首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
强震环境下带钢避难建筑抗震模型设计   总被引:4,自引:4,他引:0       下载免费PDF全文
避难建筑通常采用置换混凝土方法抗震,建筑对高强度地震的抗震性能差。因此提出高强度地震下带钢避难建筑抗震设计方法,采用复杂网络带钢避难建筑加固模型对加固前建筑的混泥土强度与荷载能力进行计算,增大框架柱截面,提升带钢避难建筑荷载。采用复合墙体受力加固模型提升建筑墙体抗震性。对加固后建筑模型的坍塌风险评估时,采用带钢避难建筑坍塌的全概率衡量加固后建筑在设计使用年限内的抗坍塌安全性。设计使用年限内加固后的带钢避难建筑的强震CRC超出概率是P(IMCRC),确保其在高强度地震下具有较高的抗震性能。实验结果说明,所提方法下的带钢避难建筑在遇到强震情况时具有较高的抗震性能。  相似文献   

2.
为研究网格间距对网格剪力墙抗震性能的影响,对两个竖肢中心距不同的小剪跨比网格剪力墙进行了拟静力试验及有限元分析。结果表明:横肢中心距相同、竖肢中心距分别为200 mm及300 mm的网格剪力墙破坏模式不同,竖肢中心距为200 mm的网格剪力墙下部和墙底角部混凝土破坏,破坏模式为剪压破坏;竖肢中心距为300 mm的网格剪力墙沿对角线主斜裂缝错动并产生滑移,破坏模式为剪拉破坏。两个试件的极限位移角均在1/100左右,竖肢中心距为300 mm的网格剪力墙刚度和承载力略大。有限元模拟结果与试验吻合良好,验证了模拟方法的有效性。提出了适用于不同间距网格墙的等效厚度计算方法,网格剪力墙可等效为实体剪力墙计算刚度和承载力。  相似文献   

3.
本文用墙单元将剪力墙中断的框架-剪力墙结构离散,利用传递矩阵技术探讨此不规则框架-剪力墙结构的地震反应,四阶Runge-Kutta法用来求解用正则坐标写出的对应于第j个振型的运动方程.将得到的3个不同剪力墙高度的钢筋混凝土框架-剪力墙模型结构的固有频率、最大位移反应和基底剪力与振动台的试验结果进行对比,说明本数值方法是正确的、有效的.最后得出了并不是对所有的框架-剪力墙结构都需把其剪力墙延伸到整个结构高度的结论以及用墙单元和传递矩阵技术求解能有效地减少计算单元、取得同样精度的计算结果.  相似文献   

4.
阐述了熵平均法对地面γ能谱测量局部干扰的消除的基本原理和方法,应用此方法对浅覆盖区地质填图的γ能谱测量剖面数据及应用γ能谱测量确定古城墙位置的平面测量数据进行了处理,处理结果表明该方法对于消除地表植被及局部土壤元素富集随机干扰、突出弱异常具有明显的效果,使地质填图中进行岩性划分界线明显,考古中古城墙表现的弱异常突出,边界清晰.通过对熵平均法应用的讨论,可以看到5点熵平均对于局部干扰压制较多而对异常削弱较少的特点;与多点平滑相比,熵平均对于突跳点具有更好的压制作用.熵平均法对于地面γ能谱测量随机影响的消除起到了较好的效果,使地面γ能谱测量得到了较好的应用.  相似文献   

5.
The finite strip method is used to determine the natural frequencies of shear wall frame buildings. The structure can be modelled in two different ways. In the first approach both the shear walls and the frames are idealized simply as an assemblage of finite strips of varying thicknesses with given or computed properties, while in the second approach the shear walls are still idealized as a series of finite strips, but the frames are regarded as a number of long columns which are interconnected with each other or with finite strips through the horizontal beams. Numerical results obtained from both models indicate good agreement with finite element solutions. The proposed models can be applied to a wide range of shear wall frame assemblies and are therefore more versatile than most existing models.  相似文献   

6.
Static inelastic analysis of RC shear walls   总被引:1,自引:0,他引:1  
A macro-model of a reinforced concrete (RC) shear wall is developed for static inelastic analysis. The model is composed of RC column elements and RC membrane elements. The column elements are used to model the boundary zone and the membrane elements are used to model the wall panel. Various types of constitutive relationships of concrete could be adopted for the two kinds of elements. To perform analysis, the wall is divided into layers along its height. Two adjacent layers are connected with a rigid beam. There are only three unknown displacement components for each layer. A method called single degree of freedom compensation is adopted to solve the peak value of the capacity curve. The post-peak stage analysis is performed using a forced iteration approach. The macro-model developed in the study and the complete process analysis methodology are verified by the experimental and static inelastic analytical results of four RC shear wall specimens. Supported by: National Natural Science Foundation of China, Grant number 59895410  相似文献   

7.
In this paper, results of a detailed investigation on the dynamic response of rigid strip foundations in viscoelastic soils under vertical excitation are presented. An advanced boundary element algorithm developed by incorporating isoparametric quadratic elements and a sophisticated self-adapting numerical integration scheme has been used for this investigation. Foundations supported on three types of soil profiles, namely, homogeneous half-space, stratum-over-half-space and stratum-over-bedrock are considered. The influence of material properties like Poisson's ratio and material damping as well as the influence of geometrical properties such as depth of embedment and layer thickness are studied. The effect of the type of contact at the soil-foundation interface is also investigated.  相似文献   

8.
In the analytic element method, strings of line-sinks may be used to model streams and strings of line-doublets may be used to model impermeable walls or boundaries of inhomogeneities. The resulting solutions are analytic, but the boundary conditions are met approximately. Equations for line elements may be derived in two ways: through integration of point elements (the integral solution) and through application of separation of variables in elliptical coordinates (the elliptical solution). Using both approaches, two sets of line elements are presented for four flow problems: line-sinks and line-doublets in (un)confined flow, and line-sinks and line-doublets in semi-confined flow. Elliptical line elements have the advantage that they do not need a far-field expansion for accurate evaluation far away from the element. The derivation of elliptical line elements is new and applicable to both (un)confined flow and semi-confined flow; only the resulting expressions for elliptical line elements for semi-confined flow have not been found in the current groundwater literature. Existing solutions for elliptical line elements for (un)confined flow were intended for the modeling of isolated features. Four examples are presented, one for each flow problem, to demonstrate that strings of elliptical line elements may be used to obtain accurate solutions; elliptical line-doublets for semi-confined flow can only be strung together in combination with two integral line-doublets. For a zigzag canal in (un)confined flow, a string of elliptical line-sinks performed better than a string of integral line-sinks of the same order when the smallest angle between two adjacent segments is less than 130°. Elliptical line-doublets performed better than integral line-doublets for a square inhomogeneity in a uniform, confined flow field; the difference was smaller for an octagonal inhomogeneity. For semi-confined flow, the difference between the integral and elliptical line-sinks was small when modeling a zigzag canal.  相似文献   

9.
Two new approaches are presented for the accurate computation of the potential due to line elements that satisfy the modified Helmholtz equation with complex parameters. The first approach is based on fundamental solutions in elliptical coordinates and results in products of Mathieu functions. The second approach is based on the integration of modified Bessel functions. Both approaches allow evaluation of the potential at any distance from the element. The computational approaches are applied to model transient flow with the Laplace transform analytic element method. The Laplace domain solution is computed using a combination of point elements and the presented line elements. The time domain solution is obtained through a numerical inversion. Two applications are presented to transient flow fields, which could not be modeled with the Laplace transform analytic element method prior to this work. The first application concerns transient single-aquifer flow to wells near impermeable walls modeled with line-doublets. The second application concerns transient two-aquifer flow to a well near a stream modeled with line-sinks.  相似文献   

10.
An analytic element approach is presented for the modeling of steady groundwater flow through multi-aquifer systems with piecewise constant aquifer and leaky layer properties. Different properties may be specified for domains bounded by closed polygons, referred to as polygonal inhomogeneities. The boundary of these inhomogeneities is modeled with two types of high-order line elements. First, a string of single-aquifer line-doublets is used; these elements cut through all aquifers and are valid both inside and outside the inhomogeneity. Second, two strings of multi-aquifer line-sinks are used, one string that is valid inside the inhomogeneity and one string that is valid outside; the comprehensive extraction of these line-sinks is zero at any point along the string. The proposed approach results in a comprehensive flow field of which the component normal to the boundary of the inhomogeneity is continuous across the boundary at any point. Within each individual aquifer, continuity of head and the component of flow normal to the boundary are met approximately across the boundary; the accuracy increases when the order of the line elements is increased and/or when shorter line elements are used. The proposed analytic element approach produces results that are virtually identical to the exact solution for a cylindrical inhomogeneity, and a high-resolution MODFLOW2000 model of two rectangular inhomogeneities with a shared boundary. The practical application of the approach is demonstrated through the solution of a problem with an irregularly shaped inhomogeneity with rivers crossing the inhomogeneity boundary.  相似文献   

11.
The finite strip procedure is used to predict the free vibration response of both planar and non-planar coupled shear wall assemblies. The solid walls are considered as vertical cantilever strips and a comparison is made between modelling the spandrel beams as discrete beams and as an equivalent continuum with orthotropic plate properties. It is shown that both approaches lead to essentially the same frequencies. The effects of vertical inertial forces and shear deflection are included, and structures considered may have properties that vary with height. The method presented appears to be more versatile than previously published techniques and numerical comparisons with existing methods indicate the predicted results to be accurate.  相似文献   

12.
The dynamic response of unreinforced concrete structures is studied taking account of initiation, extension, closing and reopening of so-called discrete cracks. The computational procedure is based on the finite-element method and is at present restricted to two-dimensional situations. The discrete cracks are simulated by separation of originally adjacent finite elements. An equivalent tensile-strength criterion is used for the initiation and extension of the cracks which are assumed to propagate perpendicularly to the principal tensile stress. If this direction does not coincide with the interelement boundaries of the finite-element mesh, the latter is automatically altered. Between elements being separated by a crack special ‘crack elements’ are introduced, which take account of the stress transfer by aggregate interlock. The equations of motion are integrated numerically using an explicit formulation. The procedures outlined are demonstrated on a simplified cross-section of a concrete gravity dam subjected to horizontal earthquake excitation.  相似文献   

13.
伪谱法弹性波场数值模拟中的边界条件   总被引:2,自引:1,他引:1       下载免费PDF全文
边界条件问题长期以来一直是困扰地震波数值模拟研究者的一个难题,许多人都提出了有效的方法,但是该问题仍然需要研究.本文针对伪谱法地震波场数值模拟的特殊要求,即所有网格点相互耦合,且傅立叶变换的周期性使得方程在网格边界上很难得到一个吸收的替代方程,研究衰减边界条件中衰减系数的变化对边界反射波衰减效果的影响.数值实验结果说明,随着衰减系数的增大,振幅衰减加快,用很少的过渡带网格就可以使边界上的反射波能量很小.但是如果衰减率过大,就会在传播区和过渡带产生干扰波场.因此,在衰减系数的选择上应采取折中办法,即在取某一较小的衰减系数的前提下,设置较少的过渡带网格数使边界的能量反射最少.  相似文献   

14.
A study on the transient response of a circular cylindrical shell of finite length embedded in a homogeneous, isotropic and linear elastic half-space is presented. The soil-structure system is subjected to suddenly applied explosion waves. The numerical method employed is a combination of the time domain semi-analytical boundary element method used for the semi-infinite soil medium and the finite strip method used for the circular cylindrical shell. The two methods are combined through equilibrium and compatibility conditions at the soil-structure interface. The dynamic responses at the interface between the soil medium and the structure for every time step are obtained. Numerical examples are presented in detail to demonstrate the use and versatility of the proposed method. The following parameters are found to affect the response: (1) the slenderness ratio of the length over the diameter of the shell, L/D; (2) the relative wall thickness, h/a; (3) the relative stiffness ratio between the shell and the medium, Es/Em; and (4) the incidence angle of the explosion wave, α.  相似文献   

15.
The finite strip method is used to study the dynamic response of surface strip foundations. This method is simple to use and versatile. The two-dimensional problem is effectively reduced to an equivalent one-dimensional problem. The choice of trigonometric series for the displacement functions results in the uncoupling of the terms of the series and a significant reduction in the semi-bandwidth of the complex set of equations, making the method well suited to small computers. Non-homogeneous soil profiles are treated as a matter of course. The finite strip solutions are shown to be in general agreement with other theoretical methods of analysis.  相似文献   

16.
以山东海阳核电一期取水沟道工程为背景,采用动力时程反应分析方法,利用非线性有限差分软件FLAC3D建立三维土体-结构模型,分析该核电站取水沟道进、出口部位在自重、外水压力、土压力、温度、水锤压力、地震等荷载效应组合下的内力变化情况。通过编制FLAC3D程序并结合五点公式计算衬砌结构的内力,对该核电取水沟道进、出水口部位进行抗震分析。计算结果表明温度荷载、水锤压力以及地震荷载对沟道进出口部位内力影响显著,设计施工时应对薄弱截面进行加密配筋处理。本文的计算方法和分析成果可为核电厂取水沟道地震反应分析以及其他类似结构设计提供参考。  相似文献   

17.
重力卫星可以在相同误差尺度下对全球质量变化进行连续重复观测,并在近十余年来取得了巨大成功,探索重力卫星数据精化处理方法和相关应用研究具有重要意义.本文基于三维加速度点质量模型法的基本原理,进一步发展建立了时变重力场模型球谐位系数的变化和地面点质量变化的关系,可有效考虑地表质量变化导致的负荷形变的影响;引入等权形式、线性形式、指数形式和高斯形式的空间约束方法处理南北条带噪声和向下延拓导致的病态问题,并与零阶Tikhonov正则化方法进行对比分析.采用模拟数据和一个月的实测GRACE时变重力场模型计算全球质量变化,对三维加速度点质量模型法和几种空间约束方法进行对比分析验证.计算结果表明,对于3°等面积的全球格网质量点,高斯和指数形式空间约束方法的最优相关距离约为500km,等权和线性形式空间约束方法的最优相关距离约为600km,各方法均可有效处理条带噪声的影响,四种空间约束方法的计算效果优于零阶Tikhonov正则化方法,本文的相关方法为进一步利用三维加速度点质量模型法监测全球质量变化提供了借鉴.  相似文献   

18.
频率域线源大地电磁法有限元正演模拟   总被引:21,自引:5,他引:16       下载免费PDF全文
本文介绍了频率域线源大地电磁法有限元正演模拟的研究结果. 在外边界上统一应用适合于人工源的一阶吸收边界条件来形成边值问题,可减小基于平面波假设造成的人为截断边界的影响. 程序编辑中设计了两个二维数组分别存储总体系数矩阵的非零元素和在总体结点编号中的位置,使内存占用量减少,且物理意义明确,方便用高斯-赛德尔等迭代法解有限元方程时调用. 采用视δ函数模拟线源,提高了解方程组的稳定性. 最后通过对1个简单模型和1个复杂模型的模拟,证明所用的方法对异常体能够有明显的反映,说明了该方法的可靠性和有效性.  相似文献   

19.
为研究底部放置聚苯乙烯硬泡沫板的抗震性能,对3个剪跨比2.0的两端设置后浇段、底部放置聚苯乙烯硬泡沫板的预制剪力墙试件以及1个相同剪跨比的现浇剪力墙试件进行了拟静力试验。试验结果表明:预制剪力墙底部放置硬聚苯乙烯泡沫板的试件,破坏形态为后浇段与预制剪力墙脱开、后浇段受压破坏;底部放置聚苯板的预制剪力墙试件承载力小于现浇剪力墙试件,耗能能力接近或大于现浇剪力墙试件;各试件的极限位移角为1/98~1/81;预制剪力墙试件的屈服刚度及峰值刚度均比现浇剪力墙试件降低27%~75%,水平分布钢筋未伸入后浇段的试件比伸入后浇段的试件刚度降低更多,后浇段短的试件比后浇段长的试件刚度降低更多。预制试件轴压力主要由后浇段承担,名义屈服及峰值水平力时,钢筋应变分布不符合平截面假定。  相似文献   

20.
A numerical procedure for a dynamic non-linear finite element analysis is proposed here to analyse three-dimensional reinforced concrete shear wall structures subjected to earthquake motions. A shear wall is modelled as a quasi-three dimensional structure which is composed of plane elements considering the in-plane stiffness of orthogonal flange panels. The proposed constitutive model is based on the non-linearity of reinforcement and concrete in which the tension stiffening in tension and the degradation of stiffness and strength in compression of concrete after cracking are considered. The acceleration-pulse method, which is a kind of explicit analytical procedure, is employed to solve the non-linear dynamic equations, where the dynamic equation can be solved without stiffness matrix and so the iterative procedure is not necessary for descending portion of stress–strain relationship caused by cracking and softening after compressive strength in concrete. The damping effect is considered by assuming equivalent viscous damping which can give good cyclic behaviours of inertia force vs. displacement relationships. This analytical method was applied to a test specimen of a reinforced concrete shear wall with a H-shaped section which was vibrated up to failure by using a large-scale shaking table with high -performance in Japan. The test was performed as one of the dynamic model tests for evaluation of seismic behaviour of nuclear reactor buildings. The calculations were performed sequentially from the elastic range to failure. The comparison with the test results shows that this approach has good accuracy. © 1997 by John Wiley & Sons Ltd  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号