首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Land cover monitoring using digital Earth data requires robust classification methods that allow the accurate mapping of complex land cover categories. This paper discusses the crucial issues related to the application of different up-to-date machine learning classifiers: classification trees (CT), artificial neural networks (ANN), support vector machines (SVM) and random forest (RF). The analysis of the statistical significance of the differences between the performance of these algorithms, as well as sensitivity to data set size reduction and noise were also analysed. Landsat-5 Thematic Mapper data captured in European spring and summer were used with auxiliary variables derived from a digital terrain model to classify 14 different land cover categories in south Spain. Overall, statistically similar accuracies of over 91% were obtained for ANN, SVM and RF. However, the findings of this study show differences in the accuracy of the classifiers, being RF the most accurate classifier with a very simple parameterization. SVM, followed by RF, was the most robust classifier to noise and data reduction. Significant differences in their performances were only reached for thresholds of noise and data reduction greater than 20% (noise, SVM) and 25% (noise, RF), and 80% (reduction, SVM) and 50% (reduction, RF), respectively.  相似文献   

2.
ABSTRACT

Groundwater potential mapping (GWPM) in the coastal zone is crucial for the planning and development of society and the environment. The current study is aimed to map the groundwater potential zones of Sindhudurg coastal stretch on the west coast of India, using three machine learning models: random forest (RF), boosted regression tree (BRT), and the ensemble of RF and support vector machine (SVM). In order to achieve the objective, 15 groundwater influencing factors including elevation, slope, aspect, slope length (LS), profile curvature, plan curvature, topographical wetness index (TWI), distance from streams, distance from lineaments, lithology, geomorphology, soil, land use, normalized difference vegetation index (NDVI), and rainfall were considered for inter-thematic correlations and overlaid with spring and well occurrences in a spatial database. A total of 165 spring and well locations were identified, which had been divided into two classes: training and validation, at the ratio of 70:30, respectively. The RF, BRT, and RF-SVM ensemble models have been applied to delineate the groundwater potential zones and categorized into five classes, namely very high, high, moderate, low, and very low. RF, BRT, and ensemble model results showed that 33.3%, 35.6%, and 36.8% of the research area had a very high groundwater potential zone. These models were validated with area under the receiver operating characteristics (AUROC) curve. The accuracy of RF (94%) and hybrid model (93.4%) was more efficient than BRT (89.8%) model. In order to further evaluate and validate, four different sites were subsequently chosen, and we obtained similar results, ensuring the validity of the applied models. Additionally, ground-penetrating radar (GPR) technique was applied to predict the groundwater table and validated by measured wells. The mean difference between measured and GPR predicted groundwater table was 14 cm, which reflected the importance of GPR to guide the location of new wells in the study region. The outcomes of the study will help the decision-makers, government agencies, and private sectors for sustainable planning of groundwater in the area. Overall, the present study provides a comprehensive high-precision machine learning and GPR-based groundwater potential mapping.  相似文献   

3.
The main aim of present study is to compare three GIS-based models, namely Dempster–Shafer (DS), logistic regression (LR) and artificial neural network (ANN) models for landslide susceptibility mapping in the Shangzhou District of Shangluo City, Shaanxi Province, China. At First, landslide locations were identified by aerial photographs and supported by field surveys, and a total of 145 landslide locations were mapped in the study area. Subsequently, the landslide inventory was randomly divided into two parts (70/30) using Hawths Tools in ArcGIS 10.0 for training and validation purposes, respectively. In the present study, 14 landslide conditioning factors such as altitude, slope angle, slope aspect, topographic wetness index, sediment transport index, stream power index, plan curvature, profile curvature, lithology, rainfall, distance to rivers, distance to roads, distance to faults and normalized different vegetation index were used to detect the most susceptible areas. In the next step, landslide susceptible areas were mapped using the DS, LR and ANN models based on landslide conditioning factors. Finally, the accuracies of the landslide susceptibility maps produced from the three models were verified using the area under the curve (AUC). The validation results showed that the landslide susceptibility map generated by the ANN model has the highest training accuracy (73.19%), followed by the LR model (71.37%), and the DS model (66.42%). Similarly, the AUC plot for prediction accuracy presents that ANN model has the highest accuracy (69.62%), followed by the LR model (68.94%), and the DS model (61.39%). According to the validation results of the AUC curves, the map produced by these models exhibits the satisfactory properties.  相似文献   

4.
基于遥感和美国碳通量观测数据的GPP模型比较研究   总被引:1,自引:0,他引:1  
基于遥感和碳通量观测数据,本文采用VPM、EC-LUE、TG、GR、VI和MOD17六个模型估算了五种主要植被类型站点尺度的总初级生产力(GPP)。利用线性相关和定量分析方法评价并比较了上述模型在不同时间尺度上(8天、生长季和年际)的GPP模拟精度。结果表明:1)EC-LUE和VPM模型总体估算精度最高(R20.78);2)森林生态系统中,GPP估算值和实测值在季节和年累积总量上相对误差较小,而在草地和农田系统中,相对误差较大;3)GR、VI和TG模型在森林生态系统GPP估算中模拟精度较高,因其在形式上相对简单,需要的参数和输入数据相对较少,因而适用于大尺度的森林生态系统GPP估算。  相似文献   

5.
There is an urgent necessity to monitor changes in the natural surface features of earth. Compared to broadband multispectral data, hyperspectral data provides a better option with high spectral resolution. Classification of vegetation with the use of hyperspectral remote sensing generates a classical problem of high dimensional inputs. Complexity gets compounded as we move from airborne hyperspectral to Spaceborne technology. It is unclear how different classification algorithms will perform on a complex scene of tropical forests collected by spaceborne hyperspectral sensor. The present study was carried out to evaluate the performance of three different classifiers (Artificial Neural Network, Spectral Angle Mapper, Support Vector Machine) over highly diverse tropical forest vegetation utilizing hyperspectral (EO-1) data. Appropriate band selection was done by Stepwise Discriminant Analysis. The Stepwise Discriminant Analysis resulted in identifying 22 best bands to discriminate the eight identified tropical vegetation classes. Maximum numbers of bands came from SWIR region. ANN classifier gave highest OAA values of 81% with the help of 22 selected bands from SDA. The image classified with the help SVM showed OAA of 71%, whereas the SAM showed the lowest OAA of 66%. All the three classifiers were also tested to check their efficiency in classifying spectra coming from 165 processed bands. SVM showed highest OAA of 80%. Classified subset images coming from ANN (from 22 bands) and SVM (from 165 bands) are quite similar in showing the distribution of eight vegetation classes. Both the images appeared close to the actual distribution of vegetation seen in the study area. OAA levels obtained in this study by ANN and SVM classifiers identify the suitability of these classifiers for tropical vegetation discrimination.  相似文献   

6.
基于AHP和GIS的扬泰地区浅层地下水脆弱性评价   总被引:1,自引:0,他引:1  
地下水脆弱性评价是保护地下水资源的重要手段,本文根据扬泰地区浅层地下水的水文地质条件,对DRASTIC模型进行了修改。选取地下水位埋深、大气降水入渗净补给量、含水层介质、含水层厚度、地形坡度、包气带介质影响、含水层富水性7个因子作为评价因子,利用层次分析法确定各因子的权重值,建立了符合扬泰地区浅层地下水脆弱性评价模型;利用ArcGIS10.0软件的空间叠加分析功能,编制了扬泰地区浅层地下水脆弱性评价等级图,评价结果与该地区实际水文地质条件基本吻合,对扬泰地区的地下水资源保护和区域规划具有一定的参考价值。  相似文献   

7.
The development of groundwater favourability map is an effective tool for the sustainability management of groundwater resources in typical agricultural regions, such as southern Perak Province, Malaysia. Assessing the potentiality and pollution vulnerability of groundwater is a fundamental phase of favourability mapping. A geographic information system (GIS)-based Boolean operator of a spatial analyst module was applied to combine a groundwater potentiality map (GPM) model and a groundwater vulnerability to pollution index (GVPI) map, thereby establishing the favourable zones for drinking water exploration in the investigated area. The area GPM model was evaluated by applying a GIS-based Dempster–Shafer–evidential belief function model. In the evaluation, six geoelectrically determined groundwater potential conditioning factors (i.e. overburden resistivity, overburden thickness, aquifer resistivity, aquifer thickness, aquifer transmissivity and hydraulic conductivity) were synthesized by employing the probability-based algorithms of the model. The generated thematic maps of the seven hydrogeological parameters of the DRASTIC model were considered as pollution potential conditioning factors and were analysed with the developed ordered weighted average–DRASTIC index model algorithms to construct the GVPI map. Approximately 88.8 and 85.71% prediction accuracies for the Groundwater Potentiality and GVPI maps were established using the reacting operating characteristic curve method and water quality status–vulnerability zone relationship scheme, respectively. Finally, the area groundwater favourability map (GFM) model was produced by applying a GIS-based Boolean operator on the Groundwater Potentiality and GVPI maps. The GFM model reveals three distinct zones: ‘not suitable’, ‘less suitable’ and ‘very suitable’ zones. The area analysis of the GFM model indicates that more than 50% of the study area is covered by the ‘very suitable’ zones. Results produce a suitability map that can be used by local authorities for the exploitation and management of drinking water in the area. The study findings can also be applied as a tool to help increase public awareness of groundwater issues in developing countries.  相似文献   

8.
Modeling crop gross primary production (GPP) is critical to understanding the carbon dynamics of agro-ecosystems. Satellite-based studies have widely used production efficiency models (PEM) to estimate cropland GPP, wherein light use efficiency (LUE) is a key model parameter. One factor that has not been well considered in many PEMs is that canopy LUE could vary with illumination conditions. This study investigates how the partitioning of diffuse and direct solar radiation influences cropland GPP using both flux tower and satellite data. The field-measured hourly LUE under cloudy conditions was 1.50 and 1.70 times higher than that under near clear-sky conditions for irrigated corn and soybean, respectively. We applied a two-leaf model to simulate the canopy radiative transfer process, where modeled photosynthetically active radiation (PAR) absorbed by canopy agreed with tower measurements (R2 = 0.959 and 0.914 for corn and soybean, respectively). Derived canopy LUE became similar after accounting for the impact of light saturation on leaf photosynthetic capacity under varied illumination conditions. The impacts of solar radiation partitioning on satellite-based modeling of crop GPP was examined using vegetation indices (VI) derived from MODIS data. Consistent with the field modeling results, the relationship between daily GPP and PAR × VI under varied illumination conditions showed different patterns in terms of regression slope and intercept. We proposed a function to correct the influences of direct and diffuse radiation partitioning and the explained variance of flux tower GPP increased in all experiments. Our results suggest that the non-linear response of leaf photosynthesis to light absorption contributes to higher canopy LUE on cloudy days than on clear days. We conclude that accounting for the impacts of solar radiation partitioning is necessary for modeling crop GPP on a daily or shorter basis.  相似文献   

9.
In the present paper, various groundwater potential zones for the assessment of groundwater availability in a hard rock terrain have been delineated with the help of hydrogeological parameters using satellite IRS- 1B-LISS-II digital data. Area selected for this study is a part of Bargarh district, Orissa, India covering an area of about 680 square km. Satellite data has been used to prepare geological-cum-lineaments, geomorphological, landuse and drainage maps. The various thematic maps have been integrated with the help of Geographic Information System to demarcate the poor to excellent groundwater potential zones. Weightage has been given to various groundwater controlling factors to the total groundwater potential in each segment of study area. Subsequently, several sites were selected and pumping tests carded out in the area. The results show that among others, lineaments as well as drainage density are the most important contributory factors in the groundwater potential of various geomorphic units in the area of investigation.  相似文献   

10.
Remote sensing of vegetation gross primary production (GPP) is an important step to analyze terrestrial carbon (C) cycles in response to changing climate. The availability of global networks of C flux measurements provides a valuable opportunity to develop remote sensing based GPP algorithms and test their performances across diverse regions and plant functional types (PFTs). Using 70 global C flux measurements including 24 non-forest (NF), 17 deciduous forest (DF) and 29 evergreen forest (EF), we present the evaluation of an upscaled remote sensing based greenness and radiation (GR) model for GPP estimation. This model is developed using enhanced vegetation index (EVI) and land surface temperature (LST) from the Moderate Resolution Imaging Spectroradiometer (MODIS) and global course resolution radiation data from the National Center for Environmental Prediction (NCEP). Model calibration was achieved using statistical parameters of both EVI and LST fitted for different PFTs. Our results indicate that compared to the standard MODIS GPP product, the calibrated GR model improved the GPP accuracy by reducing the root mean square errors (RMSE) by 16%, 30% and 11% for the NF, DF and EF sites, respectively. The standard MODIS and GR model intercomparisons at individual sites for GPP estimation also showed that GR model performs better in terms of model accuracy and stability. This evaluation demonstrates the potential use of the GR model in capturing short-term GPP variations in areas lacking ground measurements for most of vegetated ecosystems globally.  相似文献   

11.
The gross primary production (GPP) at individual CO2 eddy covariance flux tower sites (GPPTower) in Dali (DL), Wenjiang (WJ) and Linzhi (LZ) around the southeastern Tibetan Plateau were determined by the net ecosystem exchange of CO2 (NEE) and ecosystem respiration (Re). The satellite remote sensing-VPM model estimates of GPP values (GPPMODIS) used the satellite-derived 8-day surface reflectance product (MOD09A1), including satellite-derived enhanced vegetation index (EVI) and land surface water index (LSWI). In this paper, we assembled a subset of flux tower data at these three sites to calibrate and test satellite-VPM model estimated GPPMODIS, and introduced the satellite data and site-level environmental factors to develop four new assimilation models. The new assimilation models’ estimates of GPP values were compared with GPPMODIS and GPPTower, and the final optimum model among the four assimilation models was determined and used to calibrate GPPMODIS. The results showed that GPPMODIS had similar temporal variations to the GPPTower, but GPPMODlS were commonly higher in absolute magnitude than GPPTower with relative error (RE) about 58.85%. While, the assimilation models’ estimates of GPP values (GPPMODEL) were much more closer to GPPTower with RE approximately 6.98%, indicating that the capacity of the simulation in the new assimilation model was greatly improved, the R2 and root mean square error (RMSE) of the new assimilation model were 0.57–4.90% higher and 0.74–2.47 g C m−2 s−1 lower than those of the GPPMODIS, respectively. The assimilation model was used to predicted GPP dynamics around the Tibetan Plateau and showed a reliable result compared with other researches. This study demonstrated the potential of the new assimilation model for estimating GPP around the Tibetan Plateau and the performances of site-level biophysical parameters in related to satellite-VPM model GPP.  相似文献   

12.
Landsat Thematic Mapper data over the Nile Valley and Delta were analyzed to assist in various phases of groundwater development in Egypt. Land surface features were identified and located in combination with other data stored in a Geographic Information System for input to the final hydrogeological map of this area. Simple vegetation indices were used to delineate the extent of vegetation cover and related to groundwater recharge. Supervised classification techniques were used to separate features such as sabkhas which are areas of high evaporative losses. Detection of upward groundwater seepage at the surface in the winter season was used to calibrate regional groundwater flow models. Possible future applications include estimation of evapotranspiration, determination of irrigation water needs, and improvement of the existing network of groundwater observation wells for water quality purposes.  相似文献   

13.
The main aim of this study is to generate groundwater spring potential maps for the Ningtiaota area (China) using three statistical models namely statistical index (SI), index of entropy (IOE) and certainty factors (CF) models. Firstly, 66 spring locations were identified by field surveys, out of which, 46 (70%) spring locations were randomly selected for training the models and the rest 20 (30%) spring locations were used for validation. Secondly, 12 spring influencing factors, namely slope angle, slope aspect, altitude, profile curvature, plan curvature, sediment transport index, stream power index, topographic wetness index, distance to roads, distance to streams, lithology and normalized difference vegetation index (NDVI) were derived from the spatial database. Subsequently, using the mentioned factors and the three models, groundwater spring potential values were calculated and the results were plotted in ArcGIS 10.0. Finally, the area under the curve was used to validate groundwater spring potential maps. The results showed that the IOE model, with the highest success rate of 0.9126 and the highest prediction rate of 0.9051, showed the preferable performance in this study. The results of this study may be helpful for planners and engineers in groundwater resource management and other similar watersheds.  相似文献   

14.
This paper presents a spatially distributed support vector machine (SVM) system for estimating shallow water bathymetry from optical satellite images. Unlike the traditional global models that make predictions from a unified global model for the entire study area, our system uses locally trained SVMs and spatially weighted votes to make predictions. By using IKONOS-2 multi-spectral image and airborne bathymetric LiDAR water depth samples, we developed a spatially distributed SVM system for bathymetry estimates. The distributed model outperformed the global SVM model in predicting bathymetry from optical satellite images, and it worked well at the scenarios with a low number of training data samples. The experiments showed the localized model reduced the bathymetry estimation error by 60% from RMSE of 1.23 m to 0.48 m. Different from the traditional global model that underestimates water depth near shore and overestimates water depth offshore, the spatially distributed SVM system did not produce regional prediction bias and its prediction residual exhibited a random pattern. Our model worked well even if the sample density was much lower: The model trained with 10% of the samples was still able to obtain similar prediction accuracy as the global SVM model with the full training set.  相似文献   

15.
基于支持向量机的元胞自动机及土地利用变化模拟   总被引:11,自引:0,他引:11  
杨青生  黎夏 《遥感学报》2006,10(6):836-846
提出了利用遥感数据,并采用支持向量机来确定元胞自动机非线性转换规则的新方法。元胞自动机在模拟复杂地理现象时,需要采用非线性转换规则。目前元胞自动机主要采用线性方法来获取转换规则,在反映复杂的非线性地理现象时有一定的局限性。以城市扩张的模拟为例,将模拟城市系统的主要特征变量映射到Hilbert空间后,通过SVM建立最优分割超平面,分割超平面的分类决策函数由径向基核(Radial Basis Kernel)构造。利用历史遥感数据校正超平面的决策函数,确定城市元胞自动机的非线性转换规则,计算出城市发展概率。利用所提出的方法,对深圳市1988-2010年的城市发展进行了模拟,取得了较理想的模拟效果。研究结果表明,基于SVM-CA模型的模拟精度比传统MCE方法模拟精度高,MoranⅠ指数与实际更为接近。  相似文献   

16.
The rapid increase in human population has increased the groundwater resources demand for drinking, agricultural and industrial purposes. The main purpose of this study is to produce groundwater potential map (GPM) using weights-of-evidence (WOE) and evidential belief function (EBF) models based on geographic information system in the Azna Plain, Lorestan Province, Iran. A total number of 370 groundwater wells with discharge more than 10 m3s?1were considered and out of them, 256 (70%) were randomly selected for training purpose, while the remaining114 (30%) were used for validating the model. In next step, the effective factors on the groundwater potential such as altitude, slope aspect, slope angle, curvature, distance from rivers, drainage density, topographic wetness index, fault distance, fault density, lithology and land use were derived from the spatial geodatabases. Subsequently, the GPM was produced using WOE and EBF models. Finally, the validation of the GPMs was carried out using areas under the ROC curve (AUC). Results showed that the GPM prepared using WOE model has the success rate of 73.62%. Similarly, the AUC plot showed 76.21% prediction accuracy for the EBF model which means both the models performed fairly good predication accuracy. The GPMs are useful sources for planners and engineers in water resource management, land use planning and hazard mitigation purpose.  相似文献   

17.
GIS支持下滑坡灾害空间预测方法研究   总被引:11,自引:0,他引:11  
滑坡预测在防灾减灾工作中具有重要意义,它包括空间、时间预测两个方面。基于统计模型进行区域评价与空间预测是滑坡灾害研究的重要方向,但是预测结果往往依赖样本数量和空间分布等。本文以马来西亚金马伦高原为研究区,选择高程、坡度、坡向、地表曲率、构造、土地覆盖、地貌类型、道路和排水系统作为评价因子,探讨运用地理信息系统(GIS)和遥感(RS)获取与管理滑坡灾害信息,以及热带雨林地区湿热环境下滑坡空间预测的方法。支持向量机(SVM)和逻辑(Logistic)回归模型分别应用于滑坡空间预测,结果显示平均预测精度分别为95.9%和86.2%,SVM法具有较高的描述精度,值得推荐;同时,基于SVM模型的滑坡空间预测受样本影响较小,预测结果相对比较稳定,这对于滑坡灾害区域评价与预测的快速实现具有实际意义。  相似文献   

18.
Abstract

In this study, the main goal is to compare the predictive capability of Support Vector Machines (SVM) with four Bayesian algorithms namely Naïve Bayes Tree (NBT), Bayes network (BN), Naïve Bayes (NB), Decision Table Naïve Bayes (DTNB) for identifying landslide susceptibility zones in Pauri Garhwal district (India). First, landslide inventory map was built using 1295 historical landslide data, then in total sixteen influencing factors were selected and tested for landslide susceptibility modelling. Performance of the model was evaluated and compared using Statistical based index methods, Area under the Receiver Operating Characteristic (ROC) curve named AUC, and Chi-square method. Analysis results show that that the SVM has the highest prediction capability, followed by the NBT, DTNBT, BN and NB, respectively. Thus, this study confirms that the SVM is one of the benchmark models for the assessment of susceptibility of landslides.  相似文献   

19.
There is a growing interest in monitoring the gross primary productivity (GPP) of crops due mostly to their carbon sequestration potential. Both within- and between-field variability are important components of crop GPP monitoring, particularly for the estimation of carbon budgets. In this letter, we present a new technique for daytime GPP estimation in maize based on the close and consistent relationship between GPP and crop chlorophyll content, and entirely on remotely sensed data. A recently proposed chlorophyll index (CI), which involves green and near-infrared spectral bands, was used to retrieve daytime GPP from Landsat Enhanced Thematic Mapper Plus (ETM+) data. Because of its high spatial resolution (i.e., 30 30 m/pixel), this satellite system is particularly appropriate for detecting not only between- but also within-field GPP variability during the growing season. The CI obtained using atmospherically corrected Landsat ETM+ data was found to be linearly related with daytime maize GPP: root mean squared error of less than 1.58 in a GPP range of 1.88 to 23.1 ; therefore, it constitutes an accurate surrogate measure for GPP estimation. For comparison purposes, other vegetation indices were also tested. These results open new possibilities for analyzing the spatiotemporal variation of the GPP of crops using the extensive archive of Landsat imagery acquired since the early 1980s.  相似文献   

20.
The objective of this study is to produce groundwater potential map (GPM) and its performance assessment using a data-driven evidential belief function (EBF) model. This study was carried out in the Koohrang Watershed, Chaharmahal-e-Bakhtiari Province, Iran. It’s conducted in three main stages such as data preparation, groundwater potential mapping using EBF and validation of constructed model using receiver operating characteristic (ROC) curve. At first, 864 groundwater data were collected from spring locations; out of that, 605 (70%) locations were selected for training/model building and the remaining 259 (30%) cases were used for the model validation. In the next step, 12 effective factors such as altitude, slope aspect, slope degree, slopelength (LS), topographic wetness index (TWI), plan curvature, land use, lithology, distance from rivers, drainage density, distance from faults and fault density were extracted from the spatial database. Subsequently, GPM was prepared using EBF model in ArcGIS environment. Finally, the ROC curve and area under the curves (AUC) were drawn for verification purposes. The validation of results showed that the AUC for EBF model is 81.72%. In general, this result can be helpful for planners and engineers in water resource management and land-use planning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号