首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We have collected nearly all the available observed data of the elements from Ba to Dy in halo and disk stars in the metallicity range -4.0 <[Fe/H]< 0.5. Based on the observed data of Ba and Eu, we evaluated the least-squares regressions of [Ba/Fe] on [Fe/H], and [Eu/H] on [Ba/H]. Assuming that the heavy elements (heavier than Ba) are produced by a combination of the main components of s- and r-processes in metal-poor stars, and choosing Ba and Eu as respective representative elements of the main s- and the main r-processes, a statistical model for predicting the Galactic chemical evolution of the heavy elements is presented. With this model, we calculate the mean abundance trends of the heavy elements La, Ce, Pr, Nd, Sm, and Dy with the metallicity. We compare our results with the observed data at various metallicities, showing that the predicted trends are in good agreement with the observed trends, at least for the metallicity range [Fe/H]> -2.5. Finally, we discuss our results and deduce some importa  相似文献   

2.
HE1005-1439是一颗金属丰度极低([Fe/H] ~ - 3.0)的碳增丰贫金属星(Carbon Enhanced Metal-Poor,CEMP), 该星的s-过程元素显著超丰([Ba/Fe] = 1.16±0.31, [Pb/Fe] = 1.98±0.19), 而r-过程元素温和超丰([Eu/Fe] = 0.46±0.22), 使用单一的s-过程模型和i-过程模型均不能拟合该星中子俘获丰度分布. 采用丰度分解的方法探究该星化学元素的天体物理来源可有助于理解CEMP星的形成和化学演化. 利用s-过程和r-过程的混合模型对其中子俘获元素的丰度分布进行拟合, 发现该星的中子俘获元素主要来源于低质量低金属丰度AGB伴星的s-过程核合成, 而r-过程核合成也有贡献.  相似文献   

3.
High-resolution spectra of five candidate metal-weak thick-disc stars suggested by Beers & Sommer-Larsen are analysed to determine their chemical abundances. The low abundance of all the objects has been confirmed, with metallicity reaching [Fe/H]=−2.9. However, for three objects the astrometric data from the Hipparcos catalogue suggest they are true halo members. The remaining two, for which proper-motion data are not available, may have disc-like kinematics. It is therefore clear that it is useful to address properties of putative metal-weak thick-disc stars only if they possess full kinematic data. For CS 22894−19 an abundance pattern similar to those of typical halo stars is found, suggesting that chemical composition is not a useful discriminant between thick-disc and halo stars. CS 29529−12 is found to be C-enhanced with [C/Fe]=+1.0; other chemical peculiarities involve the s-process elements: [Sr/Fe]=−0.65 and [Ba/Fe]=+0.62, leading to a high [Ba/Sr], considerably larger than that found in more metal-rich carbon-rich stars, but similar to those in LP 706-7 and LP 625-44, discussed by Norris et al. Hipparcos data have been used to calculate the space velocities of 25 candidate metal-weak thick-disc stars, thus allowing us to identify three bona fide members, which support the existence of a metal-poor tail of the thick disc, at variance with a claim to the contrary by Ryan & Lambert.  相似文献   

4.
邱红梅  赵刚  仲佳勇 《天文学报》2002,43(3):257-263
在第1篇论文的基础上,确定了样本星的恒星大气参数,得到这些星中9种元素的丰度。讨论了各种元素丰度随[Fe/H]的变化。平均的[Na/Fe]~-0.01dex,接近于太阳丰度。α元素Si和Ca具有几乎相同的丰度模式,而[Ti/Fe]弥散较大,但三者均有随[Fe/H]的减小而增加的趋势。铁峰元素V、Cr、Ni在不同丰度处有较大的弥散,[Cr/Fe]在所有样本星中均表现超丰;而[Mn/Fe]却明显过贫,且随金属丰度的增加而增加。  相似文献   

5.
Sulphur is a volatile α ‐element which is not locked into dust grains in the interstellar medium (ISM). Hence, its abundance does not need to be corrected for dust depletion when comparing the ISM to the stellar atmospheres. The abundance of sulphur in the photosphere of metal‐poor stars is a matter of debate: according to some authors, [S/Fe] versus [Fe/H] forms a plateau at low metallicity, while, according to other studies, there is a large scatter or perhaps a bimodal distribution. In metal‐poor stars sulphur is detectable by its lines of multiplet 1 at 920 nm, but this range is heavily contaminated by telluric absorptions, and one line of the multiplet is blended by the hydrogen Paschen ζ line. We study the possibility of using multiplet 3 (at 1045 nm) for deriving the sulphur abundance because this range, now observable at the VLT with the infra‐red spectrograph CRIRES, is little contaminated by telluric absorption and not affected by blends at least in metal‐poor stars. We compare the abundances derived from multiplets 1 and 3, taking into account NLTE corrections and 3D effects. Here we present the results for a sample of four stars, although the scatter is less pronounced than in previous analysis, we cannot find a plateau in [S/Fe], and confirm the scatter of the sulphur abundance at low metallicity (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Some insight on the first generation of stars can be obtained from the chemical composition of their direct descendants, extremely metal‐poor stars (EMP), with metallicity less than or equal to 1/1000 of the solar metallicity. Such stars are exceedingly rare, the most successful surveys, for this purpose, have so far provided only about 100 stars with 1/1000 the solar metallicity and 4 stars with about 1/10000 of the solar metallicity. The Sloan Digital Sky Survey has the potential to provide a large number of candidates of extremely low metallicity. X‐shooter has the unique capability of performing the necessary follow‐up spectroscopy providing accurate metallicities and abundance ratios for several elements (Mg, Al, Ca, Ti, Cr, Sr,...) for EMP candidates. We here report on the results for the first two stars observed in the course of our Franco‐Italian X‐shooter GTO. The two stars were targeted to be of metallicity around –3.0, the analysis of the X‐shooter spectra showed them to be of metallicity around –2.0, but with a low α to iron ratio, which explains the underestimate of the metallicity from the SDSS spectra. The efficiency of X‐shooter allows an in situ study of the outer halo, for the two stars studied here we estimate distances of 3.9 and 9.1 kpc, these are likely the most distant dwarf stars studied in detail to date (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Abundances of O, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Fe, Ni and Ba are determined for 30 nearby lower-main-sequence stars in the Northern sky using high-resolution, high signal-to-noise ratio spectra. Our results show an equilibrium of  [Fe/H]I  and  [Fe/H]II  and a much smaller star-to-star scatter of the abundance ratios as a function of metallicity compared with the results of Kotoneva et al. The non-local thermodynamic equilibrium (non-LTE) corrections for oxygen are considered and found to be small  (∼−0.04 dex)  . A flat trend of [O/Fe] exists over the whole metallicity range. The non-LTE effects for some important elements are discussed, and it is found that the abundance pattern for our programme stars is very similar to that of F and G dwarfs.  相似文献   

8.
The analysis of the kinematics of solar neighbourhood stars shows that the low- and high-metallicity tails of the thin disc are populated by objects which orbital properties suggest an origin in the outer and inner Galactic disc, respectively. Signatures of radial migration are identified in various recent samples, and are shown to be responsible for the high-metallicity dispersion in the age–metallicity distribution. Most importantly, it is shown that the population of low-metallicity wanderers of the thin disc (−0.7 < [Fe/H] < −0.3 dex) is also responsible for the apparent hiatus in metallicity with the thick disc (which terminal metallicity is about −0.2 dex). It implies that the thin disc at the solar circle has started to form stars at about this same metallicity. This is also consistent with the fact that 'transition' objects, which have α-element abundance intermediate between that of the thick and thin discs, are found in the range [−0.4, −0.2] dex. Once the metal-poor thin disc stars are recognized for what they are – wanderers from the outer thin disc – the parenthood between the two discs can be identified on stars genuinely formed at the solar circle through an evolutionary sequence in [α/Fe] and [Fe/H]. Another consequence is that stars that can be considered as truly resulting of the chemical evolution at the solar circle have a metallicity restricted to about [−0.2, +0.2] dex, confirming an old idea that most chemical evolution in the Milky Way have preceded the thin disc formation.  相似文献   

9.
High signal-to-noise ratio spectra were obtained of 10 high-proper-motion stars having  −1 ≲[Fe/H] < 0  , and a comparable number of disc stars. All but two of the high-proper-motion stars were confirmed to have  [Fe/H] > −1.0  , some approaching solar metallicity, but, even so, earlier measurements overestimated the metallicities and velocities of some of these stars. Models of stellar populations were used to assign membership probabilities to the Galactic components to which the high-velocity stars might belong. Many were found to be more probably thick-disc than halo objects, despite their large space motions, and two might be associated with the inner Galaxy. It may be necessary to reassess contamination of previous halo samples, such as those used to define the metallicity distribution, to account for contamination by high-velocity thick-disc stars, and to consider possible subcomponents of the halo.
The change in [α/Fe] ratios at  [Fe/H]≃−1.0  is often used to constrain the degree and timing of Type Ia supernova nucleosynthesis in Galactic chemical-evolution models. [Ti/Fe] values were measured for eight of the high-velocity stars. Both high- and low-[Ti/Fe] halo stars exist; likewise high- and low-[Ti/Fe] thick-disc stars exist. We conclude that the [Ti/Fe]'break' is not well defined for a given population; nor is there a simple, continuous evolutionary sequence through the break. Implications for the interpretation of the [α/Fe] break in terms of SN Ia time-scales and progenitors are discussed. The range of [Ti/Fe] found for high -velocity (low rotation) thick-disc stars contrasts with that for the low -velocity (high rotation) thick-disc sample studied by Prochaska et al.  相似文献   

10.
High spectral resolution spectroscopy has proved to be very useful for the advancement of chemical abundances studies in photoionized nebulae, such as H II regions and planetary nebulae (PNe). Classical analyses make use of the intensity of bright collisionally excited lines (CELs), which have a strong dependence on the electron temperature and density. By using high resolution spectrophotometric data, our group has led the determination of chemical abundances of some heavy element ions, mainly O++, O+, and C++ from faint recombination lines (RLs), allowing us to deblend them from other nearby emission lines or sky features. The importance of these lines is that their emissivity depends weakly on the temperature and density structure of the gas. The unresolved issue in this field is that recombination lines of heavy element ions give abundances that are about 2–3 times higher than those derived from CELs – in H II regions – for the same ion, and can even be a factor of 70 times higher in some PNe. This uncertainty puts into doubt the validity of face values of metallicity that we use as representative not only for ionized nebulae in the Local Universe, but also for star‐forming dwarf and spiral galaxies at different redshifts. Additionally, high‐resolution data can allow us to detect and deblend faint lines of neutron capture element ions in PNe. This information would introduce further restrictions to evolution models of AGBs and would help to quantify the chemical enrichment in s‐elements produced by low and intermediate mass stars. The availability of an échelle spectrograph at the E‐ELT will be of paramount interest to: (a) extend the studies of heavyelement recombination lines to low metallicity objects, (b) to extend abundance determinations of s‐elements to planetary nebulae in the extragalactic domain and to bright Galactic and extragalactic H II regions. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The Small Magellanic Cloud is a close, irregular galaxy that has experienced a complex star formation history due to the strong interactions occurred both with the Large Magellanic Cloud and the Galaxy. Despite its importance, the chemical composition of its stellar populations older than ∼ 1–2 Gyr is still poorly investigated. I present the first results of a spectroscopic survey of ∼ 200 Small Magellanic Cloud giant stars performed with FLAMES@VLT. The derived metallicity distribution peaks at [Fe/H] ∼ –0.9/–1.0 dex, with a secondary peak at [Fe/H] ∼ –0.6 dex. All these stars show [α /Fe] abundance ratios that are solar or mildly enhanced (∼+0.1 dex). Also, three metal‐poor stars (with [Fe/H] ∼ –2.5 dex and enhanced [α /Fe] ratios compatible with those of the Galactic Halo) have been detected in the outskirts of the SMC: These giants are the most metal‐poor stars discovered so far in the Magellanic Clouds. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
将[Fe/H]从-3.0到0.0等分成10个区间,利用三种中子俘获过程的典型元素的观测丰度平均值,研究各核合成过程在各区间对重元素丰度的平均贡献,以及其它重元素的平均丰度,并与观测平均丰度进行比较.结果表明,在[Fe/H]>-2.2范围内,各重元素核合成过程产生的重元素平均丰度分布与太阳系相似,但不同核合成过程的平均贡献比例与太阳系不相同.  相似文献   

13.
We interpret the de‐reddened UBV data for the field SA 133 to deduce the stellar density and metallicity distribution functions. The logarithmic local space density for giants, D*(0) = 6.40, and the agreement of the luminosity function for dwarfs and sub‐giants with the one of Hipparcos confirms the empirical method used for their separation. The metallicity distribution for dwarfs gives a narrow peak at [Fe/H] = +0.13 dex, due to apparently bright limiting magnitude, Vo = 16.5, whereas late‐type giants extending up to z ∼ 4.5 kpc from the galactic plane have a multimodal distribution. The metallicity distribution for giants gives a steep gradient d[Fe/H]/dz = –0.75 dex kpc–1 for thin disk and thick disk whereas a smaller value for the halo, i.e. d[Fe/H]/dz = –0.45 dex kpc–1. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We present a revised metallicity distribution of dwarfs in the solar neighbourhood. This distribution is centred on solar metallicity. We show that previous metallicity distributions, selected on the basis of spectral type, are biased against stars with solar metallicity or higher. A selection of G-dwarf stars is inherently biased against metal-rich stars and is not representative of the solar neighbourhood metallicity distribution. Using a sample selected on colour, we obtain a distribution where approximately half the stars in the solar neighbourhood have metallicities higher than [Fe/H]=0 . The percentage of mid-metal-poor stars ([Fe/H]<−0.5) is approximately 4 per cent, in agreement with present estimates of the thick disc.
In order to have a metallicity distribution comparable to chemical evolution model predictions, we convert the star fraction to mass fraction, and show that another bias against metal-rich stars affects dwarf metallicity distributions, due to the colour (or spectral type) limits of the samples. Reconsidering the corrections resulting from the increasing thickness of the stellar disc with age, we show that the simple closed-box model with no instantaneous recycling approximation gives a reasonable fit to the observed distribution. Comparisons with the age–metallicity relation and abundance ratios suggest that the simple closed-box model may be a viable model of the chemical evolution of the Galaxy at solar radius.  相似文献   

15.
High-resolution, high signal-to-noise ratio spectra have been obtained for 32 metal-poor stars. The equivalent widths of Li A6708 A were measured and the lithium abundances were derived. The average lithium abundance of 21 stars on the lithium plateau is 2.33±0.02 dex. The Lithium plateau exhibits a marginal trend along metallicity, dA(Li)/d[Fe/H] ?0.12±0.06, and no clear trend with the effective temperature. The trend indicates that the abundance of lithium plateau may not be primordial and that a part of the lithium was produced in Galactic Chemical Evolution (GCE).  相似文献   

16.
Based on a large amount of observed data of element abundances in metal-poor stars, taking the abundance distribution of heavy elements in the solar system as a standard, and selecting Sr, Ba and Eu as the typical elements of the three nucleosynthetic processes in metal-poor stars, namely the weak sprocess, main s-process and r-process, we have studied the contributions of the three kinds of neutron-capture processes to the abundance distribution of heavy elements in metal-poor stars, with the parameterization method. It is found that the higher the metal abundance, the greater the contributions of the weak s-process and the chief s-process to the abundances of lighter neutron-capture elements. The heavier neutron-capture elements are mainly produced by the r-process and the chief s-process; and that at low metallicity, the abundances of heavy neutron-capture elements are mainly produced by the r-process. In the early Galaxy, the weak s-process has almost no contribution to the element abundance.  相似文献   

17.
The space velocities and Galactic orbital elements of stars calculated from the currently available high-accuracy observations in our compiled catalog of spectroscopic magnesium abundances in dwarfs and subgiants in the solar neighborhood are used to identify thick-disk objects. We analyze the relations between chemical, spatial, and kinematic parameters of F–G stars in the identified subsystem. The relative magnesium abundances in thick-disk stars are shown to lie within the range 0.0 < [Mg/Fe] < 0.5 and to decrease with increasingmetallicity starting from [Fe/H] ≈ ?1.0. This is interpreted as evidence for a longer duration of the star formation process in the thick disk. We have found vertical gradients in metallicity (gradZ[Fe/H] = ?0.13 ± 0.04 kpc?1) and relative magnesium abundance (gradZ[Mg/Fe] = 0.06 ± 0.02 kpc?1), which can be present in the subsystem only in the case of its formation in a slowly collapsing protogalaxy. However, the gradients in the thick disk disappear if the stars whose orbits lie in the Galactic plane, but have high eccentricities and low azimuthal space velocities atypical of the thin-disk stars are excluded from the sample. The large spread in relative magnesium abundance (?0.3 < [Mg/Fe] < 0.5) in the stars of the metal-poor “tail” of the thick disk, which constitute ≈8% of the subsystem, can be explained in terms of their formation inside isolated interstellar clouds that interacted weakly with the matter of a single protogalactic cloud. We have found a statistically significant negative radial gradient in relative magnesium abundance in the thick disk (gradR[Mg/Fe] = ?0.03 ± 0.01 kpc? 1) instead of the expected positive gradient. The smaller perigalactic orbital radii and the higher eccentricities for magnesium-richer stars, which, among other stars, are currently located in a small volume of the Galactic space near the Sun, are assumed to be responsible for the gradient inversion. A similar, but statistically less significant inversion is also observed in the subsystem for the radial metallicity gradient.  相似文献   

18.
We obtain the chemical abundances of six barium stars and two CH subgiant stars based on the high signal-to-noise ratio and high resolution Echelle spectra. The neu- tron capture process elements Y, Zr, Ba, La and Eu show obvious overabundances relative to the Sun, for example, their [Ba/Fe] values are from 0.45 to 1.27. Other elements, in- cluding Na, Mg, A1, Si, Ca, Sc, Ti, V, Cr, Mn and Ni, show comparable abundances to the Solar ones, and their [Fe/H] covers a range from -0.40 to 0.21, which means they belong to the Galactic disk. The predictions of the theoretical model of wind accretion for bi- nary systems can explain the observed abundance patterns of the neutron capture process elements in these stars, which means that their overabundant heavy-elements could be caused by accreting the ejecta of AGB stars, the progenitors of present-day white dwarf companions in binary systems.  相似文献   

19.
The abundances of long-lived radioactive elements Th and U observed in metal-poor halo stars can be used as chronometers to determine the age of individual stars, and hence set a lower limit on the age of the Galaxy and hence of the universe. This radioactive dating requires the zero-decay productions of Th and U, which involves complicated r-process nucleosynthesis calculations. Several parametric r-process models have been used to calculate the initial abundance ratios of Th/Eu and U/Th, but, due to the sharp sensitivity of these models to nuclear physics inputs, the calculations have relatively large uncertainties which lead to large uncertainties in the age determinations. In order to reduce these uncertainties, we present a simple method to estimate the initial productions of Th and U, which only depends on the solar system abundances and the stellar abundances of stable r-process elements. From our calculations of the initial abundance ratios of Th/Eu and U/Th, we re-estimate the ages of those ver  相似文献   

20.
We report the first survey of chemical abundances in M and K dwarf stars using atomic absorption lines in high-resolution spectra. We have measured Fe and Ti abundances in 35 M and K dwarf stars using equivalent widths measured from  λ/Δλ≈ 33 000  spectra. Our analysis takes advantage of recent improvements in model atmospheres of low-temperature dwarf stars. The stars have temperatures between 3300 and 4700 K, with most cooler than 4100 K. They cover an iron abundance range of  −2.44 < [Fe/H] < +0.16  . Our measurements show [Ti/Fe] decreasing with increasing [Fe/H], a trend similar to that measured for warmer stars, where abundance analysis techniques have been tested more thoroughly. This study is a step towards the observational calibration of procedures to estimate the metallicity of low-mass dwarf stars using photometric and low-resolution spectral indices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号