首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 689 毫秒
1.
We report on two optical candidates for the counterpart to an X-ray source in the Small Magellanic Cloud , 1WGA J0053.8−7226, identified as a serendipitous X-ray source from the ROSAT Position Sensitive Proportional Counter (PSPC) archive, and also observed by the Einstein Imaging Proportional Counter . Its X-ray properties, namely the hard X-ray spectrum, flux variability and column density, indicate a hard, transient source, with a luminosity of ∼     XTE and ASCA observations have confirmed the source to be an X-ray pulsar, with a 46-s spin period. Our optical observations reveal two possible candidates within the error circle. Both exhibit strong H α and weaker H β emission. The optical colours indicate that both objects are Be-type stars. The Be nature of the stars implies that the counterpart is most likely a Be/X-ray binary system. Subsequent infrared (IR) photometry ( JHK ) of one of the objects shows that the source varies by at least 0.5 mag, while the     measured nearly simultaneously with the UBVRI and spectroscopic observations indicate an IR excess of ∼0.3 mag.  相似文献   

2.
The International Gamma-Ray Astrophysics Laboratory observatory has been (re-)discovering new X-ray sources since the beginning of nominal operations in early 2003. These sources include X-ray binaries, active galactic nuclei, cataclysmic variables, etc. Amongst the X-ray binaries, the true nature of many of these sources has remained largely elusive, though they seem to make up a population of highly absorbed high-mass X-ray binaries. One of these new sources, IGR J19140+0951, was serendipitously discovered on 2003 March 6 during an observation of the galactic microquasar GRS 1915+105. We observed IGR J19140+0951 with the United Kingdom Infrared Telescope in order to identify the infrared counterpart. Here we present the H - and K -band spectra. We determined that the companion is a B0.5-type bright supergiant in a wind-fed system, at a distance ≲5 kpc.  相似文献   

3.
We have obtained optical and near-infrared images of the field of the accreting millisecond X-ray pulsar XTE J1751−305. There are no stars in the 0.7-arcsec error circle (0.7 arcsec is the overall uncertainty arising from tying the optical and X-ray images and from the intrinsic uncertainty in the Chandra X-ray astrometric solution). We derive limiting magnitudes for the counterpart of   R > 23.1, I > 21.6, Z > 20.6, J > 19.6  and   K > 19.2  . We compare these upper limits with the magnitudes one would expect for simple models for the possible donor stars and the accretion disc subject to the reddening observed in X-rays for XTE J1751−305 and when put at the distance of the Galactic Centre (8.5 kpc). We conclude that our non-detection does not constrain any of the models for the accretion disc or possible donor stars. Deep, near-infrared images obtained during quiescence will, however, constrain possible models for the donor stars in this ultracompact system.  相似文献   

4.
We have reported, in our previous paper, on the near-infrared (NIR) identification of a possible counterpart to the black hole candidate XTE J1908+094 obtained with the European Southern Observatory/New Technology Telescope. Here, we present new, follow-up, Canada–France–Hawaii Telescope adaptive optics observations of the XTE J1908+094 field, which resolved the previously proposed counterpart in two objects separated by about 0.8 arcsec. Assuming that both objects are potential candidate counterparts, we derive that the binary system is a low-mass system with a companion star which could be either an intermediate/late type (A–K) main-sequence star at a distance of 3–10 kpc or a late-type (>K) main-sequence star at a distance of 1–3 kpc. However, we show that the brighter of the two objects ( J ∼ 20.1,  H ∼ 18.7,  K '∼ 17.8) is more likely to be the real counterpart of the X-ray source. Its position is more compatible with our astrometric solution, and colours and magnitudes of the other object are not consistent with the lower limit of 3 kpc derived independently from the peak bolometric flux of XTE J1908+094. Further multiwavelength observations of both candidate counterparts are crucial in order to solve the pending identification.  相似文献   

5.
We present optical and infrared observations of BQ Cam, the optical counterpart to the Be/X-ray transient system V0332+53. BQ Cam is shown to be an O8–9Ve star, which places V0332+53 at a distance of ∼7 kpc. H α spectroscopy and infrared photometry are used to discuss the evolution of the circumstellar envelope. Owing to the low inclination of the system, parameters are strongly constrained. We find strong evidence for a tilt of the orbital plane with respect to the circumstellar disc (presumably on the equatorial plane). Even though the periastron distance is only ≈10 R *, during the present quiescent state the circumstellar disc does not extend to the distance of periastron passage. Under these conditions, X-ray emission is effectively prevented by centrifugal inhibition of accretion. The circumstellar disc is shown to be optically thick at optical and infrared wavelengths, which, together with its small size, is taken as an indication of tidal truncation.  相似文献   

6.
The absolute luminosities and homogeneity of early-time infrared (IR) light curves of type Ia supernovae are examined. Eight supernovae are considered. These are selected to have accurately known epochs of maximum blue light as well as having reliable distance estimates and/or good light curve coverage. Two approaches to extinction correction are considered. Owing to the low extinction in the IR, the differences in the corrections via the two methods are small. Absolute magnitude light curves in the J , H and K bands are derived. Six of the events, including five established 'branch-normal' supernovae, show similar coeval magnitudes. Two of these, supernovae (SNe) 1989B and 1998bu, were observed near maximum infrared light. This occurs about 5 d before maximum blue light. Absolute peak magnitudes of about −19.0, −18.7 and −18.8 in J , H and K respectively were obtained. The two spectroscopically peculiar supernovae in the sample, SNe 1986G and 1991T, also show atypical IR behaviour. The light curves of the six similar supernovae can be represented fairly consistently with a single light curve in each of the three bands. In all three IR bands the dispersion in absolute magnitude is about 0.15 mag, and this can be accounted for within the uncertainties of the individual light curves. No significant variation of absolute IR magnitude with B -band light curve decline rate, Δ m 15( B ), is seen over the range 0.87<Δ m 15( B )<1.31. However, the data are insufficient to allow us to decide whether or not the decline rate relation is weaker in the IR than in the optical region. IR light curves of type Ia supernovae should eventually provide cosmological distance estimates that are of equal, or even superior, quality to those obtained in optical studies.  相似文献   

7.
We report the near-infrared (near-IR) identification of the likely counterpart to X1908+075, a highly absorbed Galactic X-ray source recently suspected to belong to the rare class of OB supergiant–neutron star binary systems. Our JHKs -band imaging of the field reveals the existence within the X-ray error boxes of a near-IR source consistent with an early-type star lying at   d ∼ 7 kpc  and suffering   AV ∼ 16 mag  of extinction, the latter value being in good agreement with the hydrogen column density derived from modelling of the X-ray spectrum. Our follow-up, near-IR spectroscopic observations confirm the nature of this candidate and lead to a late O-type supergiant classification, thereby supporting the identification of a new Galactic OB-supergiant X-ray binary.  相似文献   

8.
We review existing ROSAT detections of single Galactic Wolf–Rayet (WR) stars and develop wind models to interpret the X-ray emission. The ROSAT data, consisting of bandpass detections from the ROSAT All-Sky Survey (RASS) and some pointed observations, exhibit no correlations of the WR X-ray luminosity ( L X) with any star or wind parameters of interest (e.g. bolometric luminosity, mass-loss rate or wind kinetic energy), although the dispersion in the measurements is quite large. The lack of correlation between X-ray luminosity and wind parameters among the WR stars is unlike that of their progenitors, the O stars, which show trends with such parameters. In this paper we seek to (i) test by how much the X-ray properties of the WR stars differ from the O stars and (ii) place limits on the temperature T X and filling factor f X of the X-ray-emitting gas in the WR winds. Adopting empirically derived relationships for T X and f X from O-star winds, the predicted X-ray emission from WR stars is much smaller than observed with ROSAT . Abandoning the T X relation from O stars, we maximize the cooling from a single-temperature hot gas to derive lower limits for the filling factors in WR winds. Although these filling factors are consistently found to be an order of magnitude greater than those for O stars, we find that the data are consistent (albeit the data are noisy) with a trend of in WR stars, as is also the case for O stars.  相似文献   

9.
We discuss an ASCA observation of the eccentric WC8+O7.5 III binary γ 2 Velorum near apastron. The X-ray spectrum is compared with two previous observations obtained when the system was near periastron. All three spectra display a hard-emission component that undergoes strong variability over the orbital cycle. The properties of the hard X-ray emission of γ 2 Vel are constrained by taking into account the contribution from contaminating soft X-ray sources in the vicinity of γ 2 Vel. We find that the observed variations are in qualitative agreement with the predictions of colliding wind models. We investigate for the first time the effect of uncertainties in the chemical composition of the X-ray emitting plasma on our understanding of the high-energy properties of the wind interaction region. Our results indicate that these uncertainties significantly affect the derived shock temperature and absorption column, but play a smaller role in determining the intrinsic X-ray luminosity of the colliding wind zone. We further find that the intrinsic luminosity from the hard X-ray component in γ 2 Vel does not follow the 1/ D distance relation expected from simple models of adiabatic shocks.  相似文献   

10.
We report the result of an XMM–Newton observation of the black hole X-ray transient XTE J1650–500 in quiescence. The source was not detected, and we set upper limits on the 0.5–10 keV luminosity of  0.9–1.0 × 1031 erg s−1  (for a newly derived distance of 2.6 kpc). These limits are in line with the quiescent luminosities of black hole X-ray binaries with similar orbital periods (∼7–8 h).  相似文献   

11.
We have investigated multiband optical photometric variability and stability of the Hα line profile of the transient X-ray binary IGR J01583+6713. We set an upper limit of 0.05 mag on photometric variations in the V band over a time-scale of three months. The Hα line is found to consist of non-Gaussian profile and quite stable for a duration of two months. We have identified the spectral type of the companion star to be B2 IVe while the distance to the source is estimated to be ∼4.0 kpc. Along with the optical observations, we have also carried out analysis of X-ray data from three short observations of the source, two with the Swift –XRT and one with the RXTE –PCA. We have detected a variation in the absorption column density, from a value of  22.0 × 1022 cm−2  immediately after the outburst down to  2.6 × 1022 cm−2  four months afterwards. In the quiescent state, the X-ray absorption is consistent with the optical reddening measurement of   E ( B − V ) = 1.46  mag. From one of the Swift observations, during which the X-ray intensity was higher, we have a possible pulse detection with a period of 469.2 s. For a Be X-ray binary, this indicates an orbital period in the range of 216–561 d for this binary system.  相似文献   

12.
We report the discovery of a new AM Herculis binary (polar) as the optical counterpart of the soft X-ray source RX J1724.0+4114 detected during the ROSAT all-sky survey. The magnetic nature of this V  ∼ 17 mag object is confirmed by low-resolution spectroscopy showing strong Balmer and He  II emission lines superimposed on a blue continuum, which is deeply modulated by cyclotron humps. The inferred magnetic field strength is 50 ± 4 MG (or possibly even ≈ 70 MG). Photometric observations spanning ∼ 3 yr reveal a period of 119.9 min, directly below the period gap. The morphology of the optical and X-ray light curves, which do not show eclipses by the secondary star, suggests a self-eclipsing geometry. We derive a lower limit on the distance of d  ≳ 250 pc.  相似文献   

13.
The present investigation examines possible optical counterparts to 130 X-ray sources in the region of the α Persei open cluster (d ∽ 170pc, age ∽ 50 Myr) resulting from the analysis of three 22–25 ksec ROSAT PSPC pointings. In the same manner as for 73 X-ray sources from a raster survey in α Per (Prosser & Randich 1998), CCD photometry is employed to obtain magnitudes and colors for stars/objects close to the X-ray positions, with additional echelle and low-dispersion Hα spectra provided for some stars. For almost 60 X-ray sources, an optical counterpart with photometry acceptable for cluster membership is identified, some of which can be excluded from membership on the basis of discrepant radial velocity or X-ray characteristics. On the order of 30 new members or likely members associated with X-ray sources have been identified based on available data. A photometric rotation period has been obtained for one rapid rotator identified in X-rays.  相似文献   

14.
We present the first light curves of V505 Sgr in the infrared (IR) J and K bands. The light curves are analysed with a code based on Roche geometry and stellar model atmosphere fluxes in order to determine a new set of stellar and orbital parameters. From the visual–IR photometry we find no evidence of IR excess in the system. We study the effect of the non-synchronous rotation of the primary star in the light and radial velocity curves. The distance of the system is estimated as  112 ± 4 pc  , in close agreement with the Hipparcos parallax.  相似文献   

15.
Recent ROSAT measurements show that the X-ray emission from isolated neutron stars is modulated at the stellar rotation period. To interpret these measurements, one needs precise calculations of the heat transfer through the thin insulating envelopes of neutron stars. We present nearly analytic models of the thermal structure of the envelopes of ultramagnetized neutron stars. Specifically, we examine the limit in which only the ground Landau level is filled. We use the models to estimate the amplitude of modulation expected from non-uniformities in the surface temperatures of strongly magnetized neutron stars. In addition, we estimate cooling rates for stars with fields B  ∼ 1015 − 1016 G, which are relevant to models that invoke 'magnetars' to account for soft γ-ray emission from some repeating sources.  相似文献   

16.
Ultraviolet spectra of population I WR stars obtained from IUE archive are used to determine fundamental stellar parameters. Terminal velocities for 85 galactic and LMC Wolf-Rayet stars were obtained by means of the empirical relation between spectral quantities easily measured in low resolution and high-resolution terminal velocity measurements. Temperatures and so-called transformed radii were derived based on available contour plots of spectral characteristics for a grid of NLTE models. The effect of the reddening law on stellar far ultraviolet continua is emphasized and the revised extinction curve towards WR stars is used for dereddening. For the sample of stars attributed to open clusters or associations we construct the stellar distance scale and adopt it for the other WR stars. The remaining fundamental parameters are derived and HR diagram for population I WR stars is presented.  相似文献   

17.
The few known γ-ray binary systems are all associated with variable radio and X-ray emission. The TeV source HESS J0632+057, apparently associated with the Be star MWC 148, is plausibly a new member of this class. Following the identification of a variable X-ray counterpart to the TeV source we conducted Giant Metrewave Radio Telescope (GMRT) and Very Large Array (VLA) observations in 2008 June–September to search for the radio counterpart of this object. A point-like radio source at the position of the star is detected in both 1280-MHz GMRT and 5-GHz VLA observations, with an average spectral index, α, of ∼0.6. In the VLA data there is significant flux variability on ∼month time-scales around the mean flux density of ≈0.3 mJy. These radio properties (and the overall spectral energy distribution) are consistent with an interpretation of HESS J0632+057 as a lower power analogue of the established γ-ray binary systems.  相似文献   

18.
Optical and X-ray observations are presented here of a newly reported X-ray transient system in the Small Magellanic Cloud (SMC) – SXP7.92. A detailed analysis of the X-ray data reveal a coherent period of 7.9 s. A search through earlier X-ray observations of the SMC reveal a previously unknown earlier detection of this system. Follow-up X-ray observations identified a new transient source within the error circle of the previous observations. An optical counterpart, AzV285, is proposed which reveals clear evidence for a 36.8 d binary period.  相似文献   

19.
The EGRET telescope aboard the NASA Compton Gamma-Ray Observatory ( CGRO ) has repeatedly detected 3EG J1835+5918, a bright and steady source of high-energy gamma-ray emission which has not yet been identified. The absence of any likely counterpart for a bright gamma-ray source located 25° off the Galactic plane initiated several attempts of deep observations at other wavelengths. We report on counterparts in X-rays on a basis of a 60-ks ROSAT HRI image. In order to conclude on the plausibility of the X-ray counterparts, we reanalysed data from EGRET at energies above 100 MeV and above 1 GeV, including data up to CGRO observation cycle 7. The gamma-ray source location represents the latest and probably the final positional assessment based on EGRET data. We especially address the question of flux and spectral variability, here discussed using the largest and most homogeneous data set available at high-energy gamma-rays for many years. The results from X-ray and gamma-ray observations were used in a follow-up optical identification campaign at the 2.2-m Guillermo Haro Telescope at Cananea, Mexico. VRI imaging has been performed at the positions of all of the X-ray counterpart candidates, and spectra were taken where applicable. The results of the multifrequency identification campaign toward this enigmatic unidentified gamma-ray source are given, especially on the one object which might be associated with the gamma-ray source 3EG J1835+5918. This object has the characteristics of an isolated neutron star and possibly of a radio-quiet pulsar.  相似文献   

20.
We present epoch 1996, high-quality radial velocity data for HDE 226868, the optical counterpart of Cygnus X-1. Combining our results with all published historical data, we have derived a new ephemeris for the system of HJD 245 0235.29 + n  × 5.5998, which allows accurate orbital phase calculations to be made for any X-ray observations over the last 30 years. We find no evidence for any period change such as that suggested by Ninkov, Walker &38; Yang. We discuss the shortcomings of previous work in establishing the period and orbital elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号