首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
《Quaternary Science Reviews》2005,24(1-2):173-194
The climate history and dynamics of the Greenland Ice Sheet are studied using a coupled model of the depositional provenance and transport of glacier ice, allowing simultaneous prediction of the detailed isotopic stratigraphy of ice cores at all the major Greenland sites. Adopting a novel method for reconstructing the age–depth relationship, we greatly improve the accuracy of semi-Lagrangian tracer tracking schemes and can readily incorporate an age-dependent ice rheology. The larger aim of our study is to impose new constraints on the glacial history of the Greenland Ice Sheet. Leading sources of uncertainty in the climate and dynamic history are encapsulated in a small number of parameters: the temperature and elevation isotopic sensitivities, the glacial–interglacial precipitation contrast and the effective viscosity of ice in the flow law. Comparing predicted and observed ice layering at ice core sites, we establish plausible ranges for the key model parameters, identify climate and dynamic histories that are mutually consistent and recover the past depositional elevation of ice cores to ease interpretation of their climatic records. With the coupled three-dimensional model of ice dynamics and provenance transport we propose a method to place all the ice core records on a common time scale and use discrepancies to adjust the reconstructed climate history. Analysis of simulated GRIP ice layering and borehole temperature profiles confirms that the GRIP record is sensitive to the dynamic as well as to the climatic history, but not enough to strongly limit speculation on the state of the Greenland Ice Sheet during the Eemian. In contrast, our study indicates that the Dye 3 and Camp Century ice cores are extremely sensitive to ice dynamics and greatly constrain Eemian ice sheet reconstructions. We suggest that the maximum Eemian sea-level contribution of the ice sheet was in the range of 3.5–4.5 m.  相似文献   

2.
《Quaternary Science Reviews》2005,24(1-2):155-171
Polar ice cores can provide both a record of climate history and a sharp test of the performance of numerical ice dynamics models. The stratigraphic structure of an ice sheet is an expression of its full depositional and dynamic history and thus presents a greater challenge to computer models than merely matching the contemporary ice thickness and areal extent. We describe a coupled model of ice and tracer dynamics that is realized by adding a semi-Lagrangian tracer transport scheme to a conventional thermomechanical ice dynamics model. Model skill is demonstrated by using ice core data from the GRIP site near Summit Greenland to successfully predict the isotopic stratigraphy of ice cores at other deep drilling sites. The success of this effort indicates that, when compensated for the effects of ice flow and elevation, all the deep cores relate a coherent glacial history over the past 120,000 years. According to the simulation results, the oldest Greenland ice lies beneath the GRIP, GISP2 and NorthGRIP sites although comparably old ice may also be found in North Greenland and East Central Greenland.  相似文献   

3.
A clay varve chronology has been established for the Late Weichselian ice recession east of Mt. Billingen in Västergötland, Sweden. In this area the Middle-Swedish end moraine zone was built up as a consequence of cold climate during the Younger Dryas stadial. A change-over from rapid to slow retreat as a result of climatic deterioration at the Alleröd/Younger Dryas transition cannot be traced with certainty in the varve sequences, but it seems to have taken place just before 11,600 varve years BP. The following deglaciation was very slow for about 700 years — within the Middle-Swedish end moraine zone the annual ice-front retreat was only c . 10 m on average. A considerable time-lag is to be expected between the Younger Dryas climatic event and this period of slow retreat. The 700 years of slow retreat were succeeded by 200 years of more rapid recession, about 50–75 m annually, and then by a mainly rapid and uncomplicated retreat of the ice-front by 100–200 m/year or more, characterizing the next 1500 years of deglaciation in south and central Sweden. The change from about 50–75 m to 100–200 m of annual ice-front retreat may reflect the Younger Dryas/Preboreal transition. Clay-stratigraph-ically defined, the transition is dated at c . 10,740 varve years BP, with an error of +100 to -250 years. In the countings of ice layers in Greenland ice cores (GRIP and GISP-2) the end of the Younger Dryas climatic event is 800–900 years older. However, a climatic amelioration after the cold part of the Younger Dryas and in early Preboreal should rapidly be reflected by for example chemical components and dust in Greenland ice cores, and by increasing δ13C content in tree rings. On the other hand, the start of a rapid retreat of the inland ice margin can be delayed by several centuries. This can explain at least a part of the discrepancy between the time-scales.  相似文献   

4.
Foraminiferal assemblages and the sedimentology of two cores (POR20 and POR21) from eastern Disko Bugt, west Greenland, are used to identify environmental changes in the area over the past c. 2200 years. Changes in the sediment flux supplied to the core sites from Jakobshavn Isbrae are used to assess the relative position of the calving margin. An Atlantic water influence as strong as, or slightly stronger than, present prevailed at c. 2200 cal. yr BP. A trend of increasing Atlantic water influence then culminated in peak warm and saline hydrographic conditions c. 1664-474 cal. yr BP encompassing the 'Medieval Warm Period'. This period was marked by a retreat of the calving front of Jakobshavn Isbrae and was followed by a marked cooling in hydrographic conditions relating to an increase in the influence of the East Greenland Current in the West Greenland Current corresponding to the climatic episode the 'Little Ice Age'. A rise in sedimentation rate over this period relates to the well-documented advance of Jakobshavn Isbrae. The record from Disko Bugt shows good agreement with the temperature record from the Greenland ice cores and other climatic and oceanographic reconstructions in the region.  相似文献   

5.
High‐resolution gravity cores and box cores from the North Icelandic shelf have been studied for palaeoceanographic history based on lithological and biostratigraphical foraminiferal data. Results from two outer shelf cores covering the last 13.6 k 14C yr BP are presented in this paper. The sediments accumulated in north–south trending basins on each side of the Kolbeinsey Ridge at water depths of ca. 400 m. Sedimentation rates up to 1.5 m kyr−1 are observed during the Late‐glacial and Holocene. The Vedde and Saksunarvatn tephras are present in the cores as well as the Hekla 1104. A new tephra, KOL‐GS‐2, has been identified and dated to 13.4 k 14C yr BP, and another tephra, geochemically identical to the Borrobol Tephra, has been found at the same level. At present, the oceanographic Polar Front is located on the North Icelandic shelf, which experiences sharp oceanographic surface boundaries between the cold East Icelandic Current and the warmer Irminger Current. Past changes in sedimentological and biological processes in the study area are assumed to be related to fluctuations of the Polar Front. The area was deglaciated before ca. 14 kyr BP, but there is evidence of ice rafting up to the end of the GS‐1 (Greenland Stadial 1, Younger Dryas) period, increasing again towards the end of the Holocene. Foraminiferal studies show a relatively strong GS‐2 (pre‐13 kyr BP) palaeo‐Irminger Current, followed by severe cooling and then by unstable conditions during the remainder of the GI‐1 (Greenland Interstadial 1, Bølling–Allerød) and GS‐1 (Younger Dryas). Another cooling event occurred during the Preboreal before the Holocene current system was established at about 9 kyr BP. After a climatic optimum between 9 and 6 kyr BP the climate began to deteriorate and fluctuate. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
A visible tephra horizon in the NGRIP ice core has been identified by geochemical analysis as the Fugloyarbanki Tephra, a widespread marker horizon in marine cores from the Faroe Islands area and the northern North Atlantic. An age of 26 740 ± 390 yr b2k (1σ uncertainty) is derived for this tephra according to the new Greenland Ice Core Chronology (GICC05) based on multi‐parameter counting of annual layers. Detection of this tephra for the first time within the NGRIP ice core provides a key tie‐point between marine and ice‐core records during the transition between MIS 3 and 2. Identification of this volcanic event within the Greenland records demonstrates the future potential of using tephrochronology to precisely correlate palaeoarchives in widely separated localities that span the last glacial period, as well as providing a potential method for examining the extent of the radiocarbon marine reservoir effect at this time. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
In this study, we present new information on the glacial history of the Greenland Ice Sheet (GrIS) and a local ice cap in Qaanaaq, northwest Greenland. We use geomorphological mapping, 10Be exposure dating of boulders, analysis of lake cores, and 14C dating of reworked marine molluscs and subfossil plants to constrain the glacial history. Our 14C ages of reworked marine molluscs reveal that the ice extent in the area was at or behind its present‐day position from 42.2 ± 0.4 to 30.6 ± 0.3k cal a BP after which the GrIS expanded to its maximum position during the Last Glacial Maximum. We find evidence of early ice retreat in the deep fjord (Inglefield Bredning) at 11.9 ± 0.6 ka whereas the Taserssuit Valley was deglaciated ~4 ka later at 7.8 ± 0.1k cal a BP. A proglacial lake record suggests that the local ice cap survived the Holocene Thermal Maximum but moss kill‐dates reveal that it was smaller than present for a period of time before 3.3 ± 0.1k until 0.9 ± 0.1k cal a BP, following which the ice in the area expanded towards its Little Ice Age extent. Copyright © 2019 John Wiley & Sons, Ltd.  相似文献   

8.
The MGS5 segment of the Milanggouwan stratigraphical section in China's Salawusu River Valley records 8.5 sedimentary cycles consisting of dune sands alternating with fluviolacustrine facies or/and paleosols. Based on a comprehensive analysis of the distribution of Rb and Sr within the segment and paleoecological evidence (fossils), it appears that the observed sedimentation cycles mainly resulted from fluctuations between dry-cold and warm-humid climates, which indicates that the MGS5 segment experienced at least eight cold-dry and nine warm-humid climatic fluctuations. Of these, 12 cold–warm climate fluctuations correspond to DO20–DO25 and stadia 21–26 recorded by the NGRIP ice cores. Another five cold–warm climatic fluctuations that occurred during MGS5e correspond to five substages (5e1–5e5) recorded by the GRIP ice cores from Greenland. This kind of high-frequency climatic fluctuation on a kiloyear scale was mainly subject to variations in the strength of the East Asian winter and summer monsoons.  相似文献   

9.
Precipitation accumulating on the Greenland and Antarctic ice sheets records several key parameters (temperature, accumulation, composition of atmospheric gases and aerosols) of primary interest for documenting the past global environment over recent climatic cycles and the chemistry of the preindustrial atmosphere. Several deep ice cores from Antarctica and Greenland have been studied over the last fifteen years. In both hemispheres, temperature records (based on stable isotope measurements in water) show the succession of glacial and interglacial periods. However, detailed features of the climatic stages are not identical in Antarctica and in Greenland. A tight link between global climate and greenhouse gas concentrations was discovered, CO2 and CH4 concentrations being lower in glacial conditions by about 80 and 0.3 ppmv, respectively, with respect to their pre-industrial levels of 280 and 0.65 ppmv. Coldest stages are also characterized by higher sea-salt and crustal aerosol concentrations. In Greenland, contrary to Antarctica, ice-age ice is alkaline. Gas-derived aerosol (in particular, sulfate) concentrations are generally higher for glacial periods, but not similar in both the hemispheres. Marine and continental biomass-related species are significant in Antarctica and Greenland ice, respectively. Finally, the growing impact of anthropogenic activities on the atmospheric composition is well recorded in both polar regions for long-lived compounds (in particular greenhouse gases), but mostly in Greenland for short-lived pollutants.  相似文献   

10.
青藏高原冰芯研究进展   总被引:12,自引:1,他引:11  
青藏高原习研究是恢复该地区古气候、环境变化的有力手段,近年来取得了显著的成就。对青藏高原冰芯研究在稳定氧同位素、冰川积累量、冰芯的断代以及冰芯记录的环境指标等四个方面的研究进展进行了详细的评述,总结了冰芯记录所恢复的气候、环境变化研究成果,并对当前青藏高原冰芯研究中存在的问题和今后的发展趋势进行了探讨。  相似文献   

11.
High‐resolution marine palynological data have been obtained from two very long sediment cores (MD952009 and MD952010) retrieved from the southern Norwegian Sea. The dinoflagellate cyst assemblages show pronounced fluctuations in composition, which correlate strongly with magnetic susceptibility records and also mimic the δ18O signal of the GISP2 Greenland ice‐core. If focusing on the period from 48 to 30 cal. kyr BP, this correlation suggests a paradoxical response of the sea‐surface environments to the atmospheric conditions over Greenland: when the Greenland δ18O signal reflects warm interstadial conditions, the Norwegian Sea depicts cold sea‐surface temperatures with quasi‐perennial sea‐ice cover (based on dinoflagellate cysts). In contrast, when the Greenland δ18O records cold stadial periods, the Norwegian Sea‐surface temperatures are warm (based on dinoflagellate cysts), probably linked to inflow of the North Atlantic Drift. These results, similar in both cores, are contrary to those of previous studies and shed light on a possible decoupling of Norwegian sea surface‐water conditions and atmospheric conditions over Greenland. This decoupling could be linked to an atmosphere–ocean system behaving similar to that which the Northern Hemisphere is experiencing at present, i.e. strongly variable owing to the North Atlantic Oscillation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
过去2000年大气甲烷含量与气候变化的冰芯记录   总被引:4,自引:4,他引:0  
温室气体与气候变化的关系是当前全球变化研究中的一个核心内容。目前关于大气温室气体含量变化只有几十年的实测资料, 而冰芯包裹气体中的CH4 不仅能反映过去大气CH4 含量随时间的变化, 而且能很好地揭示陆地CH 向大气中的释放随时间及空间的分布。近年来, 极地冰芯研究表明南极和北极过去大气层中的甲烷含 量差异很大, 北极大气层中甲烷含量远大于南极大气层。科学家们推测, 中低纬度地区是全球大气层甲烷含量变 化的驱动源。而对这一可能驱动源的甲烷含量变化, 很长时间人们一无所知。达索普冰芯记录揭示了中低纬度大 气CH4 含量与极地冰芯记录相同的变化趋势, 并明确显示工业革命以来大气CH4 含量的增长。高分辨率达索普 冰芯记录的工业革命以来大气CH4 含量变化最显著的特征是20 世纪两次世界大战期间人类活动CH4 排放的减缓 使大气CH4 含量呈负增长。中低纬度大气CH4 含量的恢复使我们有机会与极地冰芯记录进行定量对比研究。 0 ~1850A. D. 中低纬度大气CH4 的平均含量为782nmol /mol, 与格陵兰和南极大气CH4 平均含量差分别达66 nmol /mol和109nmol /mol, 并且其最大自然波动幅度超过200nmol /mol, 这是极地冰芯记录从未有过的。达索普冰芯 记录表明工业革命前中低纬度为全球大气重要的CH4 源区, 但最近1000a 来, 北半球中高纬度的排放有了显著的 加强; 过去2000a 来的自然变化时期, 气候变化的纬向差异对北半球不同纬度带CH4 排放格局有重要影响。  相似文献   

13.
We present a collection of high-resolution chemistry and stable isotope records from the plateau of the Greenland ice cap during the cold event 8200 yr ago. Using a composite of four records, the cold event is observed as a 160.5 yr period during which decadal-mean isotopic values were below average, within which there is a central event of 69 yr during which values were consistently more than one standard deviation below the average for the preceding period. Four cores in north, south, and central Greenland show differences at decadal and shorter timescales; it is not yet clear if this represents significant spatial differences in response. The results show clear evidence for colder temperatures and a decrease in snow-accumulation rate. However, the changes in chemical concentrations for the ions looked at here are small, suggesting only minor changes in atmospheric circulation for this event. Apart from the decrease in methane concentration, Greenland ice cores give only weak evidence for effects outside the North Atlantic region.  相似文献   

14.
Episodes of glaciation in the region north of Baffin Bay resulted in the erosion of Paleozoic carbonate outcrops in NW Greenland and the Canadian High Arctic. These events are recognized in the marine sediments of Baffin Bay (BB) as a series of detrital carbonate-rich (DC-) layers. BBDC-layers thin southward within Baffin Bay; thus, the contribution of Baffin Bay ice-rafted carbonate-rich sediments to the North Atlantic is probably slight, especially compared with sediment output from Hudson Strait during Heinrich events. We reexamine (cf. Aksu, 1981) a series of nine piston cores from the axis of Baffin Bay and across the Davis Strait sill and provide a suite of 21 AMS 14C dates on foramininfera which bracket the ages of several DC-layers. The onset of the last DC event is dated in six cores and has an age of ca. 12.4 ka. In northern and central Baffin Bay a thick DC-layer occurs at around 4 m in the cores and is dated >40 ka. There were three to six DC intervening events. The youngest BBDC event (possibly a double event) lags Heinrich event 1 (H-1) off Hudson Strait, dated at 14.5 ka, but it is coeval with the pronounced warming seen in GISP2 records from the Greenland Ice Sheet during interstadial #1. We hypothesize that BBDC episodes are coeval with major interstadial δ18O peaks from GISP2 and other Greenland ice core records and are caused by or associated with the advection of Atlantic Water into Baffin Bay (cf. Hiscott et al., 1989) and the subsequent rapid retreat of ice streams in the northern approaches to Baffin Bay.  相似文献   

15.
Contiguous sampling of ice spanning key intervals of the deglaciation from the Greenland ice cores of NGRIP, GRIP and NEEM has revealed three new silicic cryptotephra deposits that are geochemically similar to the well‐known Borrobol Tephra (BT). The BT is complex and confounded by the younger closely timed and compositionally similar Penifiler Tephra (PT). Two of the deposits found in the ice are in Greenland Interstadial 1e (GI‐1e) and an older deposit is found in Greenland Stadial 2.1 (GS‐2.1). Until now, the BT was confined to GI‐1‐equivalent lacustrine sequences in the British Isles, Sweden and Germany, and our discovery in Greenland ice extends its distribution and geochemical composition. However, the two cryptotephras that fall within GI‐1e ice cannot be separated on the basis of geochemistry and are dated to 14358 ± 177 a b2k and 14252 ± 173 a b2k, just 106 ± 3 years apart. The older deposit is consistent with BT age estimates derived from Scottish sites, while the younger deposit overlaps with both BT and PT age estimates. We suggest that either the BT in Northern European terrestrial sequences represents an amalgamation of tephra from both of the GI‐1e events identified in the ice‐cores or that it relates to just one of the ice‐core events. A firm correlation cannot be established at present due to their strong geochemical similarities. The older tephra horizon, found within all three ice‐cores and dated to 17326 ± 319 a b2k, can be correlated to a known layer within marine sediment cores from the North Iceland Shelf (ca. 17179‐16754 cal a BP). Despite showing similarities to the BT, this deposit can be distinguished on the basis of lower CaO and TiO2 and is a valuable new tie‐point that could eventually be used in high‐resolution marine records to compare the climate signals from the ocean and atmosphere.  相似文献   

16.
Asynchronous Holocene climatic change across China   总被引:1,自引:0,他引:1  
A review of Holocene climatic variations in different parts of China shows that they were asynchronous. Proxy data from ice cores, pollen, loess, lacustrine sediments, and changes of sea and lake levels demonstrate that many warm and cold oscillations have occurred in China during the Holocene, including a most important climatic event known as the “Holocene optimum,” a milder and wetter period, and that the duration and amplitude of the optimum period, as well as its start and end times, differed in different parts of China. Uplift of the Tibetan plateau over the past millions of years led to the development of the monsoon climate and to complex atmospheric circulation over continental China during the Holocene. As a result, the Holocene optimum began and terminated earlier in high-altitude regions of western China than at lower elevations in eastern China, and the amplitude of the variations was lower in the east. This suggests that the western higher-altitude areas were more sensitive to climatic change than were the eastern lower-altitude areas. Holocene climatic records in the Dunde and Guliya ice cores do not correspond. Inverse δ18O variations between the two cores indicate that the effects of climate and atmospheric processes on the stable isotopes at the two sites differed. The correlation between the isotopic composition of carbonates in lake deposits in western China and climatic variations is similar to that in the ice cores. The climatic resolution in ice cores and lake sediments is higher than that in other media. The lack of precise correspondence of climatic records constructed on the basis of proxy data from different parts of China is a result of the different locations and elevations of the sampling sites, the different resolutions of the source material, and the varied climatic conditions within China. Further work is needed to confirm both the conclusions and the inferences presented here.  相似文献   

17.
王有清  姚檀栋 《冰川冻土》2002,24(5):550-558
冰芯记录中的气候变化是古气候研究中的重要组成部分. 极地、中低纬度和热带地区的冰芯记录表明, 在冰期间冰期旋回大尺度气候变化背景下, 全球经历了一系列数百年至千年时间尺度的快速气候突变事件, 诸如末次间冰期的干冷事件、末次冰期的DansgaardOeschger事件、 Heinrich事件和Younger Dryas事件等, 虽然这些穿插在冰阶中的暖湿气候事件、间冰阶中的干冷气候事件的成因、机制和影响范围还存在明显的不确定性. 主要介绍不同区域冰芯记录中末次间冰期冰期旋回这些气候突变事件发生的时间、过程和机制等的研究进展.  相似文献   

18.
系统地总结了不同时间尺度内火山活动影响气候的机理,回顾了不同区域冰芯记录火山喷发物质沉积信号的研究历史,阐述了不同气候模式对火山活动影响气候的数值模拟结果,并指出了相关研究中存在的不确定性.结果表明:火山活动通过释放大量的火山物质气溶胶影响气候波动,在年际至年代际时间尺度上,这种影响是显著的;然而,在更长的时间尺度上这种影响是否仍然存在,尚需更多研究的证实.冰芯中火山喷发物质沉积记录为研究历史时期火山活动及其气候影响提供了必要的参考资料,相关的气候模式利用该沉积记录较好地模拟了火山活动对区域乃至全球尺度气候的影响,为我们认识火山活动影响气候变化的机理提供了重要的理论支持,同时也为研究未来火山活动对气候的可能影响提供了参照.但是,冰芯中火山喷发物质沉积记录研究及数值模式模拟结果中尚存在诸多的问题和不确定性.  相似文献   

19.
The abrupt climate shifts identified in Greenland ice cores transformed understanding of the climate system. Although primarily studied in the paleoclimate record, abrupt climate change induced by greenhouse gas rise poses a serious threat to modern humans and ecosystems. We present the first ultra‐high‐resolution view (hundreds of samples per year) of the abrupt onset (within 1 year) of the current interglacial (warm) climate retrieved from the Greenland Ice Sheet Project Two (GISP2) ice core archive. This abrupt onset is manifested by a marked reduction in storm event frequency and increase in the length of the summer season around Greenland. We apply this metric to the current rapid climatic amelioration in the Arctic as a precursor for future abrupt climate change events.  相似文献   

20.
Identification of the causes of past climate change requires detailed knowledge of one of the most important natural factors—solar forcing. Prior to the period of direct solar observations, radionuclide abundances in natural archives provide the best-known proxies for changes in solar activity. Here we present two independent reconstructions of changes in solar activity during the last 1000 yr, which are inferred from 10Be and 14C records. We analyse the tree-ring 14C data (SHCal, IntCal04 from 1000 to 1510 AD and annual data from 1511 to 1950 AD) and four 10Be records from Greenland ice cores (Camp Century, GRIP, Milcent and Dye3) together with two 10Be records from Antarctic ice cores (Dome Concordia and South Pole). In general, the 10Be and 14C records exhibit good agreement that allows us to obtain reliable estimates of past solar magnetic modulation of the radionuclide production rates. Differences between 10Be records from Antarctica and Greenland indicate that climatic changes have influenced the deposition of 10Be during some periods of the last 1000 yr. The radionuclide-based reconstructions of past changes in solar activity do not always agree with the sunspot record, which indicates that the coupling between those proxies is not as close as has been sometimes assumed. The tree-ring 14C record and 10Be from Antarctica indicate that recent solar activity is high but not exceptional with respect to the last 1000 yr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号