首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study a model in which degenerate sterile neutrinos account for galactic dark matter. We fit the rotation curves of 5 dwarf galaxies with the degenerate sterile neutrinos in hydrostatic equilibrium. Also we estimate the range of sterile neutrino mass by calculating the upper and lower bounds of the mass densities of sterile neutrino halos in the outermost regions of 21 normal galaxies. The observed rotation curves of 5 dwarf galaxies and 21 normal galaxies are consistent with having sterile neutrinos with mass (26–30) eV, and the similarity of the rotation curves of different galaxies emerges naturally in our model.  相似文献   

2.
In this paper, we show that if a single sterile neutrino exists such that     , it can serendipitously solve all outstanding issues of the Modified Newtonian Dynamics. We focus on fitting the angular power spectrum of the cosmic microwave background (CMB) in detail which is possible using a flat Universe with     and the usual baryonic and dark energy components. One cannot match the CMB if there is more than one massive sterile neutrino, nor with three active neutrinos of 2 eV. This model has the same expansion history as the Λ cold dark matter  (ΛCDM)  model and only differs at the galactic scale, where the modified dynamics outperform  ΛCDM  comprehensively. We discuss how an 11 eV sterile neutrino can explain the dark matter of galaxy clusters without influencing individual galaxies and potentially match the matter power spectrum.  相似文献   

3.
Although very successful in explaining the observed conspiracy between the baryonic distribution and the gravitational field in spiral galaxies without resorting to dark matter (DM), the modified Newtonian dynamics (MOND) paradigm still requires DM in X-ray bright systems. Here, to get a handle on the distribution and importance of this DM, and thus on its possible form, we deconstruct the mass profiles of 26 X-ray emitting systems in MOND, with temperatures ranging from 0.5 to 9 keV. Initially, we compute the MOND dynamical mass as a function of radius, then subtract the known gas mass along with a component of galaxies which include the cD galaxy with   M / L K = 1  . Next, we test the compatibility of the required DM with ordinary massive neutrinos at the experimental limit of detection  ( m ν= 2 eV)  , with density given by the Tremaine–Gunn limit. Even by considering that the neutrino density stays constant and maximal within the central 100 or 150 kpc (which is the absolute upper limit of a possible neutrino contribution there), we show that these neutrinos can never account for the required DM within this region. The natural corollary of this finding is that, whereas clusters  ( T ≳ 3 keV)  might have most of their mass accounted for if ordinary neutrinos have a 2 eV mass, groups  ( T ≲ 2 keV)  cannot be explained by a 2 eV neutrino contribution. This means that, for instance, cluster baryonic dark matter (CBDM, Milgrom) or even sterile neutrinos would present a more satisfactory solution to the problem of missing mass in MOND X-ray emitting systems.  相似文献   

4.
By combining data from cosmic microwave background (CMB) experiments (including the recent WMAP third year results), large scale structure (LSS) and Lyman-α forest observations, we derive upper limits on the sum of neutrino masses of Σmν < 0.17 eV at 95% c.l. We then constrain the hypothesis of a fourth, sterile, massive neutrino. For the third massless +1 massive neutrino case we bound the mass of the sterile neutrino to ms < 0.26 eV at 95% c.l. These results exclude at high significance the sterile neutrino hypothesis as an explanation of the LSND anomaly. We then generalize the analysis to account for active neutrino masses which tightens the limit to ms < 0.23 eV and the possibility that the sterile abundance is not thermal. In the latter case, the constraints in the (mass, density) plane are non-trivial. For a mass of >1 eV or <0.05 eV the cosmological energy density in sterile neutrinos is always constrained to be ων < 0.003 at 95% c.l. However, for a sterile neutrino mass of 0.25 eV, ων can be as large as 0.01.  相似文献   

5.
Sterile neutrinos may be one of the best warm dark matter candidates we have today. Both lower and upper bounds on the mass of the sterile neutrino come from astronomical observations. We show that the proper inclusion of the neutrino momentum distribution reduces the allowed region to be  2.6 keV< m <5 keV  for the simplest models. A search for a spectral line with   E = m /2  is thus more interesting than ever before.  相似文献   

6.
We consider sterile neutrinos as a component of dark matter in the Milky Way and clusters, and compare their rest mass, decay rate and the mixing angle. A radiative decaying rate of order Γ∼10−19 s−1 for sterile neutrino rest mass m s =18–19 keV can satisfactorily account for the cooling flow problem and heating source in Milky Way center simultaneously. Also, these ranges of decay rate and rest mass match the prediction of the mixing angle sin 22θ∼10−3 with a low reheating temperature in the inflation model, which enables the sterile-active neutrino oscillation to be visible in future experiments. However, decaying sterile neutrinos have to be ruled out as a major component of dark matter because of the high decay rate.  相似文献   

7.
Recently it was pointed out that a non-zero cosmological constant can play a role in the formation of neutrino halos only in the case of neutrinos of very low rest mass (m v <-0.1eV). However, phase-space considerations would requirem v >50 eV if neutrinos dominate the missing mass in halos of large spiral galaxies and moreoverm v >200 eV is implied in the case of dwarf spheroidals. These larger neutrino masses would be in conflict with observed constraints on the age of the Universe unless a cosmological constant is invoked.  相似文献   

8.
The recent analysis of MiniBooNE experiment suggests that a better fit of the data arises if there are 2 types of sterile neutrinos. If the sterile neutrinos were produced during the early epoch of the Big Bang, they would be slightly degenerate. I show that the existence of 2 types slightly degenerate sterile neutrinos can fully explain the dark matter problem, the cusp problem, the hot gas density profile in clusters and the rotation curves of galaxies.  相似文献   

9.
The relative yields of active and sterile neutrinos in matter with a high density and different degrees of neutronization have been calculated. A significant increase in the proportion of sterile neutrinos produced in superdense matter when the degree of neutronization approaches two has been found. The results obtained can be used to calculate the neutrino fluxes for matter with a high density and different degrees of neutronization in astrophysical processes, for example, the formation of a protoneutron supernova core.  相似文献   

10.
We discuss here what model independent information about properties of neutrinos and of the sun can be obtained from future solar neutrino experiments (SNO, Super-Kamiokande). It is shown that in the general case of transitions of solar νe's into νμ and/or ντ the initial 8B neutrino flux can be measured by the observation of NC events. From the CC measurements the νe survival probability can be determined as a function of neutrino energy. The general case of transitions of solar νe's into active as well as sterile neutrinos is considered. A number of relations between measurable quantities the test of which will allow to answer the question whether there are sterile neutrinos in the solar neutrino flux on the earth are derived. Transitions of solar νe's into active and sterile states due to neutrino mixing and Dirac magnetic moments or into active left-handed neutrinos and active right-handed antineutrinos due to neutrino mixing and Majorana transition magnetic moments are also considered. It is shown that future solar neutrino experiments will allow to distinguish between the cases of Dirac and Majorana magnetic moments.  相似文献   

11.
The neutrinos from the Big Bang or the Cosmic Neutrino Background (CNB) carry precious information from the early epoch when our universe was only 1 s old. Although not yet directly detected, CNB may be revealed indirectly through cosmological observations due to neutrino important cosmological influence.We review the cosmological role of neutrinos and the cosmological constraints on neutrino characteristics. Namely, we discuss the impact of neutrinos in the early universe: the cosmic expansion, neutrino decoupling, the role of neutrinos in the primordial production of light elements, leptogenesis, etc. We briefly discuss the role of neutrino at later stages of the universe.Due to the considerable cosmological influence of neutrinos, cosmological bounds on neutrino properties from observational data exist. We review the cosmological constraints on the effective number of neutrino species, neutrino mass and mixing parameters, lepton number of the universe, presence of sterile neutrino, etc.  相似文献   

12.
We derive constraints on the parameters of the radiatively decaying dark matter (DM) particle, using the XMM–Newton EPIC spectra of the Andromeda galaxy (M31). Using the observations of the outer (5–13 arcmin) parts of M31, we improve the existing constraints. For the case of sterile neutrino DM, combining our constraints with the latest computation of abundances of sterile neutrinos in the Dodelson–Widrow (DW) scenario, we obtain the lower mass limit   m s < 4 keV  , which is stronger than the previous one   m s < 6 keV  , obtained recently by Asaka, Laine & Shaposhnikov. Comparing this limit with the most recent results on Lyman α forest analysis of Viel et al.  ( m s > 5.6 keV  ), we argue that the scenario in which all the DM is produced via the DW mechanism is ruled out. We discuss, however, other production mechanisms and note that the sterile neutrino remains a viable candidate for DM, either warm or cold.  相似文献   

13.
We present the cosmological parameters constraints obtained from the combination of galaxy cluster mass function measurements (Vikhlinin et al. 2009a, 2009b) with new cosmological data obtained during last three years: updated measurements of cosmic microwave background anisotropy with Wilkinson Microwave Anisotropy Probe (WMAP) observatory, and at smaller angular scales with South Pole Telescope (SPT), new Hubble constant measurements, baryon acoustic oscillations and supernovae Type Ia observations. New constraints on total neutrino mass ??m ?? and effective number of neutrino species are obtained. In models with free number of massive neutrinos the constraints on these parameters are notably less strong, and all considered cosmological data are consistent with non-zero total neutrino mass ??m ?? ?? 0.4 eV and larger than standard effective number of neutrino species, N eff ?? 4. These constraints are compared to the results of neutrino oscillations searches at short baselines. The updated dark energy equation of state parameter constraints are presented. We show that taking in account systematic uncertanties, current cluster mass funstion data provide similarly powerful constraints on dark energy equation of state, as compared to the constraints from supernovae Type Ia observations.  相似文献   

14.
Recent observations indicate that core-like dark matter structures exist in many galaxies, while numerical simulations reveal a singular dark matter density profile at the center. In this article, I show that if the annihilation of dark matter particles gives invisible sterile neutrinos, the Sommerfeld enhancement of the annihilation cross-section can give a sufficiently large annihilation rate to solve the core-cusp problem. The resultant core density, core radius, and their scaling relation generally agree with recent empirical fits from observations. Also, this model predicts that the resultant core-like structures in dwarf galaxies can be easily observed, but not for large normal galaxies and galaxy clusters.  相似文献   

15.
The recent discovery of the large honeycomb structure of the Universe has triggered many models of the Universe dominated by dark matter. The neutrino-dominated universe is a favorable model for explaining the size of the large-scale structure and the dark matter of the larger scale than the galactic one. Our calculations on the evolution of density perturbations in a two-component universe composed of neutrinos and dissipative gas on a spherically-symmetric model have shown that the galactic scale does correlate the scale of a void of galaxies: if a neutrino has the mass of some tens eV, galaxies of the typical size form surrounding a typical void.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.  相似文献   

16.
In a two-component Universe which consists of fluid (visible matter) plus collisinless massive neutrino gas (dark matter), the remarkable difference between the developed inhomogeneities in two components could be formed after the decoupling time. Whether the initial perturbation was in which of the two components, the inhomogeneities developed in visible matter are larger than that in neutrinos, especially on smaller scales. The necessary condition for such a situation to arise is only that the density of neutrinos in the Universe is dominant. That means the non-dominant visible component in the Universe is strongly clustered especially on smaller scales, while the distribution of the dominant dark matter (neutrinos) is fairly uniform.  相似文献   

17.
The theoretical expectation of the high mass of >400 eV for the particles constituting the dark matter in dwarf-spheroidals as an artifact of the implicit assumption that the density of particles vanishes at the visible edge. On the contrary if our Galaxy and the dwarf-spheroidals are embedded in a neutrino condensation of the dimensions of the cluster thenm - 10 eV can accommodate all the observations.  相似文献   

18.
《Astroparticle Physics》2012,35(10):615-624
The IceCube neutrino observatory in operation at the South Pole, Antarctica, comprises three distinct components: a large buried array for ultrahigh energy neutrino detection, a surface air shower array, and a new buried component called DeepCore. DeepCore was designed to lower the IceCube neutrino energy threshold by over an order of magnitude, to energies as low as about 10 GeV. DeepCore is situated primarily 2100 m below the surface of the icecap at the South Pole, at the bottom center of the existing IceCube array, and began taking physics data in May 2010. Its location takes advantage of the exceptionally clear ice at those depths and allows it to use the surrounding IceCube detector as a highly efficient active veto against the principal background of downward-going muons produced in cosmic-ray air showers. DeepCore has a module density roughly five times higher than that of the standard IceCube array, and uses photomultiplier tubes with a new photocathode featuring a quantum efficiency about 35% higher than standard IceCube PMTs. Taken together, these features of DeepCore will increase IceCube’s sensitivity to neutrinos from WIMP dark matter annihilations, atmospheric neutrino oscillations, galactic supernova neutrinos, and point sources of neutrinos in the northern and southern skies. In this paper we describe the design and initial performance of DeepCore.  相似文献   

19.
The dynamical masses of dwarf-spheroidals, spiral and elliptical galaxies, dwarf irregular binaries, groups of galaxies and clusters are shown to lie in a band about the M ∼ ρR3 line. The value of ρ is approximately the same as that estimated for unseen matter in the solar neighbourhood. The clusters themselves lie about theM ∼ R -3 line derived for a self-gravitating neutrino gas; their masses are distributed around the maximum Jeans-mass, MJmax. corresponding to mv - 10 eV in an expanding universe. The present day length scales of clusters and the dispersion in the velocities observed within them are understood in terms of a 100-fold expansion subsequent to the initial growth of the fluctuations at MJmax. These systematics on theR-M plane imply that the initial condensations in the expanding universe are on the scale of the rich clusters of galaxies, these condensations were triggered dominantly by the gravitation of the neutrinos and the constant density of al systems arises naturally due to the embedding of these systems in the large scale neutrino condensations. If the neutrino density falls off asr -2 beyond the cluster edge till the distributions from different clusters overlap, then the mean density of the neutrinos approximately equals the closure density of the universe.  相似文献   

20.
Ultracompact dark matter minihalos(UCMHs) would be formed during the early universe if there were large density perturbations.If dark matter can decay into particles described by the standard model,such as neutrinos,these objects would become potential astrophysical sources of emission which could be detected by instruments such as IceCube.In this paper,we investigate neutrino signals from nearby UCMHs due to gravitino dark matter decay and compare these signals with the background neutrino flux which is mainly from the atmosphere to obtain constraints on the abundance of UCMHs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号