首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paucity of weathering rates for quartz in the natural environment stems both from the slow rate at which quartz dissolves and the difficulty in differentiating solute Si contributed by quartz from that derived from other silicate minerals. This study, a first effort in quantifying natural rates of quartz dissolution, takes advantage of extremely rapid tropical weathering, simple regolith mineralogy, and detailed information on hydrologic and chemical transport. Quartz abundances and grain sizes are relatively constant with depth in a thick saprolite. Limited quartz dissolution is indicated by solution rounding of primary angularity and by the formation of etch pits. A low correlation of surface area (0.14 and 0.42 m2 g−1) with grain size indicates that internal microfractures and pitting are the principal contributors to total surface area.Pore water silica concentration increases linearly with depth. On a molar basis, between one and three quarters of pore water silica is derived from quartz with the remainder contributed from biotite weathering. Average solute Si remains thermodynamically undersaturated with respect to recently revised estimates of quartz solubility (<180 μM) but exceeds estimated critical saturation concentrations controlling the initiation of etch pit formation (>17–81 μM). Etch pitting is more abundant on grains in the upper saprolite and is associated with pore waters lower in dissolved silica. Rate constants describing quartz dissolution increase with decreasing depth (from 10−14.5–10−15.1 mol m−2 s−1), which correlate with both greater thermodynamic undersaturation and increasing etch pit densities. Unlike for many aluminosilicates, the calculated natural weathering rates of quartz fall slightly below the rate constants previously reported for experimental studies (10−12.4–10−14.2 mol m−2 s−1). This agreement reflects the structural simplicity of quartz, dilute solutes, and near-hydrologic saturation.  相似文献   

2.
Alaknanda and Bhagirathi (AB) river basins in the Himalayan region in India expose lithologies comprising mainly of granites, low–high-grade metamorphics, shales and carbonates which, in conjunction with the monsoon rains and glacial melt, control water chemistry and dissolved elemental flux rates. In the present study, we monitored two locations: (a) Srinagar on the Alaknanda river and (b) Maneri on the Bhagirathi river for daily variations in total suspended sediments, major ions and dissolved silica over one complete year (July 2004–June 2005). Based on long-term discharge data, discharge-weighted composition and dissolved elemental flux rates (with respect to Ca, Mg, HCO3, Si) of the river were estimated. The information thus obtained has substantially added up to the existing chemical data of these rivers and has refined the flux rates. Our high-frequency samples provide informations such as (a) water chemical compositions that show a large temporal and spatial variation and (b) carbonate lithology that controls water chemistry predominantly. The dissolution kinetics of various lithologies namely leucogranite, gneiss, quartzite, phyllite and shale of the AB river basins were studied through batch experiments at controlled temperature (25 and 5°C) and pH (8.4) condition. In laboratory, these lithologies undergo slow rates of dissolution (10−13 to 10−15 mol/m2 s), while field weathering rates based on dissolved elemental flux rates in the AB rivers are much higher (10−8 to 10−9 mol/m2 s). Extremely high physical weathering rates in AB rivers, which enhance chemical weathering significantly, mainly attribute this wide discrepancy in laboratory-derived rates of representative basin rocks and dissolved elemental fluxes in the field. However, laboratory-simulated experiments facilitate to quantify elemental release rates, understand the kinetics of the dissolution reactions, and compare their roles at individual level.  相似文献   

3.
《Applied Geochemistry》2004,19(6):835-841
Experiments on dissolution kinetics of galena were performed in 1 mol l−1 NaCl solutions at pH 0.43–2.45 and 25–75 °C. When the dissolution reaction is far from equilibrium, a linear relation exits between the dissolution rate, r, and the H+ ion activity, [H+]. The rate law for galena dissolution is given by the following equation: r=k[H+]. With respect to H+, the dissolution reaction is in the first order. The apparent rate constant, k, has values of 2.34×10−7 mol m−2 s−1 at 25 °C, 1.38×10−6 mol m−2 s−1 at 50 °C, and 7.08×10−6 mol m−2 s−1 at 75 °C. The activation energy of dissolution reaction is 43.54 kJ mol−1. The mechanism of dissolution is suggested to be surface chemical reaction, and the rate determining step is the dissociation of the Pb–S bond of the surface complex, which releases Pb2+ into the solution.  相似文献   

4.
《Applied Geochemistry》2006,21(11):1837-1854
Total dissolved and total particulate Hg mass balances were estimated during one hydrological period (July 2001–June 2002) in the Thur River basin, which is heavily polluted by chlor-alkali industrial activity. The seasonal variations of the Hg dynamics in the aquatic environment were assessed using total Hg concentrations in bottom sediment and suspended matter, and total and reactive dissolved Hg concentrations in the water. The impact of the chlor-alkali plant (CAP) remains the largest concern for Hg contamination of this river system. Upstream from the CAP, the Hg partitioning between dissolved and particulate phases was principally controlled by the dissolved fraction due to snow melting during spring high flow, while during low flow, Hg was primarily adsorbed onto particulates. Downstream from the CAP, the Hg partitioning is controlled by the concentration of dissolved organic and inorganic ligands and by the total suspended sediment (TSS) concentrations. Nevertheless, the particulate fluxes were five times higher than the dissolved ones. Most of the total annual flux of Hg supplied by the CAP to the river is transported to the outlet of the catchment (total Hg flux: 70 μg m−2 a−1). Downstream from the CAP, the bottom sediment, mainly composed of coarse sediment (>63 μm) and depleted in organic matter, has a weak capacity to trap Hg in the river channel and the stock of Hg is low (4 mg m−2) showing that the residence time of Hg in this river is short.  相似文献   

5.
《Geochimica et cosmochimica acta》1999,63(19-20):3349-3356
The calcium cycle, in particular carbonate dissolution, was analyzed in two deep eutrophic lakes, Lago di Lugano (288 m maximum depth) and Sempachersee (87 m) located in Switzerland. A box model approach was used to calculate calcite dissolution in the water column and at the sediment-water interface based on various lake monitoring data such as sediment traps, sediment cores, water and pore-water analysis. A model for stationary conditions allowing the calculation of calcite dissolution in the water column for a given particle size distribution was developed. The relative values of the simulated flux were consistent with sediment trap observations. The best fit of the dissolution rate constant of sinking calcite in Lago di Lugano was on the same order of magnitude (3 · 10−10 kg1/3 s−1) as published laboratory values for this surface controlled process.Both lakes show a similar specific calcite precipitation rate of 170 g Ca m−2 a−1. The diffusive flux across the sediment-water interface amounts to about 15 and 10% of total calcite precipitation in Sempachersee and Lago di Lugano, respectively. However, 61% of the precipitated calcite is dissolved in the water column of Lago di Lugano compared to only 13% in Sempachersee. These results point towards the importance of grain size distributions and settling times in stratified deep waters as the two most important factors determining calcite retention in sediments of hard water lakes.  相似文献   

6.
The extent of authigenic alteration of biogenic and reactive silica in Pearl River estuarine sediments has been estimated using wet-chemical digestion methods. Results show relatively constant distributions of biogenic and reactive Si horizontally and vertically. Based on three core measurements, the biogenic and total reactive Si average 77.91 and 264.77 μmol Si g−1, respectively. Their extents of authigenic alteration are correspondingly estimated as ~55.6 and ~70.6%. The average biogenic Si accumulation rate is calculated as 1.91 × 109 mol Si year−1, which translates into storage of ~7.15% of the annual riverine dissolved silica input. By contrast, the total reactive Si accumulation rate is as high as 6.49 × 109 mol Si year−1, improving annual riverine silicic acid storage to ~24.19%. Detailed investigation is required for a good understanding of early diagenetic process of biogenic and reactive silica in this subtropical area.  相似文献   

7.
Benthic fluxes in two southern California borderland basins have been estimated by modeling water column property gradients, by modeling pore water gradients and by measuring changes in concentration in a benthic chamber. Results have been used to compare the different methods, to establish budgets for biogenic silica and carbon and to estimate rate constants for models of CaCO3 dissolution. In San Pedro Basin, a low oxygen, high sedimentation rate area, fluxes of radon-222 (86 ± 8 atoms m−2 s−1), SiO2 (0.7 ± 0.1 mmol m−2 d−1), alkalinity (1.7 ± 0.3 meq m−2 d−1), TCO2 (1.9 ± 0.3 mmol m−2 d−1) and nitrate (−0.8 ± 0.1 mmol m−2 d−1) measured in a benthic chamber agree within the measurement uncertainty with fluxes estimated from modeling profiles of nutrients and radon obtained in the water column. The diffusive fluxes of radon, SiO2 and TCO2 determined from modeling the sediment and pore water also agree with the other approaches. Approximately 33 ± 13% of the organic carbon and 37 ± 47% of the CaCO3 arriving at the sea floor are recycled. In San Nicolas Basin, which has larger oxygen concentrations and lower sedimentation rates than San Pedro, the fluxes of radon (490 ± 16 atoms m−2 s−1), SiO2 (0.7 ± 0.1 mmol m−2 d−1), alkalinity (1.7 ± 0.3 meq m−2 d−1), TCO2 (1.7 ± 0.2 mmol m−2 d−1), oxygen (−0.7 ± 0.1 mmol m−2 d−1) and nitrate (-0.4 ± 0.1 mmol m−2 d−1) determined from chamber measurements agree with the water column estimates given the uncertainty of the measurements and model estimates. Diffusion from the sediments matches the lander-measured SiO2 and PO43− (0.017 ± 0.002 mmol m−2 d−1) fluxes, but is not sufficient to supply the radon or TCO2 fluxes observed with the lander. In San Nicolas Basin 38 ± 9% of the organic carbon and 43 ± 22% of the CaCO3 are recycled. Approximately 90% of the biogenic silica arriving at the sea floor in each basin is recycled. The rates of CaCO3 dissolution determined from chamber flux measurements and material balances for protons and electrons are compared to those predicted by previously published models of CaCO3 dissolution and this comparison indicates that in situ rates are comparable to those observed in laboratory studies of bulk sediments, but orders of magnitude less than those observed in experiments done with suspended sediments.  相似文献   

8.
Riverbank sediment cores and pore waters, shallow well waters, seepage waters and river waters were collected along the Meghna Riverbank in Gazaria Upazila, Bangladesh in Jan. 2006 and Oct.–Nov. 2007 to investigate hydrogeochemical processes controlling the fate of groundwater As during discharge. Redox transition zones from suboxic (0–2 m depth) to reducing (2–5 m depth) then suboxic conditions (5–7 m depth) exist at sites with sandy surficial deposits, as evidenced by depth profiles of pore water (n = 7) and sediment (n = 11; diffuse reflectance, Fe(III)/Fe ratios and Fe(III) concentrations). The sediment As enrichment zone (up to ∼700 mg kg−1) is associated with the suboxic zones mostly between 0 and 2 m depth and less frequently between 5 and 7 m depth. The As enriched zones consist of several 5–10 cm-thick dispersed layers and span a length of ∼5–15 m horizontally from the river shore. Depth profiles of riverbank pore water deployed along a 32 m transect perpendicular to the river shore show elevated levels of dissolved Fe (11.6 ± 11.7 mg L−1) and As (118 ± 91 μg L−1, mostly as arsenite) between 2 and 5 m depth, but lower concentrations between 0 and 2 m depth (0.13 ± 0.19 mg L−1 Fe, 1 ± 1 μg L−1 As) and between 5 and 6 m depth (1.14 ± 0.45 mg L−1 Fe, 28 ± 17 μg L−1 As). Because it would take more than a few hundred years of steady groundwater discharge (∼10 m yr−1) to accumulate hundreds of mg kg−1 of As in the riverbank sediment, it is concluded that groundwater As must have been naturally elevated prior to anthropogenic pumping of the aquifer since the 1970s. Not only does this lend unequivocal support to the argument that As occurrence in the Ganges-Brahmaputra-Meghna Delta groundwater is of geogenic origin, it also calls attention to the fate of this As enriched sediment as it may recycle As into the aquifer.  相似文献   

9.
Deltaic environments are commonly assumed to be relatively minor sites of biogenic silica burial because of the small quantities of opaline silica detected by most operational analytical techniques. Rapid conversion of biogenic silica into authigenic silicates is also often discounted as a significant control on oceanic silica budgets. A variety of evidence for extensive early diagenetic alteration of biogenic silica in rapidly accumulating Amazon delta sediments indicates that both of these general assumptions are unjustified. Apparent lack of significant biogenic silica storage in deltaic environments, particularly in the tropics, may be largely an artifact of operational definitions that do not include early diagenetic products of biogenic silica. Biogenic silica particles buried in suboxic Amazon delta deposits can be unaltered, partially dissolved, covered with aluminosilicate or metal-rich coatings, or completely reconstituted into authigenic K-Fe-rich aluminosilicate minerals. Pore water (K, Mg, F, Si) and solid-phase distributions, direct observations of particles, laboratory experiments, and depositional context indicate that authigenic clays form rapidly (<1 yr) in the seasonally reworked surface layer (∼ 0.5-2 m) of the delta topset and are disseminated during sediment remobilization. Fe, Al-oxide rich debris derived from the tropical drainage basin is an abundant reactant, and thus the supply of biogenic silica is a major control on the amount of clay formed.The mild 1% Na2CO3 alkaline leach procedure commonly used to estimate biogenic silica was modified to include an initial mild leach step with 0.1N HCl to remove metal oxide coatings and to activate poorly crystalline authigenic phases for alkaline dissolution. Well-crystallized clays are not significantly affected by this modification nor is bulk Amazon River bed sediment. The two-step procedure indicates that ∼90% of the biogenic silica originally present in deposits is converted to clay or otherwise altered, raising the effective quantity of biogenic silica stored from ∼33 to ∼296 μmol Si g−1 (∼1.8% SiO2). Biogenic Si stored in the delta increases away from the river mouth, across shelf and along the dispersal system where primary production is highest. The K/Si ratio of labile authigenic material is ∼0.19 mol mol−1, far higher than Amazon River suspended matter (∼0.07 mol mol−1). Diagenetic models indicate formation rates in the mobile sediment layer of ∼2.8 μmol K g−1 yr−1 (∼16 μmol Si g−1 yr−1). Inclusion of authigenic alteration products of biogenic silica in estimates of reactive Si burial increases the deltaic storage of riverine Si to ∼22% of the Amazon River input. The rapid formation of aluminosilicates from biogenic SiO2, seawater solutes, and remobilized Fe, Al-oxides represents a form of reverse weathering. Rapid reverse weathering reactions in tropical muds and deltaic deposits, the largest sediment depocenters on Earth, confirms the general importance of these processes in oceanic elemental cycles.  相似文献   

10.
The effect of citrate and oxalate on tremolite dissolution rate was measured at 37 °C in non-stirred flow-through reactors, using modified Gamble’s solutions at pH 4 (macrophages), 7.4 (interstitial fluids) and 5.5 (intermediate check point) containing 0, 0.15, 1.5 and 15 mmol L−1 of citrate or oxalate. The dissolution rates calculated from Si concentration in the output solutions without organic ligands depend on pH, decreasing when the pH increases from −13.00 (pH 4) to −13.35 (pH 7.4) mol g−1 s−1 and following a proton-promoted mechanism. The presence of both ligands enhances dissolution rates at every pH, increasing this effect when the ligand concentration increases. Citrate produces a stronger effect as a catalyst than oxalate, mainly at more acidic pHs and enhances dissolution rates until 20 times for solutions with 15 mmol L−1 citrate. However, at pH 7.4 the effect is lighter and oxalate solutions (15 mmol L−1) only enhances dissolution rates eight times respect to free organic ligand solutions. Dissolution is promoted by the attack to protons and organic ligands to the tremolite surface. Magnesium speciation in oxalate and citrate solutions shows that Mg citrate complexes are more effective than oxalate ones during the alteration of tremolite in magrophages, but this tendency is the opposite for interstitial fluids, being oxalate magnesium complexes stronger. The biodurability estimations show that the destruction of the fibers is faster in acidic conditions (macrophages) than in the neutral solutions (interstitial fluid). At pH 4, both ligands oxalate and citrate reduce the residence time of the fibers with respect to that calculated in absence of ligands. Nevertheless, at pH 7.4 the presence of ligands does not reduce significantly the lifetime of the fibers.  相似文献   

11.
《Applied Geochemistry》1998,13(7):905-916
Experiments measuring kaolinite and smectite dissolution rates were carried out using batch reactors at 35° and 80°C. No potential catalysts or inhibitors were present in solution. Each reactor was charged with 1 g of clay of the ≤2 μm fraction and 80, 160 or 240 ml of 0.1–4 M KOH solution. An untreated but sized kaolinite from St. Austell and two treated industrial smectites were used in the experiments. One smectite is a nearly pure montmorillonite, while the second has a significant component of beidellitic charge (35%). The change in solution composition and mineralogy was monitored as a function of time. Initially, the 3 clays dissolved congruently. No new formed phases were observed by XRD and SEM during the pure dissolution stage. The kaolinite dissolution is characterized by a linear release of silica and Al as a function of the log of time. This relationship can be explained by a reaction affinity effect which is controlled by the octahedral layer dissolution. Far from equilibrium, dissolution rates are proportional to a0.56±0.12OH at 35°C and to a0.81±0.12OH at 80°C. The activation energy of kaolinite dissolution increases from 33±8 kJ/mol in 0.1 M KOH solutions to 51±8 kJ/mol in 3 M KOH solutions. In contrast to kaolinite, the smectites dissolve at much lower rates and independently of the aqueous silica or Al concentrations. The proportionality of the smectite dissolution rate constant at 35 and 80°C was a0.15±0.06OH. The activation energy of dissolution appears to be independent of pH for smectite and is found to be 52±4 kJ/mol. The differences in behavior between the two kinds of minerals can be explained by structural differences. The hydrolysis of the tetrahedral and the octahedral layer appears as parallel reactions for kaolinite dissolution and as serial reactions for smectite dissolution. The rate limiting step is the dissolution of the octahedral layer in the case of kaolinite, and the tetrahedral layer in the case of smectite.  相似文献   

12.
《Applied Geochemistry》1998,13(2):269-280
A slow flow, plug-through reactor was developed for measuring equilibrium and kinetic parameters of biogeochemical reactions on intact sections of sediment cores. The experimental approach was designed to preserve the structural, geochemical and microbiological integrity of the sediment sections and, hence, retrieve reaction parameters that apply to in-situ conditions.Inert tracer breakthrough experiments were performed on a variety of unconsolidated surface sediments from lacustrine, estuarine and marine depositional environments. The sediments studied cover wide ranges of composition, porosity (46–83%) and mean grain size (10−4−10−2 cm). Longitudinal dispersion coefficients were determined from the breakthrough curves of Br. The curves were also used to check for early breakthrough or trailing, that is, features indicative of non-ideal flow conditions. Sediment plugs that exhibited these features were eliminated from further experiments.Dimensionless equilibrium adsorption coefficients (K) of NH4+, were calculated from measured retardation times between the breakthrough of NH4+ and Br. The values of K at 5°C vary between 0.3 and 2.3, with the highest value obtained in a fine-grained marine sediment, the lowest in a coarse-grained lake sediment. The values for the marine and estuarine sediments agree with values reported in the literature. The dependencies of K on ionic strength (range 0.2-0.7m) and temperature (range 5–25°C) in an estuarine sediment confirm that the main sorption mechanism for NH4+ is ion exchange.The reactor was used in recirculation mode to measure steady-state rates of dissimilatory SO42− reduction in a salt-marsh sediment. Recirculation homogenizes solute concentrations within the reactor, hence facilitating the derivation of reaction rate expressions that depend on solution composition. The rate of microbial S04 reduction was found to be nearly independent of the dissolved SO42− concentration in the range of 2.2−1 mM. Fitting of the experimental rates to a Monod relationship resulted in a maximum estimate of the half-saturation concentration, Ks, of 240 μM. This value is comparable to those reported for a pure culture of SO42−-reducing bacteria, but is significantly smaller than the only other Ks value reported in the literature for SO42− utilization in a natural marine sediment.  相似文献   

13.
Significant amounts of sulfuric acid (H2SO4) rich saline water can be produced by the oxidation of sulfide minerals contained in inland acid sulfate soils (IASS). In the absence of carbonate minerals, the dissolution of phyllosilicate minerals is one of very few processes that can provide long-term acid neutralisation. It is therefore important to understand the acid dissolution behavior of naturally occurring clay minerals from IASS under saline–acidic solutions. The objective of this study was to investigate the dissolution of a natural clay-rich sample under saline–acidic conditions (pH 1–4; ionic strengths = 0.01 and 0.25 M; 25 °C) and over a range of temperatures (25–45 °C; pH 1 and pH 4). The clay-rich sample referred to as Bottle Bend clay (BB clay) used was from an IASS (Bottle Bend lagoon) in south-western New South Wales (Australia) and contained smectite (40%), illite (27%), kaolinite (26%) and quartz (6%). Acid dissolution of the BB clay was initially rapid, as indicated by the fast release of cations (Si, Al, K, Fe, Mg). Relatively higher Al (pH 4) and K (pH 2–4) release was obtained from BB clay dissolution in higher ionic strength solutions compared to the lower ionic strength solutions. The steady state dissolution rate (as determined from Si, Al and Fe release rates; RSi, RAl, RFe) increased with decreasing solution pH and increasing temperature. For example, the highest log RSi value was obtained at pH 1 and 45 °C (−9.07 mol g−1 s−1), while the lowest log RSi value was obtained at pH 4 and 25 °C (−11.20 mol g−1 s−1). A comparison of these results with pure mineral dissolution rates from the literature suggests that the BB clay dissolved at a much faster rate compared to the pure mineral samples. Apparent activation energies calculated for the clay sample varied over the range 76.6 kJ mol−1 (pH 1) to 37.7 kJ mol−1 (pH 4) which compare very well with the activation energy values for acidic dissolution of monomineralic samples e.g. montmorillonite from previous studies. The acid neutralisation capacity (ANC) of the clay sample was calculated from the release of all structural cations except Si (i.e. Al, Fe, K, Mg). According to these calculations an ANC of 1.11 kg H2SO4/tonne clay/day was provided by clay dissolution at pH 1 (I = 0.25 M, 25 °C) compared to an ANC of 0.21 kg H2SO4/tonne clay/day at pH 4 (I = 0.25 M, 25 °C). The highest ANC of 6.91 kg H2SO4/tonne clay/day was provided by clay dissolution at pH 1 and at 45 °C (I = 0.25 M), which is more than three times higher than the ANC provided under the similar solution conditions at 25 °C. In wetlands with little solid phase buffering available apart from clay minerals, it is imperative to consider the potential ANC provided by the dissolution of abundantly occurring phyllosilicate minerals in devising rehabilitation schemes.  相似文献   

14.
Palaeomagnetic investigation of three sediment cores from the Chukchi and Beaufort Sea margins was performed to better constrain the regional chronostratigraphy and to gain insights into sediment magnetic properties at the North American Arctic margin during the Holocene and the preceding deglaciation. Palaeomagnetic analyses reveal that the sediments under study are characterized by low‐coercivity ferrimagnetic minerals (magnetite), mostly in the pseudo‐single domain grain‐size range, and by a strong, stable, well‐defined remanent magnetization (MAD <5°). Age models for these sediment cores were constrained by comparing their palaeomagnetic secular variations (inclination, declination and relative palaeointensity) with previously published and independently dated sedimentary marine records from the study area. The magnetostratigraphical age models were verified by AMS radiocarbon dating tie points, tephrochronology and 210Pb‐based sedimentation rate estimate. The analysed cores 01JPC, 03PC and 02PC span c. 6000, 10 500 and 13 500 cal. a BP, respectively. The estimated sedimentation rates were stable and relatively high since the deglaciation in cores 01JPC (60 cm ka−1) and 03PC (40–70 cm ka−1). Core 02PC shows much lower Holocene sedimentation rates with a strong decrease after the deglaciation from ~60 to 10–20 cm ka−1. Overall, this study illustrates the usefulness of palaeomagnetism to improve the dating of late Quaternary sedimentary records in the Arctic Ocean.  相似文献   

15.
The vertical variability in mineralogical, chemical and isotopic compositions observed in large river suspended sediments calls for a depth-integration of this variability to accurately determine riverine geochemical fluxes. In this paper, we present a method to determine depth-integrated chemical particulate fluxes of large rivers, based on river sampling along depth-profiles, and applied to the Amazon Basin lowland tributaries. The suspended particulate matter (SPM) concentration data from depth-profiles is modeled for a number of individual grain size fractions using the Rouse model, which allows to predict the grain size distribution of suspended sediment throughout the whole river cross-section. Then, using (1) the relationship between grain size distribution and the Al/Si ratio (2) relationships between the Al/Si ratio and the chemical concentrations, the chemical composition of river sediment is predicted throughout the river cross-section, and integrated to yield the depth-integrated chemical particulate flux for a number of chemical elements (e.g. Si, Al, Fe, Na, REEs, …). For elements such as Al, Fe, REEs, Th, the depth-integrated flux is around twice as high as the one calculated from river surface sample characteristics. For Na and Si, the depth-integrated flux is three times higher than the “surface” estimate, due to the enrichment of albite and quartz at the bottom of the river. Depth-integrated 87Sr/86Sr composition of suspended sediment, also predictable using this method, differs by more than 10−3 from the surface sample composition.Finally, potential implications of depth-integrated estimates of Amazon sediment chemistry are explored. Depth-integration of particulate 87Sr/86Sr isotopic ratios is necessary for a reliable use of Sr isotopes as a provenance tracer. The concept of steady-state weathering of a large river basin is revisited using depth-integrated sediment composition. This analysis shows that, in the Amazon Basin river, the previously observed discrepancy between (1) weathering intensities of channel surface sediment and (2) silicate-derived dissolved fluxes is only slightly accounted for by the vertical variability of suspended sediment weathering intensities. This observation confirms that most large rivers basins are not eroding at steady-state.  相似文献   

16.
Dissolution rates of sediments obtained from the Oued Cherf reservoir were measured in closed-system batch reactors at 25 °C in fluids sampled concurrently from the same locations as the sediments. The BET surface areas of the sediments ranged from 16 to 45 m2/g and consisted primarily of quartz, calcite, and clay minerals. After a brief initial period, release rates of Si, Mg, Ca, Cl, SO4, and NO3 from these sediments are approximately linear with time over the course of the experiments, which lasted from 3 to 5 months. BET surface area normalized Si release rates ranged from 10–17.4 to 10–18.4 mol/cm2/s. These release rates match closely Si release rates from quartz and clay minerals determined from laboratory dissolution rates reported in the literature. This coherence suggests that laboratory measured silicate dissolution rates can be used with confidence to predict the dissolution behavior of sediments in natural surface waters.  相似文献   

17.
《Applied Geochemistry》2004,19(9):1377-1389
This study investigated P and As sediment remobilisation in Lake Yangebup, a shallow lake with an overlying floc layer that covers the consolidated sediment. This floc is frequently resuspended into the water column, a process that was postulated to produce high P and As lakewater concentrations. Rate investigations using deionised water showed that P and As remobilisation reached steady state after 20 h in the consolidated sediment and within 1 h for the floc. Floc resuspension in lakewater showed no net release of either P and As, indicating that the floc was in constant equilibrium with the water column. A protocol to distinguish between desorption and dissolution was applied to both sediments and the response of remobilisation to varying slurry density and As addition measured. For the consolidated sediment, the concentration of Fe(II), P and As were unaffected above a slurry density ∼30 g L−1 and added arsenate (10–100 μg L−1) did not significantly change As and P remobilisation. It is shown that these results do not fit an adsorption/desorption equilibrium formulation for P and As remobilisation. Instead, the evidence suggests that the solubility of a thin, non-stoichiometric FePxFeAsy oxyhydroxide surface coating determined the remobilisation process. Data scatter lead to some uncertainty in the floc results but suggest that dissolved P is controlled by dissolution, while dissolved As is controlled by adsorption/desorption. The results conclusively show that P and As remobilisation was lower from the floc than from the consolidated sediment and that the removal of the floc would not lower P and As lakewater concentrations. Implications of these results for the management of As in Lake Yangebup are outlined.  相似文献   

18.
We report the presence of coenzyme factor 430 (F430), a prosthetic group of methyl coenzyme M reductase for archaeal methanogenesis, in the deep sub-seafloor biosphere. At 106.7 m depth in sediment collected off Shimokita Peninsula, northwestern Pacific, its concentration was estimated to be at least 40 fmol g sediment−1 (i.e. 36 pg g−1 wet sediment). This is about three orders of magnitude lower than typical concentrations of archaeal intact polar lipids in similar sub-seafloor sediments. On the basis of the concentration of F430 in methanogens and conversion to biomass composed of typical sub-seafloor microbial cells, we estimated that ca. 2 × 106 cells g−1 could be methanogens in the deeply buried marine sediment.  相似文献   

19.
The release of Phosphorus (P) from river sediments has been identified as a contributing factor to waters failing the criteria for ‘Good Ecological Status’ under the EU Water Framework Directive (WFD). To identify the contribution of sediment-P to river systems, an understanding of the factors that influence its distribution within the entire non-tidal system is required. Thus the aims of this work were to examine the (i) total (PTotal) and labile (PLabile) concentrations in sediment, (ii) the sequestration processes and (iii) the interactions between sediment P and the river water in the six non-tidal water bodies of the River Nene, U.K. Collection of sediments followed a long period of flooding and high stream flow. In each water body, five cores were extracted and homogenised for analysis with an additional core being taken and sampled by depth increments. Comparing the distribution of sediment particle size and PTotal data with soil catchment geochemical survey data, large increases in PTotal were identified in sediments from water body 4–6, where median concentrations of PTotal in the sediment (3603 mg kg−1) were up to double those of the catchment soils. A large proportion of this increase may be related to in-stream sorption of P, particularly from sewage treatment facilities where the catchment becomes more urbanised after water body 3. A linear correlation (r = 0.8) between soluble reactive phosphate (SRP) and Boron in the sampled river waters was found suggesting increased STW input in water bodies 4–6.PLabile concentrations in homogenised cores were up to 100 mg kg−1 PO4–P (generally < 2% of PTotal) and showed a general increase with distance from the headwaters. A general increase in Equilibrium Phosphate Concentrations (EPC0) from an average of 0.9–∼1.7 μm L−1 was found between water bodies 1–3 and 4–6. Fixation within oxalate extractable phases (Al, Fe and Mn) accounted for ∼90% of P binding in water bodies 4–6, but only between 31 and 74% in water bodies 1–3. Statistical models predicting PTotal (R2 = 0.78), oxalate extractable P (R2 = 0.78) and Olsen P (R2 = 0.73) concentrations in river sediments identified Mn oxy-hydroxides (MnOx) as a strong predictive variable along with the location within the river system. It is suggested that MnOx within model predictions is identifying a pool of mixed Fe–Mn oxy-hydroxides (MnOx–FeOOH) or Fe oxy-hydroxide (FeOOH) from the wider FeOxalate pool that are particularly effective at sorbing and fixing P. The findings demonstrate how sediment and P may accumulate along a 100 km non-tidal river system, the extent to which a range of processes can fix P within mineral phases and how natural flooding processes may flush sediment from the river channel. The processes identified in this study are likely to be applicable to similar river systems over their non-tidal water bodies in eastern England.  相似文献   

20.
This work focuses on sulfide mineral oxidation rates under oxic conditions in freshly processed pyrite-rich tailings from the ore concentrator in Boliden, northern Sweden. Freshly processed tailings are chemically treated in the plant to kill bacteria and to obtain increased metal yields, resulting in a high pH level of 10–12 in the process water. Different oxidation experiments (abiotic oxidation in untreated tailings, acid abiotic oxidation and acid microbial oxidation), containing the Boliden tailings, were performed at room temperature with dissolved oxygen (0.21 atm O2) for 3 months. The different pyrite oxidation rates given from the study were 2.4×10−10 mol m−2 s−1 for the microbial, 5.9×10−11 mol m−2 s−1 for the acidic abiotic and 3.6×10−11 mol m−2 s−1 for the untreated experiments. Because of the potential precipitation of gypsum in the batch solutions, these oxidation rates are considered minimum values. The release rates for copper and zinc from chalcopyrite and sphalerite in the acid experiments were also investigated. These rates were normalized to the metal concentration in the tailings, and then compared to the release rate for iron from pyrite. These normalized results indicated that metal release decreased in the order Cu>Zn>Fe, demonstrating that pyrite is more resistant to oxidation than sphalerite and chalcopyrite. Pyrite was also more resistant to acidic dissolution than to microbial dissolution, while a significant fraction of sphalerite and chalcopyrite dissolved in the acid abiotic solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号