首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Based on a large volume of statistical data it is shown that the spatial distributions of radio pulsars in the galaxy with characteristic ages T ≤ 10 6 years and T > 106 years differ significantly. The overwhelming majority of the pulsars with T ≤ 10 6 years lie within a narrow band of width 400 pc around the galactic plane. A large portion of the pulsars with T > 106 years is concentrated outside this zone. In the case of younger pulsars, a larger fraction of them lies within the confines of the above mentioned zone. It is also shown that pulsars with T ≤ 10 6 years and the remnants of supernova explosions have essentially the same spatial distribution. These facts support the existence of a relationship between pulsars and supernova remnants, as well as the acquisition of high spatial velocities by pulsars during their birth. __________ Translated from Astrofizika, Vol. 49, No. 1, pp. 103–110 (February 2006).  相似文献   

2.
We have developed a method of searching for the connections between the isolated radio pulsars and supernova remnants, based on the analysis of their kinematic characteristics. We investigate fairly young (τ ch ≲ 106 yr) radio pulsars with known proper motions and estimated distances (dispersion measures), and supernova remnants located no more than 1–2 kpc away from them. Using a standard empirical radial velocity distribution, we have constructed 100–200 thousand trajectories for each of these pulsars, tracing back their possible motion in the Galactic gravitational field on a time-scale of a few million years. The probabilities of their close encounters with the SNRs at epochs consistent with the age of the pulsar are analyzed. When these probabilities exceed considerably their reference values, obtained by assuming a purely random encounter between the objects, we conclude that the pulsars may have originated in the SNRs under consideration. Out of eight preselected pairs of pulsar-SNR association candidates, two pairs, J 1829-1751 / G16.2-2.7 and J 1833-0827 / G24.7-0.6 may have a common origin with a high probability.  相似文献   

3.
We have used the enhanced MERLIN at 1.5 and 5 GHz to image the central 700pc of the nearby starburst galaxy M82. Of order 40 discrete sources are detected and it appears that most of these sources are supernova remnants. Not only do many show shell structure and have a non-thermal radio spectrum, but they also follow a surface brightness/diameter relation consistent with that found in the LMC and Galactic supernova remnants. The detected M82 remnants are more compact and brighter than Galactic remnants which implies that they must be less than a few hundred years old and hence supernova rates are of order 0.05 per year. The 1.5 GHz measurements have shown that many of the remnants have low-frequency spectral turnovers which are probably due to free-free absorption in localised ionised gas with emission measures > 106 pc cm–6.  相似文献   

4.
We conclude that pulsar-driven supernova remnants (SNRs) are extremely rare objects. Indeed an analysis of the known sample of plerions suggests a very low birthrate ∼ 1 in 240 years. Long-lived and bright plerions like the Crab nebula are likely to be produced only when the pulsar has an initial period ∼ 10–20 milliseconds and a field ∼ 1012 G. Such pulsars inside rapidly expanding shell remnants should also produce detectable plerions. The extreme rarity of SNRs with such hybrid morphology leads us to conclude that these pulsars must have been born with an initial period larger than ∼ 35–70 milliseconds. Joint Astronomy Program, Department of Physics, Indian Institute of Science, Bangalore 560012.  相似文献   

5.
年轻脉冲星多处于超新星遗迹(Supernova Remnant, SNR)中, 其分为转动供能脉冲星(Rotation-powered SNR-PSR)、磁星(Magnetar)和中心致密天体(Central Compact Object, CCO), 这3类年轻脉冲星有着不同的自旋周期及磁场强度分布. % 其中, 遗迹磁星(SNR-Magnetar)的平均自旋周期比转动供能遗迹脉冲星大近一个量级, 平均磁场强度高近两个量级. % 同时, 中心致密天体比转动供能遗迹脉冲星的平均磁场强度低近两个量级. % 这3类年轻脉冲星不同的物理性质, 可能源于其不同的前身星或不同的超新星爆发过程, 也可能源于其中子星诞生后的不同演化过程. % 此外, 转动供能遗迹脉冲星比年轻的转动供能非遗迹脉冲星具有更快的平均自旋周期、更大的平均磁场强度和更短的平均特征年龄. % 这暗示新诞生的中子星经时间约为$10^5$--$10^6$yr的演化过程, 其自旋速度将减小近一半, 同时其磁场强度也将衰减近一半.  相似文献   

6.
The rotation periods, surface magnetic field strengths, as well as the spatial distribution of the several kinds of pulsars discovered sofar are analyzed statistically. It is revealed that the spatial distribution of the millisecond pulsars is more dispersive than that of the normal radio pulsars. And that the spatial distribution of the pulsars in low-mass X-ray binaries (LMXBs) is also more dispersive than that of the pulsars in high-mass X-ray binaries (HMXBs). The distribution of rotation periods of the isolated millisecond pulsars has a peak at 4.7ms, and the corresponding peak values for the normal radio pulsars and the millisecond pulsars in binaries are 0.6 s and 3.5ms, respectively. The surface magnetic field strengths of the FERMI pulsars (the gamma-ray pulsars observed by the Large Area Telescope/Fermi Gamma-ray Space Telescope) and normal pulsars are all concentrated around 1012 Gs. It is found also that some young high-energy pulsars are associated with supernova remnants. In combination with the formation and evolution models of pulsars, we have made some remarks on the characteristics of these distributions.  相似文献   

7.
Within the more than 30 yr of cosmic ray astrophysics, neither their origin nor their precise mode of propagation have found undisputable explanations. Among the favoured boosters have been point sources, like supernovae and pulsars, as well as extended sources, like cosmic clouds and supernova remnants. Extended sources have been proposed by Fermi (1949), and pushed more recently by a number of investigators because of the huge available reservoirs, and because repetitive shock acceleration can generate power law spectra which are similar to the ones observed (Axfordet al., 1977; Bell, 1978; Blandford and Ostriker, 1978; Krymsky, 1977). Yet the shock acceleration model cannot easily be adjusted to achieve particle energies in excess of some critical energy, of order 104±1 GeV (Völket al., 1981). For this and several other reasons, the suggestion is revived that neutron stars are the dominant source of high-energy cosmic rays. To be more precise: the (relativistic) ionic component of the cosmic rays is argued to be injected by young binary neutron stars (?105 yr) whose rotating magnetospheres act like grindstones in the wind of their companion (Kundt, 1976). The high-energy (?30 GeV) electron-positron component may be generated by young pulsars (?105 yr) and by collision processes, and the electron component below 30 GeV predominantly by supernova remnants.  相似文献   

8.
The galactic distribution of pulsars and shell remnants of supernovae (SN) as investigated on the basis of newly-estimated parameters. Special attention was paid to taking into account all possible selection effects and an attempt was made to reveal a statistically-pure ensemble of objects. On the basis of this ensemble we studied the radial andz-distribution of pulsars and supernova remnants (SNR).It is shown that the radial distribution of both objects is considered to have an annular structure with the maximum surface density at a distance of 4.5–5.3 kpc (if the distance of the Sun from the galactic centre is assumed to be equal to 8.5 kpc). The scle-height of the progenitors of SNRs is not more than 110 pc and only 15% of the SNRs, whose progenitors may also be massive runaway stars, are situated at 300 pc. The mean application of the pulsars is not more than 300 pc which agrees with the hypothesis about the genetic connection with type-II SN outbursts at the kinematic aget k5×106 yr and thez-component of spatial velocity beingV z=120 km s–1.The possible precursors of type-I SNRs by the shape of their radial distribution in late spirals and the various model calculations given in the literature, are also discussed.  相似文献   

9.
A statistical study of 233 pulsar proper motions   总被引:2,自引:0,他引:2  
We present and analyse a catalogue of 233 pulsars with proper motion measurements. The sample contains a wide variety of pulsars including recycled objects and those associated with globular clusters or supernova remnants. After taking the most precise proper motions for those pulsars for which multiple measurements are available, the majority of the proper motions (58 per cent) are derived from pulsar timing methods, 41 per cent using interferometers and the remaining 1 per cent using optical telescopes. Many of the one-dimensional (1D) and two-dimensional (2D) speeds (referring to speeds measured in one coordinate only and the magnitudes of the transverse velocities, respectively) derived from these measurements are somewhat lower than earlier estimates because of the use of the most recent electron density model in determining pulsar distances. The mean 1D speeds for the normal and recycled pulsars are 152(10) and 54(6) km s−1, respectively. The corresponding mean 2D speeds are 246(22) and 87(13) km s−1. PSRs B2011+38 and B2224+64 have the highest inferred 2D speeds of  ∼1600 km s−1  . We study the mean speeds for different subsamples and find that, in general, they agree with previous results. Applying a novel deconvolution technique to the sample of 73 pulsars with characteristic ages less than 3 Myr, we find the mean three-dimensional (3D) pulsar birth velocity to be 400(40) km s−1. The distribution of velocities is well described by a Maxwellian distribution with  1D rms σ= 265 km s−1  . There is no evidence for a bimodal velocity distribution. The proper motions for PSRs B1830−08 and B2334+61 are consistent with their proposed associations with the supernova remnants W41 and G114.3+0.3, respectively.  相似文献   

10.
General models for the secular behavior of the radio and X-ray emission from supernova remnants are examined and compared with the observations. Hot plasma and synchrotron models for the X-ray emission are considered. Among other things, it is concluded that (1) the total kinetic energy released in most supernova outbursts is probably less than about 1051 ergs; (2) continuous injection probably occurs for at least 10 yr in every case and about 1000 yr in most supernova remnants, in which case the supernova remnants 3C392, W28, Pup A and IC443 should produce 1–10 keV X-ray fluxes 10–10 ergs/cm2 sec; and (3) the X-ray sources in the Crab Nebula, Cas A and Tycho can be explained in terms of a model wherein continuous injection occurs for 300 yr for the Crab Nebula, much less than 250 yr for Cas A and much longer than 400 yr for Tycho. Finally, it is shown that if Tycho and Cas A contain an X-ray star such as NP0532, it is quite possible that the X-ray emission from those sources is predominantly due to the X-ray star.Supported by the Air Force Office of Scientific Research under Contract No. F44620-67-C-0065.  相似文献   

11.
In the last years, optical studies of Isolated Neutron Stars (INSs) have expanded from the more classical rotation-powered ones to other categories, like the Anomalous X-ray Pulsars (AXPs) and the Soft Gamma-ray Repeaters (SGRs), which make up the class of the magnetars, the radio-quiet INSs with X-ray thermal emission and, more recently, the enigmatic Compact Central Objects (CCOs) in supernova remnants. Apart from 10 rotation-powered pulsars, so far optical/IR counterparts have been found for 5 magnetars and for 4 INSs. In this work we present some of the latest observational results obtained from optical/IR observations of different types of INSs.  相似文献   

12.
We analyze the possibility that anomalous X-ray pulsars (AXPs) and soft gamma repeaters (SGRs) originate from radio pulsars subjected to considerable and prolonged glitches. The observed characteristics of such pulsars, their association with supernova remnants, and their evolution in the P-? diagram with allowance made for the actual age of the possible AXP and SGR progenitors are shown to be in conflict with the suggested scenario.  相似文献   

13.
We consider the galactic population of gamma-ray pulsars as possible sources of cosmic rays at and just above the “knee” in the observed cosmic ray spectrum at 1015–1016 eV. We suggest that iron nuclei may be accelerated in the outer gaps of pulsars, and then suffer partial photo-disintegration in the non-thermal radiation fields of the outer gaps. As a result, protons, neutrons, and surviving heavier nuclei are injected into the expanding supernova remnant. We compute the spectra of nuclei escaping from supernova remnants into the interstellar medium, taking into account the observed population of radio pulsars.

Our calculations, which include a realistic model for acceleration and propagation of nuclei in pulsar magnetospheres and supernova remnants, predict that heavy nuclei accelerated directly by gamma-ray pulsars could contribute about 20% of the observed cosmic rays in the knee region. Such a contribution of heavy nuclei to the cosmic ray spectrum at the knee can significantly increase the average value of lnA with increasing energy as is suggested by recent observations.  相似文献   


14.
The neutral hydrogen at 21 cm has been investigated with the RATAN-600 radio telescope around the supernova remnant G 65.3+5.7, which has the largest angular sizes in the group of shell remnants. An expanding HI shell left after an old supernova explosion with an energy of ∼1051 erg and an age of 440 000 yr coincident in coordinates with the radio and optical remnant has been discovered. Since an X-ray emission from a much younger (27 000 yr) supernova remnant is observed in the same region and the shells detected by nebular lines have probably intermediate ages, we suggest that several successive supernova explosions have occurred here.  相似文献   

15.
In 1982 we discovered a pulsar with the phenomenal rotation rate of 642 Hz, 20 times faster than the spin rate of the Crab pulsar. The absence of supernova debris in the vicinity of the pulsar at any wavelength indicates an age of the neutron star greater than 105 yr. The miniscule spindown rate of 1.1 × 10-19 confirms the old age and indicates a surface magnetic field of 109 G. A second millisecond pulsar was discovered by Boriakoff, Buccheri & Fauci (1983) in a 120-day orbit. These fast pulsars may have been spun-up by mass transfer in a close binary evolutionary stage. Arrival-time observations of the 642-Hz pulsar display remarkably low residuals over the first 14 months. The stability implied by these observations, 3 × 10-14, suggests that millisecond pulsars will provide the most accurate basis for terrestrial dynamical time. If so, the pulsar data will lead to improvements in the planetary ephemeris and to new searches for light-year scale gravitational waves. Many new searches for fast pulsars are under way since previous sky surveys excluded pulsars with spins above 60 Hz.  相似文献   

16.
From an analysis of pulsar spatial and luminosity distributions, the number density of observed pulsars in the local region is determined to be 1.1±0.4×10–7 pulsar pc–3. Multiplication by the detection factor and by the ratio of Galaxy mass to local matter density and division by a mean lifetime of pulsars of 3×106 yr suggests a pulsar birth every 4 yr. A stellar collapse might occur even more often.Supported in part by the U.S. Energy Research and Development Administration and by the National Science Foundation.  相似文献   

17.
At present, it is widely believed that anomalous X-ray pulsars (AXPs), soft gamma-ray repeaters (SGRs), rotational radio transients (RRATs), compact central objects (CCOs) in supernova remnants, and X-ray dim isolated neutron stars (XDINSs) belong to different classes of anomalous objects in which the central bodies are isolated neutron stars. Previously, we have shown that AXPs and SGRs can be described in terms of the drift model for parameters of the central neutron star typical of radio pulsars (rotation periods P ~ 0.1–1 s and surface magnetic fields B ~ 1011–1013 G). Here, we show that some of the peculiarities of the sources under consideration can be explained by their geometry (in particular, by the angle β between the rotation axis and the magnetic moment). If β ? 10° (an aligned rotator), the drift waves in the outer layers of the neutron star magnetosphere can account for the observed periodicity in the radiation. For large β (a nearly orthogonal rotator), the observed modulation of the radiation and its short bursts can be explained by mass accretion from the ambient medium (e.g., a relic disk).  相似文献   

18.
An examination of the histogram of the supernova remnants radii allows one to deduce: (1) some support for the existence of a fairly dense galactic halo at least up to a few kpc from the galactic plane; (2) a first approximation for the initial energy distribution. Although the precise shape is still in doubt and various possibilities exist, one can conclude that the supernova rate should be no less than 1/150 SN yr–1, and no more than 1/70 SN yr–1; the average initial energy should be larger than 1.4×1049 erg.  相似文献   

19.
Using the data of the 321 pulsars so far known the Galactic distribution and the luminosity function of pulsars have been investigated. The total number of pulsars in our Galaxy is found to be 9 × 104. If the mean age of pulsars is 1.8 × 106 years, the birth-rate of pulsars in the Galaxy will be one every 20 years. This rate is not in contradiction with the birth-rate of supernovae.  相似文献   

20.
A method that is independent of the model for the distribution of free electrons in the galaxy is proposed for revealing possible oscillations of pulsars in the direction perpendicular to the galactic plane. Oscillations of pulsars in this direction with a half period of approximately 108 years on the scale of characteristic ages are found by this method, which is independent of the distance scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号