential to improve forest biomass estimation using backscatter. However, forests are 3D objects with a vertical structure. The strong penetration of SAR signals means that each pixel contains the contributions of all the scatterers inside the forest canopy, especially for the P-band. Consequently, the traditional texture derived from SAR images is affected by forest vertical heterogeneity, although the influence on texture-based biomass estimation has not yet been explicitly explored. To separate and explore the influence of forest vertical heterogeneity, we introduced the SAR tomography technique into the traditional texture analysis, aiming to explore whether TomoSAR could improve the performance of texture-based aboveground biomass (AGB) estimation and whether texture plus tomographic backscatter could further improve the TomoSAR-based AGB estimation. Based on the P-band TomoSAR dataset from TropiSAR 2009 at two different sites, the results show that ground backscatter variance dominated the texture features of the original SAR image and reduced the biomass estimation accuracy. The texture from upper vegetation layers presented a stronger correlation with forest biomass. Texture successfully improved tomographic backscatter-based biomass estimation, and the texture from upper vegetation layers made AGB models much more transferable between different sites. In addition, the correlation between texture indices varied greatly among different tomographic heights. The texture from the 10 to 30 m layers was able to provide more independent information than the other layers and the original images, which helped to improve the backscatter-based AGB estimation.  相似文献   

18.
Remote sensing-based methods of aboveground biomass (AGB) estimation in forest ecosystems have gained increased attention, and substantial research has been conducted in the past three decades. This paper provides a survey of current biomass estimation methods using remote sensing data and discusses four critical issues – collection of field-based biomass reference data, extraction and selection of suitable variables from remote sensing data, identification of proper algorithms to develop biomass estimation models, and uncertainty analysis to refine the estimation procedure. Additionally, we discuss the impacts of scales on biomass estimation performance and describe a general biomass estimation procedure. Although optical sensor and radar data have been primary sources for AGB estimation, data saturation is an important factor resulting in estimation uncertainty. LIght Detection and Ranging (lidar) can remove data saturation, but limited availability of lidar data prevents its extensive application. This literature survey has indicated the limitations of using single-sensor data for biomass estimation and the importance of integrating multi-sensor/scale remote sensing data to produce accurate estimates over large areas. More research is needed to extract a vertical vegetation structure (e.g. canopy height) from interferometry synthetic aperture radar (InSAR) or optical stereo images to incorporate it into horizontal structures (e.g. canopy cover) in biomass estimation modeling.  相似文献   

19.
The knowledge of biomass stocks in tropical forests is critical for climate change and ecosystem services studies. This research was conducted in a tropical rain forest located near the city of Libreville (the capital of Gabon), in the Akanda Peninsula. The forest cover was stratified in terms of mature, secondary and mangrove forests using Landsat-ETM data. A field inventory was conducted to measure the required basic forest parameters and estimate the aboveground biomass (AGB) and carbon over the different forest classes. The Shuttle Radar Topography Mission (SRTM) data were used in combination with ground-based GPS measurements to derive forest heights. Finally, the relationships between the estimated heights and AGB were established and validated. Highest biomass stocks were found in the mature stands (223 ± 37 MgC/ha), followed by the secondary forests (116 ± 17 MgC/ha) and finally the mangrove forests (36 ± 19 MgC/ha). Strong relationships were found between AGB and forest heights (R2 > 0.85).  相似文献   

20.
以Landsat8 OLI(operational land imager)为遥感数据源,森林资源二类调查和地理国情数据为主要辅助数据,对森林地上生物量(aboveground biomass,AGB)进行了反演和估算。以安徽省金寨县的天然林为研究对象,通过计算覆盖研究区Landsat8 OLI的光谱、纹理和地形特征,利用森林资源二类调查、地理国情普查与监测和外业调查数据建立AGB定量反演模型,以此为基础分析了不同特征对于AGB估算的影响。结果表明,基于所采用的方法得到的金寨县的森林地上生物量,最优反演模型的实测值与估算值相对误差为0.708 718,均方根误差为1.318 983,精度较高。依据该模型计算得到金寨县的生物总量为4 723 728 530 t,结果与实际情况符合。该研究对AGB定量反演和研究所采用的方法对于大范围监测森林资源具有可用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号