首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The most recently celebrated cosmological implications of the cosmic microwave background studies with WMAP (2006), though fascinating by themselves, do, however, create some extremely hard conceptual challenges for the present‐day cosmology. These recent extremely refined WMAP observations seem to reflect a universe which was extremely homogeneous at the recombination age and thus is obviously causally closed at the time of the cosmic recombination era. From the very tiny fluctuations apparent at this early epoch the presently observable nonlinear cosmic density structures can, however, only have grown up, if in addition to a mysteriously high percentage of dark matter an even higher percentage of dark energy is admitted as drivers of the cosmic evolution. The required dark energy density, on the other hand, is nevertheless 120 orders of magnitude smaller then the theoretically calculated value. These are outstanding problems of present day cosmology onto which we are looking here under new auspices. We shall investigate in the following, up to what degree a universe simply abolishes all these outstanding problems in case it reveals itself as an universe of constant total energy. As we shall show basic questions like: How could the gigantic mass of the universe of about 1080 proton masses at all become created? – Why is the presently recognized and obviously indispensable cosmic vacuum energy density so terribly much smaller than is expected from quantum theoretical considerations, but nevertheless terribly important for the cosmic evolution? – Why is the universe within its world horizon a causally closed system? –, can perhaps simply be answered, when the assumption is made that the universe has a constant total energy with the consequence that the total mass density of the universe (matter and vacuum) scales with . Such a scaling of matter and vacuum energy abolishes the horizon problem, and the cosmic vacuum energy density can easily be reconciled with its theoretical expectation values. In this model the mass of the universe increases linearly with the world extension Ru and can grow up from a Planck mass as a vacuum fluctuation. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
4.
We analyze the behavior of the scalar field as dark energy of the Universe in a static world of galaxies and clusters of galaxies. We find the analytical solutions of evolution equations of the density and velocity perturbations of dark matter and dark energy, which interact only gravitationally, along with the perturbations of metric in a static world with background Minkowski metric. It was shown that quintessential and phantom dark energy in the static world of galaxies and clusters of galaxies is gravitationally stable and can only oscillate by the influence of self-gravity. In the gravitational field of dark matter perturbations, it is able to condense monotonically, but the amplitude of density and velocity perturbations on all scales remains small. It was also illustrated that the “accretion” of phantom dark energy in the region of dark matter overdensities causes formation of dark energy underdensities-the regions with negative amplitude of density perturbations of dark energy.  相似文献   

5.
The present work deals with irreversible thermodynamics of universe containing interacting dark fluids. Recent observational evidences reveal that the universe is dominated by two dark components-dark matter and dark energy. The interaction between them leads to spontaneous heat flow between the horizon and the fluid system and as a result the system will no longer be in thermal equilibrium. In this paper dark matter is chosen as pressureless dust while modified Chaplygin gas has been considered as dark energy. In two separate cases we have considered the universe to be bounded by apparent horizon and event horizon and the validity of generalized second law of thermodynamics in the context of irreversible thermodynamics has been studied for both the cases.  相似文献   

6.
The interaction of modified holographic dark energy and dark matter with varying G in flat Kaluza Klein universe is considered. Further, we take infrared cutoff scale L as future event horizon. In this scenario, equations of state parameter as well as evolution are explored. We also check the validity of the generalized second law of thermodynamics. It is interesting to mention here that our results show consistency with the present observations.  相似文献   

7.
In this work we explore the background dynamics when dark energy is coupled to dark matter with a suitable interaction in the universe described by brane cosmology. Here DGP and the RSII brane models have been considered separately. Dark energy in the form of Generalized Cosmic Chaplygin gas is considered. A suitable interaction between dark energy and dark matter is considered in order to at least alleviate (if not solve) the cosmic coincidence problem. The dynamical system of equations is solved numerically and a stable scaling solution is obtained. A significant attempt towards the solution of the cosmic coincidence problem is taken. The statefinder parameters are also calculated to classify the dark energy models. Graphs and phase diagrams are drawn to study the variations of these parameters. It is also seen that the background dynamics of Generalized Cosmic Chaplygin gas is consistent with the late cosmic acceleration, but not without satisfying certain conditions. It has been shown that the universe in both the models follows the power law form of expansion around the critical point, which is consistent with the known results. Future singularities were studied and our models were declared totally free from any types of such singularities. Finally, some cosmographic parameters were also briefly studied. Our investigation led to the fact that although Generalized cosmic Chaplygin gas with a far lesser negative pressure compared to other dark energy models, can overcome the relatively weaker gravity of RS II brane, with the help of the negative brane tension, yet for the DGP brane model with much higher gravitation, the incompetency of Generalized cosmic Chaplygin gas is exposed, and it cannot produce the accelerating scenario until it reaches the phantom era.  相似文献   

8.
Formation of black holes may be constrained by intrinsic parameters characterizing them such as electric charge. Here we discuss the effects of a relatively minute excess of charge on extremal black hole formation and the horizon. We extend the implications of this argument to the formation of primordial black holes (PBH) in the early universe which gives a possible reason for the lack of detection of Hawking radiation. These charge limits also apply to dark matter (DM) particles that may form PHBs in the early universe. The constraint thus obtained on the electric charge of DM particles could also account for the required magnitude of the repulsive dark energy (DE) currently causing an accelerated universe which provides a possible unified picture of DM and DE.  相似文献   

9.
This paper is aimed to investigate 5D holographic dark energy (HDE) in DGP-Brane cosmology by employing a combination of Sne Ia, BAO and CMB observational data and constraining cosmological parameters. The FRW dynamics for the normal branch (?=+1) solution of induced gravity brane-world model is taken with the assumption that matter in 5D bulk is HDE such that its holographic nature is reproduced effectively in 4D universe. In the HDE model, we used Hubble horizon as IR cutoff instead of future event horizon. This way, while the model predicts current universe acceleration, it also removes the problem of circular reasoning and causality observed in using future event horizon as IR cutoff.  相似文献   

10.
《New Astronomy》2003,8(5):439-448
We simulate the future evolution of the observed inhomogeneities in the local universe assuming that the global expansion rate is dominated by a cosmological constant. We find that within two Hubble times (∼30 billion years) from the present epoch, large-scale structures will freeze in co-moving coordinates and the mass distribution of bound objects will stop evolving. The Local Group will get somewhat closer to the Virgo cluster in co-moving coordinates, but will be pulled away from the Virgo in physical coordinates due to the accelerated expansion of the Universe. In the distant future there will only be one massive galaxy within our event horizon, namely the merger product of the Andromeda and the Milky Way galaxies. All galaxies that are not gravitationally bound to the Local Group will recede away from us and eventually exit from our event horizon. More generally, we identify the critical interior overdensity above which a shell of matter around an object will remain bound to it at late times.  相似文献   

11.
In this work we investigate the background dynamics when dark energy is coupled to dark matter with a suitable interaction in the universe described by brane cosmology. Here DGP and the RSII brane models have been considered separately. Dark energy in the form of modified Chaplygin gas is considered. A suitable interaction between dark energy and dark matter is considered in order to at least alleviate (if not solve) the cosmic coincidence problem. The dynamical system of equations is solved numerically and a stable scaling solution is obtained. A significant attempt towards the solution of the cosmic coincidence problem is taken. The statefinder parameters are also calculated to classify the dark energy models. Graphs and phase diagrams are drawn to study the variations of these parameters. It is also seen that the background dynamics of modified Chaplygin gas is completely consistent with the notion of an accelerated expansion in the late universe. Finally, it has been shown that the universe in both the models follows the power law form of expansion around the critical point, which is consistent with the known results.  相似文献   

12.
The paper deals with a spatially homogeneous and anisotropic Bianchi type-I universe filled with two minimally interacting fluids; matter and holographic dark energy components. The nature of the holographic dark energy for Bianchi type-I space time is discussed. An exact solution to Einstein’s field equations in Bianchi type-I line element is obtained using the assumption of linearly varying deceleration parameter. Under the suitable condition, it is observed that the anisotropy parameter of the universe approaches to zero for large cosmic time and the coincidence parameter increases with increasing time. We established a correspondence between the holographic dark energy models with the generalised Chaplygin gas dark energy model. We also reconstructed the potential and dynamics of the scalar field which describes the Chaplygin cosmology. Solution of the field equations shows that a big rip type future singularity will occur for this model. It has been observed that the solutions are compatible with the results of recent observations.  相似文献   

13.
Using a static massive spherically symmetric scalar field coupled to gravity in the Schwarzschild-de Sitter (SdS) background, first we consider some asymptotic solutions near horizon and their local equations of state (E.O.S.) on them. We show that near cosmological and event horizons our scalar field behaves as a dust. At the next step near two pure de Sitter or Schwarzschild horizons we obtain a coupling dependent pressure to energy density ratio. In the case of a minimally coupling this ratio is ?1 which springs to the mind thermodynamical behavior of dark energy. If having a negative pressure behavior near these horizons we concluded that the coupling constant must be ξ<¼. Therefore we derive a new constraint on the value of our coupling ξ. These two different behaviors of unique matter in the distinct regions of spacetime at present era can be interpreted as a phase transition from dark matter to dark energy in the cosmic scales and construct a unified scenario.  相似文献   

14.
In this paper, we study the anisotropic Bianchi type-VI0 metric filled with dark matter and anisotropic ghost dark energy. We have solved the Einstein's field equations by considering hybrid expansion law (HEL) for the average scale factor. It is found that at later times the universe becomes spatially homogeneous, isotropic and flat. From a state finder diagnosis, it is found that our model is having similar behavior like ɅCDM model at late phase of cosmic time.  相似文献   

15.
We investigate the background dynamics when dark energy is coupled to dark matter in the universe described by loop quantum cosmology. We consider dark energy of the form modified Chaplygin gas. The dynamical system of equations is solved numerically and a stable scaling solution is obtained. It henceforth resolves the famous cosmic coincidence problem in modern cosmology. The statefinder parameters are also calculated to classify this dark energy model.  相似文献   

16.
Ultracompact dark matter minihalos(UCMHs) would be formed during the early universe if there were large density perturbations.If dark matter can decay into particles described by the standard model,such as neutrinos,these objects would become potential astrophysical sources of emission which could be detected by instruments such as IceCube.In this paper,we investigate neutrino signals from nearby UCMHs due to gravitino dark matter decay and compare these signals with the background neutrino flux which is mainly from the atmosphere to obtain constraints on the abundance of UCMHs.  相似文献   

17.
We investigate the validity of the generalized second law of gravitational thermodynamics in a non-flat FRW universe containing the interacting generalized Chaplygin gas with the baryonic matter. The boundary of the universe is assumed to be enclosed by the dynamical apparent horizon. We show that for the interacting generalized Chaplygin gas as a unified candidate for dark matter and dark energy, the equation of state parameter can cross the phantom divide. We also present that for the selected model under thermal equilibrium with the Hawking radiation, the generalized second law is always satisfied throughout the history of the universe for any spatial curvature, independently of the equation of state of the interacting generalized Chaplygin gas model.  相似文献   

18.
There is now evidence that the cosmological constant Λ has a non-zero positive value. Alternative scenarios to a pure cosmological constant model are provided by quintessence, an effective negative pressure fluid permeating the Universe. Recent results indicate that the energy density ρ and the pressure p of this fluid are constrained by − ρ ≤ p ≲−0.6 ρ . As p =− ρ is equivalent to the pure cosmological constant model, it is appropriate to analyse this particular, but important, case further.
We study the linear theory of perturbations in a Friedmann–Robertson–Walker universe with a cosmological constant. We obtain the equations for the evolution of the perturbations in the fully relativistic case, for which we analyse the single-fluid and two-fluid cases. We obtain solutions to these equations in appropriate limits. We also study the Newtonian approximation. We find that for a positive cosmological constant universe (i) the perturbations will grow more slowly in the relativistic regime for a two-fluid composed of dark matter and radiation, and (ii) in the Newtonian regime the perturbations stop growing.  相似文献   

19.
The absence of any wide-separation gravitational lenses in the Large Bright Quasar Survey is used to place limits on the population of cluster-sized haloes in the universe, and hence constrain a number of cosmological parameters. The results agree with previous investigations in strongly ruling out the standard cold dark matter model but they are consistent with low-density universes in which the primordial fluctuation spectrum matches both cluster abundances and cosmic microwave background measurements. These conclusions are essentially independent of the cosmological constant, which is in stark contrast to the statistics of galaxy lenses. The constraints presented here are nullified if clusters have core radii of ≳10 kpc, but are free of a number of potential systematic errors, owing to the homogeneity of the data.  相似文献   

20.
The present work deals with a spatially homogeneous and anisotropic Kantowski-Sachs space time filled with two minimally interacting fluids; dark matter and a hypothetical anisotropic fluid as the holographic dark energy components. To obtain an exact solution of the Einstein’s field equations, we used the assumption of linearly varying deceleration parameter. We have investigated geometric and kinematic properties of the model and the role of the anisotropic holographic dark energy in the evolution of the Kantowski-Sachs universe. Under the suitable condition, it is observed that the anisotropy parameter of the universe and the skewness parameter of the holographic dark energy approaches to zero for large cosmic time and the universe can achieve flatness for some particular moments throughout its entire lifetime. Results show that the coincidence parameter $( \Re= \frac{\rho_{\varLambda}}{\rho_{M}} )$ increases with increasing time and a big rip type future singularity will occur for this model. We have also applied the statefinder diagnostics method to study the behavior of different stages of the universe and to differentiate the proposed dark energy model from the ΛCDM model. Since in this model, the universe has a finite life time and passes through a significant time when the dark energy and the matter energy densities are roughly comparable, so considering $\frac{1}{ \Re_{0}} <\Re < \Re_{0}$ , where ?0 is any fixed ratio, we have calculated the fraction of total life time of the universe when the universe passes through the coincidental stage for this future singularity. The results are found to be consistent with recent cosmological observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号