首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Remote sensing is useful for water quality assessments but current remote sensing applications favour parameters that are easy to detect such as chlorophyll-a. An assessment of the utility of Landsat 8 for detecting nutrients was conducted in Mazvikadei reservoir in Zimbabwe. The main objective was to determine whether nutrients often overlooked by remote sensing and yet are the main determinants of water quality can be remotely sensed. Sampling targeted ammonia, nitrates and reactive phosphorus from May to October 2015. In situ nutrient concentrations were regressed against reflectance derived from Landsat 8 imagery. Strong negative relationships were found between ammonia and the near-infrared band in July (R2 = 0.80, p < 0.05) as well as between nitrates and the blue band (R2 = 0.67, p < 0.05) in June. Overall, the results suggest that the cool dry season is the optimum time to use Landsat 8 for monitoring nutrients in tropical lakes.  相似文献   

2.
Land surface temperature (LST) is an important aspect in global to regional change studies, for control of climate change and balancing of high temperature. Urbanization is one of the influencing factors increasing land surface and atmospheric temperature, by the emission of greenhouse gases (e.g. CO2, NO and methane). In the present study, LST was derived from Landsat-8 of multitemporal data sets to analyse the spatial structure of the urban thermal environment in relation to the urban surface characteristics and land use–land cover (LULC). LST is influenced by the greenhouse gases i.e. CO2 plays an important role in increasing the earth’s surface temperature. In order to provide the evidence of influence of CO2 on LST, the relationship between LST, air temperature and CO2 was analysed. Landsat-8 satellite has two thermal bands, 10 and 11. These bands were used to accurately to calculate the temperature over the study area. Results showed that the strength of correlation between ground monitoring data and satellite data was high. Based on correlation values of each month April (R2 = 0.994), May (R2 = 0.297) and June (R2 = 0.934), observed results show that band 10 was significantly correlating with air temperature. Relationship between LST and CO2 levels were obtained from linear regression analysis. band 11 was correlating significantly with CO2 values in each of the months April (R2 = 0.217), May (R2 = 0.914) and June, (R2 = 0.934), because band 11 is closer to the 15-micron band of CO2. From the results, it was observed that band 10 can be used for calculating air temperature and band 11 can be used for estimation of greenhouse gases.  相似文献   

3.
There is considerable interest in accurately estimating water quality parameters in turbid (Case 2) and eutrophic waters such as the Western Basin of Lake Erie (WBLE). Lake Erie is a large, open freshwater body that supports diverse ecosystem, and over 12 million people in the mid-western part of the United States depend on it for drinking water, fisheries, navigational, and recreational purposes. The increasing utilization of the freshwater has deteriorated the water severely and currently the lake is experiencing recurring harmful algal blooms (HABs). Improving the water quality of Lake Erie requires the use of robust monitoring tools that help water quality managers understand sources and pathways of influxes that trigger HABs. Satellite-based remote sensing sensor such as the moderate resolution imaging spectroradiometer (MODIS) may provide frequent and synoptic view of the water quality indices. In this study, data set from field measurements was used to evaluate the performance of 14 existing ocean color algorithms. Results indicated that MODIS data consistently underestimated the chlorophyll a concentrations in the WBLE, with the largest source of errors from dissolved organic matter and xanthophyll accessory pigments in this data set. Most of the global algorithms, including OC4v4 and the Baltic model, generated near-identical statistical parameters with an average R2 of ~0.57 and RMSE ~2.9 μg/l. MODIS performed poorly (R2 ~0.18) when its NIR/red bands were used. A slightly improved model was developed using similar band ratio approach generating R2 of ~0.62 and RMSE ~1.8 μg/l.  相似文献   

4.
Coffee is a commodity of international trade significance, and its value chain can benefit from age-specific thematic maps. This study aimed to assess the potential of Landsat 8 OLI to develop these maps. Using field-collected samples with the random forest classifier, splitting coffee into three age classes (Scheme A) was compared with running the classification with one compound coffee class (Scheme B). Higher overall classification accuracy was obtained in Scheme B (90.3% for OLI and 86.8% for ETM+) than in Scheme A (86.2% for OLI and 81.0% for ETM+). The NIR band of OLI was the most important band in intra-class discrimination of coffee. Landsat 8 OLI mapped area closely matched farm records (R2?=?0.88) compared to that of Landsat 7 ETM+ (R2?=?0.78). It was concluded that Landsat 8 OLI data can be used to produce age-specific thematic maps in coffee production areas although disaggregating coffee classes reduces overall accuracy.  相似文献   

5.
This study investigates the applicability of estimating chlorophyll and water content at canopy level through empirical models and band combinations. The main goal is to evaluate and compare the accuracy of these two approaches for estimating and mapping canopy chlorophyll and water content through canopy reflectance and spaceborne HJ1-A HSI data acquired over Yanzhou coal mining area. An experiment was carried out. Canopy spectral measurements were acquired in the field using an ASD spectroradiometer along with simultaneous in situ measurements of leaf chlorophyll content. We tested seven variables derived from canopy reflectance for detecting canopy chlorophyll and water content: (1) R, (2) Log(1/R), (3) Log(1/R)′, (4) FDR, (5) SDR, (6) CRR, (7) BD. Stepwise multiple linear regressions were used to select wavelengths from HJ1-A HSI image bands. Correlation analysis was also done between different band combinations and biochemistry. A statistically significant relationship between Log(1/R) and chlorophyll was found at canopy level (R2 = 0.516). SDR had the highest correlation with canopy water content (R2 = 0.490). In addition, relationship between normalized different band combinations and chlorophyll and water content is also significantly obvious (R2 = 0.577 and R2 = 0.615). Canopy chlorophyll content was estimated with the intermediate accuracy (R2 = 0.4144), while water content was estimated with an acceptable accuracy (R2 = 0.4592). Canopy chlorophyll and water content spatial distribution were mapped. Chlorophyll and water stress levels were quantified by comparing different environmental stressors.  相似文献   

6.
Data fused from distinct but complementary satellite sensors mitigate tradeoffs that researchers make when selecting between spatial and temporal resolutions of remotely sensed data. We integrated data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Terra satellite and the Operational Land Imager sensor aboard the Landsat 8 satellite into four regression-tree models and applied those data to a mapping application. This application produced downscaled maps that utilize the 30-m spatial resolution of Landsat in conjunction with daily acquisitions of MODIS normalized difference vegetation index (NDVI) that are composited and temporally smoothed. We produced four weekly, atmospherically corrected, and nearly cloud-free, downscaled 30-m synthetic MODIS NDVI predictions (maps) built from these models. Model results were strong with R2 values ranging from 0.74 to 0.85. The correlation coefficients (r ≥ 0.89) were strong for all predictions when compared to corresponding original MODIS NDVI data. Downscaled products incorporated into independently developed sagebrush ecosystem models yielded mixed results. The visual quality of the downscaled 30-m synthetic MODIS NDVI predictions were remarkable when compared to the original 250-m MODIS NDVI. These 30-m maps improve knowledge of dynamic rangeland seasonal processes in the central Great Basin, United States, and provide land managers improved resource maps.  相似文献   

7.
Detection of crop water stress is crucial for efficient irrigation water management. Potential of Satellite data to provide spatial and temporal dynamics of crop growth conditions makes it possible to monitor crop water stress at regional level. This study was conducted in parts of western Uttar Pradesh and Haryana. Multi-temporal Landsat data were used for detecting wheat crop water stress using vegetation indices (VIs), viz. vegetation water stress index (VWSI) and land surface wetness index water stress factor (Ws_LSWI). The estimated water stress from satellite data-based VIs was validated by water stress factor (Ws) derived from flux-tower data. The study observed Ws_LSWI to be better index for water stress detection. The results indicated that Ws_LSWI was superior over other index showing RMSE = 0.12, R2 = 0.65, whereas VWSI showed overestimated values with mean RD 4%.  相似文献   

8.
Since coastal waters are one of the most vulnerable marine systems to environmental pollution, it is very important to operationally monitor coastal water quality. This study attempts to estimate two major water quality indicators, chlorophyll-a (chl-a) and suspended particulate matter (SPM) concentrations, in coastal environments on the west coast of South Korea using Geostationary Ocean Color Imager (GOCI) satellite data. Three machine learning approaches including random forest, Cubist, and support vector regression (SVR) were evaluated for coastal water quality estimation. In situ measurements (63 samples) collected during four days in 2011 and 2012 were used as reference data. Due to the limited number of samples, leave-one-out cross validation (CV) was used to assess the performance of the water quality estimation models. Results show that SVR outperformed the other two machine learning approaches, yielding calibration R2 of 0.91 and CV root-mean-squared-error (RMSE) of 1.74 mg/m3 (40.7%) for chl-a, and calibration R2 of 0.98 and CV RMSE of 11.42 g/m3 (63.1%) for SPM when using GOCI-derived radiance data. Relative importance of the predictor variables was examined. When GOCI-derived radiance data were used, the ratio of band 2 to band 4 and bands 6 and 5 were the most influential input variables in predicting chl-a and SPM concentrations, respectively. Hourly available GOCI images were useful to discuss spatiotemporal distributions of the water quality parameters with tidal phases in the west coast of Korea.  相似文献   

9.
Chromophoric dissolved organic matter (CDOM), the light absorbing fraction of dissolved organic carbon (DOC), together with phytoplankton and total suspended matter are the main optically active components could be retrieved by remote sensing data. Generally, different composition of DOC and CDOM corresponds to different water surface reflectance. Absorption properties of CDOM and retrieval models for CDOM and DOC were investigated with data from potable reservoirs located in the central of Jilin Province. Water sampling field surveys were conducted on 15, 16 and 19 of September 2012 across the Shitoukoumen, Erlonghu and Xilicheng reservoirs, respectively. Both empirical regression (single band model and band ratio model) and partial least squares coupled with back-propagation artificial neural models (PLSBPNN) were established to estimate CDOM absorption coefficient at 355 nm [aCDOM(355)] and DOC concentration with in situ measured remote sensing reflectance. It was found that the band ratio models and PLSBPNN model performed well for estimating DOC concentration while the band ratio models yielded the best result in retrieval CDOM. Moreover, all the three models performed better on the DOC concentration estimation than the performance on aCDOM(355). Band ratio models outperformed (R 2 ?=?0.55) other models for estimating CDOM absorption coefficient, while PLSBPNN model outperformed other models with respect to DOC estimation (R 2 ?=?0.93). High spectral slope values indicated that CDOM in the potable waters primarily comprised low molecular weight organic substances; while sources of DOC were mainly coming from exogenous input, which was the main reason lead to the difference of model performances on DOC and aCDOM(355) estimation. The algorithms developed in this study is needed to be tested and refined with more in situ spectral data, also future work is still needed to be undertaken for characterizing the dynamic of the potable water quality with remotely sensed imagery.  相似文献   

10.
This study assessed the strength of Sentinel-2 multispectral instrument (MSI) derived Red Edge (RE) bands in estimating Leaf Area Index (LAI) and mapping canopy storage capacity (CSC) for hydrological applications in wattle infested ecosystems. To accomplish this objective, this study compared the estimation strength of models derived, using standard bands (all bands excluding the RE band) with those including RE bands, as well as different vegetation indices. Sparse Partial Least Squares (SPLSR) and Partial Least Squares Regression (PLSR) ensembles were used in this study. Results showed that the RE spectrum covered by the Sentinel-2 MSI satellite reduced the estimation error by a magnitude of 0.125 based on simple ratio (RE SR) vegetation indices from 0.157 m2· m?2 based on standard bands, and by 0.078 m2· m?2 based on red edge normalised difference vegetation (NDVI-RE). The optimal models for estimating LAI to map CSC were obtained based on the RE bands centered at 705 nm (Band 5), 740 nm (Band 6), 783 nm (Band 7) as well as 865 nm (Band 8a). A root mean square error of prediction (RMSEP) of 0.507 m2· m?2 a relative root mean square error of prediction (RRMSEP) of 11.3% and R2 of 0.91 for LAI and a RMSEP of 0.246 m2/m2 (RRMSEP = 7.9%) and R2 of 0.91 for CSC were obtained. Overall, the findings of this study underscore the relevance of the new copernicus satellite product in rapid monitoring of ecosystems that are invaded by alien invasive species.  相似文献   

11.
Accurate and up-to-date information on forest dendrometric traits, such as above ground biomass is important in understanding the contribution of terrestrial ecosystems to the regulation of atmsopheric carbon, especially in the face of global environmental change. Besides, dendrometric traits information is critical in assessing the healthy and the spatial planning of fragile ecosystems, such as the savanna dry forests. The aim of this work was to test whether red-edge spectral data derived from WorldView-2 multispectral imagery improve biomass estimation in savanna dry forests. The results of this study have shown that biomass estimation using all Worldview-2 raw spectral bands without the red-edge band yielded low estimation accuracies (R2 of 0.67 and a RMSE-CV of 2.2 t ha?1) when compared to when the red-edge band was included as a co-variate (R2 of 0.73 and a RMSE-CV of 2.04 t ha?1). Also, similar results were obseved when all WorldView-2 vegetation indices (without the red-edge computed ones), producing slightly low accuracies (R2 of about 0.67 and a RMSE-CV of 2.20 t ha?1), when compared to those obtained using all indices and RE-computed indices(R2 of 0.76 and a RMSE-CV of 1.88 t ha?1). Overall, the findings of this work have demontrated the potential and importance of strategically positioned bands, such as the red-edge band in the optimal estimation of indigeonus forest biomass. These results underscores the need to shift towards embracing sensors with unique and strategeically positioned bands, such as the forthcoming Sentinel 2 MSI and HysPIRI which have a global footprint.  相似文献   

12.
Traditional approaches to monitoring aquatic systems are often limited by the need for data collection which often is time-consuming, expensive and non-continuous. The aim of the study was to map the spatio-temporal chlorophyll-a concentration changes in Malilangwe Reservoir, Zimbabwe as an indicator of phytoplankton biomass and trophic state when the reservoir was full (year 2000) and at its lowest capacity (year 2011), using readily available Landsat multispectral images. Medium-spatial resolution (30 m) Landsat multispectral Thematic Mapper TM 5 and ETM+ images for May to December 1999–2000 and 2010–2011 were used to derive chlorophyll-a concentrations. In situ measured chlorophyll-a and total suspended solids (TSS) concentrations for 2011 were employed to validate the Landsat chlorophyll-a and TSS estimates. The study results indicate that Landsat-derived chlorophyll-a and TSS estimates were comparable with field measurements. There was a considerable wet vs. dry season differences in total chlorophyll-a concentration, Secchi disc depth, TSS and turbidity within the reservoir. Using Permutational multivariate analyses of variance (PERMANOVA) analysis, there were significant differences (p < 0.0001) for chlorophyll-a concentration among sites, months and years whereas TSS was significant during the study months (p < 0.05). A strong positive significant correlation among both predicted TSS vs. chlorophyll-a and measured vs. predicted chlorophyll-a and TSS concentrations as well as an inverse relationship between reservoir chlorophyll-a concentrations and water level were found (p < 0.001 in all cases). In conclusion, total chlorophyll-a concentration in Malilangwe Reservoir was successfully derived from Landsat remote sensing data suggesting that the Landsat sensor is suitable for real-time monitoring over relatively short timescales and for small reservoirs. Satellite data can allow for surveying of chlorophyll-a concentration in aquatic ecosystems, thus, providing invaluable data in data scarce (limited on site ground measurements) environments.  相似文献   

13.
Total evaporation is of importance in assessing and managing long-term water use, especially in water-limited environments. Therefore, there is need to account for water utilisation by different land uses for well-informed water resources management and future planning. This study investigated the feasibility of using multispectral Landsat 8 and moderate resolution imaging spectroradiometer (MODIS) remote sensing data to estimate total evaporation within the uMngeni catchment in South Africa, using surface energy balance system. The results indicated that Landsat 8 at 30 m resolution has a better spatial representation of total evaporation, when compared to the 1000 m MODIS. Specifically, Landsat 8 yielded significantly different mean total evaporation estimates for all land cover types (one-way ANOVA; F4.964?=?87.011, p < 0.05), whereas MODIS failed to differentiate (one-way ANOVA; F2.853?=?0.125, p = 0.998) mean total evaporation estimates for the different land cover types across the catchment. The findings of this study underscore the utility of the Landsat 8 spatial resolution and land cover characteristics in deriving accurate and reliable spatial variations of total evaporation at a catchment scale.  相似文献   

14.
Reference spectra of terrestrial targets are usually collected using field spectro-radiometers for mineral abundance mapping and target detection. These spectra often have noise that masks characteristic absorption and reflection features and affects the efficiency of material mapping. This work aims at obtaining an empirical technique for reduction of high-frequency noise from field spectra. The proposed noise correction technique uses a ‘normalized’ measure Rn , where Rn  = (Ln  ? Fn )/Ln for each band (n) calculated from field and laboratory spectra of test material, with Fn and Ln being the depth of the absorption feature in field and laboratory spectra, respectively. On the basis of the assumption of the constancy of this ratio in neighbouring bands, an empirical algorithm that approximates the ratio Rn of a noisy band to the corrected ratio of an adjacent band is used to obtain the noise-corrected field spectra. The classification accuracy increases significantly when noise reduced field spectra are used as reference spectra.  相似文献   

15.
An assessment of gully erosion along road drainage-release sites is critical for understanding the contribution of roads to soil loss and for informed land management practices. Considering that road-related gully erosion has traditionally been measured using field methods that are expensive, tedious and limited spatially as well as temporally, it is important to identify affordable, timely and robust methods that can be used to effectively map and estimate the volume of gullies along the road networks. In this study, gullies along major roads were identified from remotely sensed data sets and their volumes were estimated in a Geographic Information Systems environment. Also, the biophysical and climatic factors such as vegetation cover, the road contributing surface area, the gradient of the discharge hillslope and rainfall were derived from remotely sensed data sets using Geographic Information Systems techniques to find out whether they could explain the morphology of gullies that existed in this area. The results of this study indicate that hillslope gradient (R2?=?0.69, α = 0.00) and road contributing surface area (R2?=?0.63, α = 0.00) have a strong influence on the volume of gullies along the major roads in the south-eastern region of South Africa, as might have been expected. However, other factors such as vegetation cover (R2 = 0.52, α = 0.00) and rainfall (R2 = 0.41 and α = 0.58) have a moderately weaker influence on the overall volume of gullies. Overall, the findings of this study highlight the importance of using remote sensing and Geographic Information Systems technologies in investigating gully erosion occurrence along major roads where detailed field work remains a challenge.  相似文献   

16.
In this study, we tested whether the inclusion of the red-edge band as a covariate to vegetation indices improves the predictive accuracy in forest carbon estimation and mapping in savanna dry forests of Zimbabwe. Initially, we tested whether and to what extent vegetation indices (simple ratio SR, soil-adjusted vegetation index and normalized difference vegetation index) derived from high spatial resolution satellite imagery (WorldView-2) predict forest carbon stocks. Next, we tested whether inclusion of reflectance in the red-edge band as a covariate to vegetation indices improve the model's accuracy in forest carbon prediction. We used simple regression analysis to determine the nature and the strength of the relationship between forest carbon stocks and remotely sensed vegetation indices. We then used multiple regression analysis to determine whether integrating vegetation indices and reflection in the red-edge band improve forest carbon prediction. Next, we mapped the spatial variation in forest carbon stocks using the best regression model relating forest carbon stocks to remotely sensed vegetation indices and reflection in the red-edge band. Our results showed that vegetation indices alone as an explanatory variable significantly (p < 0.05) predicted forest carbon stocks with R2 ranging between 45 and 63% and RMSE ranging from 10.3 to 12.9%. However, when the reflectance in the red-edge band was included in the regression models the explained variance increased to between 68 and 70% with the RMSE ranging between 9.56 and 10.1%. A combination of SR and reflectance in the red edge produced the best predictor of forest carbon stocks. We concluded that integrating vegetation indices and reflectance in the red-edge band derived from high spatial resolution can be successfully used to estimate forest carbon in dry forests with minimal error.  相似文献   

17.
The overarching aim of this study was to derive simple and accurate algorithms for the retrieval of water quality parameters for the Wular Lake using Landsat 8 OLI satellite data. The water quality parameters include pH, COD, DO, alkalinity, hardness, chloride, TDS, total suspended solids (TSS), turbidity, electric conductivity and phosphate. Regression analysis was performed using atmospherically corrected true reflectance values of original OLI bands, images after applying enhancement techniques (NDVI, principal components) and the values of the water quality parameters at different sample locations to obtain the empirical relationship. Most of the parameters were well correlated with single OLI bands with R2 greater than 0.5, whereas phosphate showed a good correlation with NDVI image. The parameters like pH and DO showed a good relation with the principal component I and IV, respectively. The high concentration of pH, COD, turbidity and TSS and low concentration of DO infers the anthropogenic impact on lake.  相似文献   

18.
Cairo region is characterized by a range of physiographic features, including: flat agricultural lands, bare sandy deserts, highlands, calcareous terrains and urban land use. A time series data-set (300 images) acquired from the Moderate Resolution Imaging Spectroradiometer for the period July 2002–June 2015 were utilized to retrieve the spatial variations in the mean land surface temperature (LST) for the above-mentioned surface features. Results showed that vegetation, topography and surface albedo have negative correlations with LST. Vegetation/LST correlation has the maximum regression coefficient (R2 = 0.68) and albedo/LST has the minimum (R2 = 0.03). Cultivated lands reveal the lowest mean LST (<32 °C), whereas industrial lands exhibit the highest LST (>40 °C) of Cairo region. There is a considerable urban heat island formed at Helwan south of Cairo, where heavy industries are settled. Industrial activities raised the mean LST of the region by at least 4 °C than the surrounding urban lands.  相似文献   

19.
ABSTRACT

A fractional vegetation cover (FVC) estimation method incorporating a vegetation growth model and a radiative transfer model was previously developed, which was suitable for FVC estimation in homogeneous areas because the finer-resolution pixels corresponding to one coarse-resolution FVC pixel were all assumed to have the same vegetation growth model. However, this assumption does not hold over heterogeneous areas, meaning that the method cannot be applied to large regions. Therefore, this study proposes a finer spatial resolution FVC estimation method applicable to heterogeneous areas using Landsat 8 Operational Land Imager reflectance data and Global LAnd Surface Satellite (GLASS) FVC product. The FVC product was first decomposed according to the normalized difference vegetation index from the Landsat 8 OLI data. Then, independent dynamic vegetation models were built for each finer-resolution pixel. Finally, the dynamic vegetation model and a radiative transfer model were combined to estimate FVC at the Landsat 8 scale. Validation results indicated that the proposed method (R2?=?0.7757, RMSE?=?0.0881) performed better than either the previous method (R2?=?0.7038, RMSE?=?0.1125) or a commonly used method involving look-up table inversions of the PROSAIL model (R2?=?0.7457, RMSE?=?0.1249).  相似文献   

20.
Soil organic carbon (SOC) is an important aspect of soil quality and plays an imperative role in soil productivity in the agriculture ecosystems. The present study was applied to estimate the SOC stock using space-borne satellite data (Landsat 4–5 Thematic Mapper [TM]) and ground verification in the Medinipur Block, Paschim Medinipur District and West Bengal in India. In total, 50 soil samples were collected randomly from the region according to field surveys using a hand-held Global Positioning System (GPS) unit to estimate the surface SOC concentrations in the laboratory. Bare soil index (BSI) and normalized difference vegetation ndex (NDVI) were explored from TM data. The satellite data-derived indices were used to estimate spatial distribution of SOC using multivariate regression model. The regression analysis was performed to determine the relationship between SOC and spectral indices (NDVI and BSI) and compared the observed SOC (field measure) to predict SOC (estimated from satellite images). Goodness fit test was performed to determine the significance of the relationship between observed and predicted SOC at p ≤ 0.05 level. The results of regression analysis between observed SOC and NDVI values showed significant relationship (R2 = 0.54; p < 0.0075). A significant statistical relationship (r = ?0.72) was also observed between SOC and BSI. Finally, our model showed nearly 71% of the variance of SOC distribution could be explained by SOC and NDVI values. The information from this study has advanced our understanding of the ongoing ecological development that affects SOC dissemination and might be valuable for effective soil management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号