首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We describe solar observations carried out for the first time jointly with Kilpisjärvi Atmospheric Imaging Receiver Array (KAIRA) and Aalto University Metshovi Radio Observatory (MRO). KAIRA is new radio antenna array observing the decimeter and meter wavelength range. It is located near Kilpisjärvi, Finland, and operated by the SodankyläGeophysical Observatory, University of Oulu. We investigate the feasibility of KAIRA for solar observations, and the additional benefits of carrying out multi‐instrument solar observations with KAIRA and the MRO facilities, which are already used for regular solar observations. The data measured with three instruments at MRO, and with KAIRA during time period 2014 April–October were analyzed. One solar radio event, measured on 2014 April 18, was studied in detail. Seven solar flares were recorded with at least two of the three instruments at MRO, and with KAIRA during the chosen time period. KAIRA is a great versatile asset as a new Finnish instrument that can also be used for solar observations. Collaboration observations with MRO instruments and KAIRA enable detailed multi‐frequency solar flare analysis. Flare pulsations, flare statistics and radio spectra of single flares can be investigated due to the broad frequency range observations. The Northern locations of both MRO and KAIRA make as long as 15‐hour unique solar observations possible during summer time. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Sunspot number, sunspot area, and radio flux at 10.7 cm are the indices which are most frequently used to describe the long‐term solar activity. The data of the daily solar full‐disk magnetograms measured at Mount Wilson Observatory from 19 January 1970 to 31 December 2012 are utilized together with the daily observations of the three indices to probe the relationship of the full‐disk magnetic activity respectively with the indices. Cross correlation analyses of the daily magnetic field measurements at Mount Wilson observatory are taken with the daily observations of the three indices, and the statistical significance of the difference of the obtained correlation coefficients is investigated. The following results are obtained: (1) The sunspot number should be preferred to represent/reflect the full‐disk magnetic activity of the Sun to which the weak magnetic fields (outside of sunspots) mainly contribute, the sunspot area should be recommended to represent the strong magnetic activity of the Sun (in sunspots), and the 10.7 cm radio flux should be preferred to represent the full‐disk magnetic activity of the Sun (both the weak and strong magnetic fields) to which the weak magnetic fields mainly contribute. (2) On the other hand, the most recommendable index that could be used to represent/reflect the weak magnetic activity is the 10.7 cm radio flux, the most recommendable index that could be used to represent the strong magnetic activity is the sunspot area, and the most recommendable index that could be used to represent the full‐disk magnetic activity of the Sun is the 10.7cm radio flux. Additionally, the cycle characteristics of the magnetic field strengths on the solar disk are given. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We present further considerations regarding the strong 14C variation in AD 774/5. For its cause, either a solar super‐flare or a short gamma‐ray burst were suggested. We show that all kinds of stellar or neutron star flares would be too weak for the observed energy input at Earth in AD 774/5. Even though Maehara et al. (2012) present two super‐flares with ∼1035 erg of presumably solar‐type stars, we would like to caution: These two stars are poorly studied and may well be close binaries, and/or having a M‐type dwarf companion, and/or may be much younger and/or much more magnetic than the Sun – in any such case, they might not be true solar analog stars. From the frequency of large stellar flares averaged over all stellar activity phases (maybe obtained only during grand activity maxima), one can derive (a limit of) the probability for a large solar flare at a random time of normal activity: We find the probability for one flare within 3000 years to be possibly as low as 0.3 to 0.008 considering the full 1σ error range. Given the energy estimate in Miyake et al. (2012) for the AD 774/5 event, it would need to be ∼2000 stronger than the Carrington event as solar super‐flare. If the AD 774/5 event as solar flare would be beamed (to an angle of only ∼24°), 100 times lower energy would be needed. A new AD 774/5 energy estimate by Usoskin et al. (2013) with a different carbon cycle model, yielding 4 ot 6 time lower 14C production, predicts 4–6 times less energy. If both reductions are applied, the AD 774/5 event would need to be only ∼4 times stronger than the Carrington event in 1859 (if both had similar spectra). However, neither 14C nor 10Be peaks were found around AD 1859. Hence, the AD 774/5 event (as solar flare) either was not beamed that strongly, and/or it would have been much more than 4‐6 times stronger than Carrington, and/or the lower energy estimate (Usoskin et al. 2013) is not correct, and/or such solar flares cannot form (enough) 14C and 10Be. The 1956 solar energetic particle event was followed by a small decrease in directly observed cosmic rays. We conclude that large solar super‐flares remain very unlikely as the cause for the 14C increase in AD 774/5. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
We present new results of heliographic observations of quiet‐Sun radio emission fulfilled by the UTR‐2 radio telescope. The solar corona investigations have been made close to the last solar minimum (Cycle 23) in the late August and early September of 2010 by means of the two‐dimensional heliograph within 16.5–33 MHz. Moreover, the UTR‐2 radio telescope was used also as an 1‐D heliograph for one‐dimensional scanning of the Sun at the beginning of September 2010 as well as in short‐time observational campaigns in April and August of 2012. The average values of integral flux density of the undisturbed Sun continuum emission at different frequencies have been found. Using the data, we have determined the spectral index of quiet‐Sun radio emission in the range 16.5–200 MHz. It is equal to –2.1±0.1. The brightness distribution maps of outer solar corona at frequencies 20.0 MHz and 26.0 MHz have been obtained. The angular sizes of radio Sun were estimated. It is found that the solar corona at these frequencies is stretched‐out along equatorial direction. The coefficient of corona ellipticity varies slightly during above period. Its mean magnitudes are equal to ≈ 0.75 and ≈ 0.73 at 20.0 MHz and 26.0 MHz, respectively. The presented results for continuum emission of solar corona conform with being ones at higher frequencies. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The outer layers of Sun-like stars are regions of rapid spatial variation which modulate the p-mode frequencies by partially reflecting the constituent acoustic waves. With the accuracy that has been achieved by current solar observations, and that is expected from imminent stellar observations, this modulation can be observed from the spectra of the low-degree modes. We present a new and simple theoretical calculation to determine the leading terms in an asymptotic expansion of the outer phase of these modes, which is determined by the structure of the surface layers of the star. Our procedure is to compare the stellar envelope with a plane-parallel polytropic envelope, which we regard as a smooth reference background state. Then we can isolate a seismic signature of the acoustic phase and relate it to the stratification of the outer layers of the convection zone. One can thereby constrain theories of convection that are used to construct the convection zones of the Sun and Sun-like stars. The accuracy of the diagnostic is tested in the solar case by comparing the predicted outer phase with an exact numerical calculation.  相似文献   

6.
We present preliminary results of our X‐shooter survey in star forming regions. In this contribution we focus on subsamples of young stellar and sub‐stellar objects (YSOs) in the Lupus star forming region and in the TW Hya association. We show that the X‐shooter spectra are suitable for conducting several parallel studies such as YSO + disk fundamental parameters, accretion and outflow activity in the very low‐mass (VLM) and sub‐stellar regimes, as well as magnetic activity in young VLM YSOs, and Li abundance determinations. The capabilities of X‐shooter in terms of wide spectral coverage, resolution and limiting magnitudes, allow us to assess simultaneously the accretion/outflow, magnetic activity, and disk diagnostics, from the UV and optical to the near‐IR, avoiding ambiguities due to possible YSO variability (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Polar faculae are of special interest for solar physics because of their close relationship to the global magnetic field of the Sun and to solar activity, and because of the recently found kilogauss magnetic fields, which are very unusual for the structures outside active regions at high latitudes of the Sun. The idea is that polar faculae can be represented by bundles of unresolved small‐scale magnetic flux tubes, which are characterized by sizes of about 100 km and strong magnetic fields. High resolution spectro‐polarimetric observations of the considered structures were performed and complemented by the radiation transfer calculations with oblique rays passing through an inhomogeneous magnetic medium. The recent results of observations and numerical calculations are presented.  相似文献   

8.
D. J. Mullan 《Solar physics》1977,54(1):183-206
Short-lived increases in the brightness of many red dwarfs have been observed for the last 30 yr, and a variety of more or less exotic models have been proposed to account for such flares. Information about flares in the Sun has progressed greatly in recent years as a result of spacecraft experiments, and properties of coronal flare plasma are becoming increasingly better known. In this paper, after briefly reviewing optical, radio and X-ray observations of stellar flares, we show how a simplified model which describes conductive plus radiative cooling of the coronal flare plasma in solar flares has been modified to apply to optical and X-ray stellar flare phenomena. This model reproduces many characteristic features of stellar flares, including the mean UBV colors of flare light, the direction of flare decay in the two-color diagram, precursors, Stillstands, secondary maxima, lack of sensitivity of flare color to flare amplitude, low flux of flare X-rays, distinction between so-called spike flares and slow flares, Balmer jumps of as much as 6–8, and emission line redshifts up to 3000 km s–1. In all probability, therefore, stellar flares involve physical processes which are no more exotic (and no less!) than those in solar flares. Advantages of observing stellar flares include the possibilities of (i) applying optical diagnostics to coronal flare plasma, whereas this is almost impossible in the Sun, and (ii) testing solar flare models in environments which are not generally accessible in the solar atmosphere.  相似文献   

9.
We present an analysis of 2634 Ca II K‐line full‐disk filtergrams obtained with the 15‐cm aperture photometric full‐disk telescope at Big Bear Solar Observatory during the period from 1996 January 1 to 2005 October 24. Using limb darkening corrected and contrast enhanced filtergrams, solar activity indices were derived, which are sensitive to the 11‐year solar activity cycle and 27‐day rotational period of plages around active regions and the bright chromospheric network. The present work extends an earlier study (solar cycle 22), which was based on video data. The current digital data are of much improved quality with higher spatial resolution and a narrower passband ameliorating photometric accuracy. The time series of chromospheric activity indices cover most of solar cycle 23. One of the most conspicuous features of the Ca II K indices is the secondary maximum in late 2001/early 2002 after an initial decline of chromospheric activity during the first half of 2001. We conclude that a secular trend exists in the Ca II K indices, which has its origin in the bright chromospheric network and brightenings related to decaying active regions. Superposed on this secular trend are the signatures of recurring, long‐lived active regions, which are clusters of persistent and continuously emerging magnetic flux. Such features are less visible, when the activity belts on both side of the equator are devoid of the brightenings related to decaying active regions as was the case in October/November 2003 at a time when a superactivity complex including several naked‐eye sunspots emerged (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
We have carried out global three‐dimensional magnetohydrodynamic simulations of the star‐disc interaction region around a young solar‐type star. The magnetic field is generated and maintained by dynamos in the star as well as in the disc. The developing mass flows possess non‐periodic time‐variable azimuthal structure and are controlled by the nonaxisymmetric magnetic fields. Since the stellar field drives a strong stellar wind, accretion is anti‐correlated with the stellar field strength and disc matter is spiraling onto the star at low latitudes, both contrary to the generally assumed accretion picture. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Giovanni Peres 《Solar physics》1989,121(1-2):289-298
This paper discusses the hydrodynamic modeling of flaring plasma confined in magnetic loops and its objectives within the broader scope of flare physics. In particular, the Palermo-Harvard model is discussed along with its applications to the detailed fitting of X-ray light curves of solar flares and to the simulation of high-resolution Ca xix spectra in the impulsive phase. These two approaches provide complementary constraints on the relevant features of solar flares. The extension to the stellar case, with the fitting of the light curve of an X-ray flare which occurred on Proxima Centauri, demonstrates the feasibility of using this kind of model for stars too. Although the stellar observations do not provide the wealth of details available for the Sun, and, therefore, constrain the model more loosely, there are strong motivations to pursue this line of research: the wider range of physical parameters in stellar flares and the possibility of studying further the solar-stellar connection.  相似文献   

12.
The energy source of a flare is the magnetic field in the corona. A topological model of the magnetic field is used here for interpreting the recently discovered drastic changes in magnetic field associated with solar flares. The following observational results are self‐consistently explained: (1) the transverse field strength decreases at outer part of active regions and increases significantly in their centers; (2) the center‐of‐mass positions of opposite magnetic polarities converge towards the magnetic neutral line just after flares onset; (3) the magnetic flux of active regions decreases steadily during the course of flares. For X‐class flares, almost 50% events show such changes. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Measurements of the ionized Ca ii K line are one of the major resources for long-term studies of solar and stellar activity. They also play a critical role in many studies related to solar irradiance variability, particularly as a ground-based proxy to model the solar ultraviolet flux variation that may influence the Earth’s climate. Full disk images of the Sun in Ca ii K have been available from various observatories for more than 100 years and latter synoptic Sun-as-a-star observations in Ca ii K began in the early 1970s. One of these instruments, the Integrated Sunlight Spectrometer (ISS) has been in operation at Kitt Peak (Arizona) since late 2006. The ISS takes daily observations of solar spectra in nine spectra bands, including the Ca ii K and H lines. We describe recent improvements in data reduction of Ca ii K observations, and present time variations of nine parameters derived from the profile of this spectral line.  相似文献   

14.
We make predictions of the detectability of low‐frequency p modes. Estimates of the powers and damping times of these low‐frequency modes are found by extrapolating the observed powers and widths of higher‐frequency modes with large observed signal‐to‐noise ratios. The extrapolations predict that the low‐frequency modes will have small signal‐to‐noise ratios and narrow widths in a frequency‐power spectrum. Monte Carlo simulations were then performed where timeseries containing mode signals and normally distributed Gaussian noise were produced. The mode signals were simulated to have the powers and damping times predicted by the extrapolations. Various statistical tests were then performed on the frequency‐amplitude spectra formed from these timeseries to investigate the fraction of spectra in which the modes could be detected. The results of these simulations were then compared to the number of p‐modes candidates observed in real Sun‐as‐a‐star data at low frequencies. The fraction of simulated spectra in which modes were detected decreases rapidly as the frequency of modes decreases and so the fraction of simulations in which the low‐frequency modes were detected was very small. However, increasing the signal‐to‐noise (S/N) ratio of the low‐frequency modes by a factor of 2 above the extrapolated values led to significantly more detections. Therefore efforts should continue to further improve the quality of solar data that is currently available. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The possibility of understanding stellar activity as an up‐scaled version of the activity of our Sun is investigated. A theoretical model to explain properties of sunspots is used for explaining observed latitudes of star spots. The model is based on thin‐flux‐tube simulations that study the path of magnetic flux tubes from their origin in a stellar overshoot layer to photospheric layers. A direct comparison of the simulation results with individual stars is given. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
High‐fidelity spectroscopy presents challenges for both observations and in designing instruments. High‐resolution and high‐accuracy spectra are required for verifying hydrodynamic stellar atmospheres and for resolving intergalactic absorption‐line structures in quasars. Even with great photon fluxes from large telescopes with matching spectrometers, precise measurements of line profiles and wavelength positions encounter various physical, observational, and instrumental limits. The analysis may be limited by astrophysical and telluric blends, lack of suitable lines, imprecise laboratory wavelengths, or instrumental imperfections. To some extent, such limits can be pushed by forming averages over many similar spectral lines, thus averaging away small random blends and wavelength errors. In situations where theoretical predictions of lineshapes and shifts can be accurately made (e.g., hydrodynamic models of solar‐type stars), the consistency between noisy observations and theoretical predictions may be verified; however this is not feasible for, e.g., the complex of intergalactic metal lines in spectra of distant quasars, where the primary data must come from observations. To more fully resolve lineshapes and interpret wavelength shifts in stars and quasars alike, spectral resolutions on order R = 300 000 or more are required; a level that is becoming (but is not yet) available. A grand challenge remains to design efficient spectrometers with resolutions approaching R = 1 000 000 for the forthcoming generation of extremely large telescopes (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
It is now accepted that the solar activity has direct impact on the Earth climate, but is also responsible for the geomagnetic storms. It is thus fundamental to understand the mechanisms responsible for this activity. We present here first some aspects of the solar activity at the different atmospheric layers of the sun: active region at photospheric levels, filaments (prominences) and flares at chromospheric level and CME's at coronal level. A quick sum‐up of the principal characteristics of each is given as well as the key questions still under investigation. In the second part, two principal parameters are presented to describe these features: helicity and topology. Finally, we sum‐up the observational challenges for new solar telescopes.  相似文献   

18.
We present time-resolved optical spectroscopy and broad-band photometry of the rapidly rotating southern K0 dwarf star AB Doradus, obtained during 1994 November. The data were obtained as part of a collaboration dedicated to MUlti-SIte COntinuous Spectroscopy (MUSICOS), and entailed coordinated observations on three continents to obtain the fullest phase coverage possible subject to limitations of local weather conditions. The Doppler images from the three consecutive nights of the run show excellent mutual agreement, with a dark polar cap and numerous intermediate- and low-latitude features. Simultaneous optical photometry showed numerous short-duration U -band flares, and two longer duration optical flares with durations of the order of hours. The latter produced broad-band continuum enhancements throughout the optical spectrum. Where simultaneous spectroscopy was available, both types of flare were seen to have counterparts in H and the Ca  ii H line. Simultaneous time-resolved ultraviolet spectroscopy from the Goddard High Resolution Spectrograph (GHRS) aboard the Hubble Space Telescope , reported elsewhere, shows that at least one of the short-duration U -band flares was also observed in C  iv with the GHRS. Time-series H spectra showed significant evolution of the circumstellar prominence system over five consecutive stellar rotations. One prominence underwent a dramatic increase in distance from the stellar rotation axis. We speculate that this event may have been associated with one of the long-duration flares.  相似文献   

19.
Most of the energy in a solar flare, and presumably a stellar flare as well, takes the form of a power law of energetic particles. The energetic electrons produce a bremsstrahlung continuum, while the most energetic nuclei produce gamma‐rays. Nuclei around 1 MeV/AMU can produce X‐rays during and after charge transfer with neutrals. This paper predicts the fluxes for some prominent X‐ray lines and compares them to existing spectra (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The GREGOR Fabry‐Pérot Interferometer (GFPI) is one of three first‐light instruments of the German 1.5‐meter GREGOR solar telescope at the Observatorio del Teide, Tenerife, Spain. The GFPI uses two tunable etalons in collimated mounting. Thanks to its large‐format, high‐cadence CCD detectors with sophisticated computer hard‐ and software it is capable of scanning spectral lines with a cadence that is sufficient to capture the dynamic evolution of the solar atmosphere. The field‐of‐view (FOV) of 50″×38″is well suited for quiet Sun and sunspot observations. However, in the vector spectropolarimetric mode the FOV reduces to 25″×38″. The spectral coverage in the spectroscopic mode extends from 530–860 nm with a theoretical spectral resolution of R ≈250 000, whereas in the vector spectropolarimetric mode the wavelength range is at present limited to 580–660 nm. The combination of fast narrow‐band imaging and post‐factum image restoration has the potential for discovery science concerning the dynamic Sun and its magnetic field at spatial scales down to ∼50 km on the solar surface (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号