首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sakhalin Island straddles an active plate boundary between the Okhotsk and Eurasian plates. South of Sakhalin, this plate boundary is illuminated by a series of Mw 7–8 earthquakes along the eastern margin of the Sea of Japan. Although this plate boundary is considered to extend onshore along the length of Sakhalin, the location and convergence rate of the plate boundary had been poorly constrained. We mapped north-trending active faults along the western margin of the Poronaysk Lowland in central Sakhalin based on aerial photograph interpretation and field observations. The active faults are located east of and parallel to the Tym–Poronaysk fault, a terrane boundary between Upper Cretaceous and Neogene strata; the active faults appear to have reactivated the terrane boundary at depth in Quaternary time. The total length of the active fault zone on land is about 140 km. Tectonic geomorphic features such as east-facing monoclinal and fault scarps, back-tilted fluvial terraces, and numerous secondary faults suggest that the faults are west-dipping reverse faults. Assuming the most widely developed geomorphic surface in the study area formed during the last glacial maximum at about 20 ka based on similarities of geomorphic features with those in Hokkaido Island, we obtain a vertical component of slip rate of 0.9–1.4 mm/year. Using the fault dip of 30–60°W observed at an outcrop and trench walls, a net slip rate of 1.0–2.8 mm/year is obtained. The upper bound of the estimate is close to a convergence rate across the Tym–Poronaysk fault based on GPS measurements. A trenching study across the fault zone dated the most recent faulting event at 3500–4000 years ago. The net slip associated with this event is estimated at about 4.5 m. Since the last faulting event, a minimum of 3.5 m of strain, close to the strain released during the last event, has accumulated along the central portion of the active strand of the Tym–Poronaysk fault.  相似文献   

2.
Results are presented from a seismic refraction survey (P-S waves) carried out in different years on recent faults of North Sakhalin. Structural features of the near-surface zone of active faults with different types of tectonic motions and their imaging in seismic fields are demonstrated. Criteria for estimating the activity of the studied tectonic disruption are proposed.  相似文献   

3.
Two major faults, over 32 km long and 6.4 km apart, truncate or overprint most previous folds and faults as they trend more northerly than the previous N25°E to N40°E fold trends. The faults were imposed as the last event in a region undergoing sequential counter-clockwise generation of tectonic structures. The western Big Cove anticline has an early NW verging thrust fault that emplaces resistant rocks on its NW limb. A 16 km overprint by the Cove Fault is manifested as 30 small northeast striking right-lateral strike-slip faults. This suggests major left-lateral strike-slip separation on the Cove Fault, but steep, dip-slip separation also occurs. From south to north the Cove Fault passes from SE dipping beds within the Big Cove anticline, to the vertical beds of the NW limb. Then it crosses four extended, separated, Tuscarora blocks along the ridge, brings Cambro-Ordovician carbonates against Devonian beds, and initiates the zone of overprinted right-lateral faults. Finally, it deflects the Lat 40°N fault zone as it crosses to the next major anticline to the northwest. To the east, the major Path Valley Fault rotates and overprints the earlier Carrick Valley thrust. The Path Valley Fault and Cove Fault may be Mesozoic in age, based upon fault fabrics and overprinting on the east–west Lat 40°N faults.  相似文献   

4.
The Takoe earthquake (M W 5.2) occurred between two en-echelon segments of the active Aprelovskii fault on September 1, 2001, and was accompanied by an earthquake swarm, which was successfully recorded by a local network of digital seismic stations located on the southern part of Sakhalin Island. Modern methods were applied to relocate the parameters of the sources for the earthquake swarm event and significantly specify their spatial distribution and relations to the structural-geological features of the complex system of interacting faults. New data on the correlation between the source mechanism and the modern geodynamic setting in the southern part of Sakhalin were obtained.  相似文献   

5.
Several areas along the Boconó fault zone are characterized by elongate, almond-shaped basins containing thick alluvial sequences, mainly of Quaternary age, and bounded by faults with normal Quaternary displacements. These areas are separated by segments characterized by narrow fault traces and right-lateral displacements. The fault-bounded basins are interpreted as pull-apart basins that originated at releasing bends along the fault zone. The size of the La González pull-apart basin suggests that Pliocene (?)-Quaternary right-lateral slip on the Boconó fault zone was of the order of 7–9 km.  相似文献   

6.
Geological deformation in the northern New Madrid seismic zone, near Olmsted, Illinois (USA), is analyzed using integrated compressional-wave (P) and horizontally polarized-wave (SH) seismic reflection and regional and dedicated borehole information. Seismic hazards are of special concern because of strategic facilities (e.g., lock and dam sites and chemical plants on the Ohio River near its confluence with the Mississippi River) and because of alluvial soils subject to high amplification of earthquake shock. We use an integrated approach starting with lower resolution, but deeper penetration, P-wave reflection profiles to identify displacement of Paleozoic bedrock. Higher resolution, but shallower penetration, SH-wave images show deformation that has propagated upward from bedrock faults into Pleistocene loess. We have mapped an intricate zone more than 8 km wide of high-angle faults in Mississippi embayment sediments localized over Paleozoic bedrock faults that trend north to northeast, parallel to the Ohio River. These faults align with the pattern of epicenters in the New Madrid seismic zone. Normal and reverse offsets along with positive flower structures imply a component of strike-slip; the current stress regime favors right-lateral slip on northeast-trending faults. The largest fault, the Olmsted fault, underwent principal displacement near the end of the Cretaceous Period 65 to 70 million years ago. Strata of this age (dated via fossil pollen) thicken greatly on the downthrown side of the Olmsted fault into a locally subsiding basin. Small offsets of Tertiary and Quaternary strata are evident on high-resolution SH-wave seismic profiles. Our results imply recent reactivation and possible future seismic activity in a critical area of the New Madrid seismic zone. This integrated approach provides a strategy for evaluating shallow seismic hazard-related targets for engineering concerns.  相似文献   

7.
Abstract

The classical model of faulting predicts that slip planes occur in two conjugate sets. Theoretically, more sets can be contemporarily active if pre-existing structures are reactivated in a three-dimensional strain field. Four to six sets of faults have been active in the Holocene in the Zailiski Alatau mountain range, Kazakstan. Faults strike with the highest frequency ENE and ESE and show mostly left-lateral reverse and right-lateral reverse motions, respectively. These faults have a bimodal distribution of dips, forming four sets arranged in orthorhombic symmetry. Locally, NNW- to NNE- striking vertical faults have also been active in the Holocene and show right-lateral strike-slip and left-lateral strike-slip motions, respectively. All these fault sets accommodated the general three-dimensional deformation, given by N-S-directed horizontal shortening, vertical extension, and E-W-directed horizontal extension. Field evidence also shows that the reverse motions, even if with a minor strike-slip component, occurred on high-angle planes with inclination of 65°-85°. ENE- and ESE-striking faults reactivated older fracture zones, whereas the other sets are newly formed. Comparison of these field results with the structures obtained from published analogue models shows a strong similarity of fault geometry and kinematics.  相似文献   

8.
Many stable continental regions have subregions with poorly defined earthquake hazards. Analysis of minor structures (folds and faults) in these subregions can improve our understanding of the tectonics and earthquake hazards. Detailed structural mapping in Pottawatomie County has revealed a suite consisting of two uplifted blocks aligned along a northeast trend and surrounded by faults. The first uplift is located southwest of the second. The northwest and southeast sides of these uplifts are bounded by northeast-trending right-lateral faults. To the east, both uplifts are bounded by north-trending reverse faults, and the first uplift is bounded by a north-trending high-angle fault to the west. The structural suite occurs above a basement fault that is part of a series of north–northeast-trending faults that delineate the Humboldt Fault Zone of eastern Kansas, an integral part of the Midcontinent Rift System. The favored kinematic model is a contractional stepover (push-up) between echelon strike-slip faults. Mechanical modeling using the boundary element method supports the interpretation of the uplifts as contractional stepovers and indicates that an approximately east–northeast maximum compressive stress trajectory is responsible for the formation of the structural suite. This stress trajectory suggests potential activity during the Laramide Orogeny, which agrees with the age of kimberlite emplacement in adjacent Riley County. The current stress field in Kansas has a N85°W maximum compressive stress trajectory that could potentially produce earthquakes along the basement faults. Several epicenters of seismic events (<M2.0) are located within 10 km of the structural suite. One epicenter is coincident with the northwest boundary of the uplift. This structural suite, a contractional stepover between echelon northeast-trending right-lateral faults, is similar to that mapped in the New Madrid Seismic Zone, and both areas currently feature roughly east–west maximum compressive stress trajectory. Based on these similarities, the faults in Pottawatomie County have the potential for seismicity. The results demonstrate that mechanical analysis of minor structural features can improve our knowledge of local earthquake hazards.  相似文献   

9.
阿穆尔板块西部边界在蒙古境内的空间位置尚不清楚,并且活动断层构造及其沿线地壳的应力状态研究较少。本文在沿此边界的三个区域——杭爱—肯特构造鞍部、布尔古特地块(鄂尔浑—土拉交汇处)和色楞格地块(包括色楞格凹陷和布伦—努鲁隆起),利用空间图像解译、地形起伏度分析、地质构造资料以及构造压裂和沿裂缝位移资料重建构造古应力,对活动断层进行研究。研究表明,活动断裂继承了古生代和中生代古构造的非均质性。这些断层沿着板块边界并不是单一的带,而是成簇的。它们的运动取决于走向:亚纬向断层是具有一定逆分量的左旋走滑断层,北西向断层是逆断层或逆冲断层,通常具有右旋走滑分量,海底断层是右旋走滑断层,北东向断层是正断层。位于色楞格凹陷和杭爱东部的断裂构造的活动始于上新世。逆断层和走滑断层与上新世情况不符,但多与更新世地貌相符,表明其活动年代较晚,为更新世时期。利用构造断裂和沿断裂的位移,重建活动断裂带变形末阶段的应力应变状态,结果表明断裂在最大挤压轴的北北东和北东方向上以压缩和走滑为主。只有在色楞格凹陷内,以扩张和走滑类型的应力张量为主,且在最小挤压轴的北西走向尤为显著。在南部,杭爱东部(鄂尔浑地堑)内有1个以扩张机制为主的局部区域,说明蒙古中部断裂在更新世—全新世阶段的活动以及现代地震活动主要受与印度斯坦和欧亚大陆汇聚过程相关的东北方向的附加水平挤压的控制。使研究区地壳产生走滑变形、贝加尔湖裂谷发散活动以及阿穆尔板块东南运动的另一个因素是东南方向软流圈流动对岩石圈底部的影响。阿穆尔板块和蒙古地块之间的边界在构造结构上是零碎的,代表了覆盖整个蒙古西部变形带的边缘部分。  相似文献   

10.
We propose active right-lateral strike-slip motion on the Garzon fault zone of the Neiva basin, Colombia, based on the identification of two active right-stepping releasing bend basins along the fault using stereoscopic analysis of 1/250000 SPOT images. The Garzon fault connects the Bocono-Pamplona-Guaicaramo fault zones of Venezuela and Colombia with the Romeral, Dolores and Guayaquil faults of Colombia. Together these faults form a continuous, active right-lateral fault between accreted terranes in northwestern South America and a more stable South America plate. We infer 5-km right-lateral offset of the Garzon fault based on the width of the Algeciras releasing bend basin.  相似文献   

11.
The August 17 (18), 2006, Gornozavodsk earthquake (Mw = 5.6) in the southwestern part of Sakhalin was preceded by a number of anomalous seismological and geophysical phenomena. The extensive data recorded by a network of digital seismic stations make it possible to track the aftershock dynamics of the process within 24 hours after the main event. The paper describes various manifestations of the earthquake.  相似文献   

12.
根据最新的遥感影像解译和地表调查成果,分析总结了拟建的云南大理至瑞丽铁路沿线区域最新的地表变形特征、主要活动断裂带的几何分布与运动学特征。结果显示,影响该区地壳稳定性的活动断裂带主要有10条,从东到西包括:点苍山东麓断裂、云龙-永平断裂带、保山断裂带、蒲缥-施甸断裂、太平-罗明坝断裂、镇安断裂带、龙新共轭断裂系、黄连河共轭断裂系、龙川江断裂和畹町断裂带,其中晚第四纪期间活动性最显著、对工程场地稳定性影响最大的是:点苍山东麓断裂带、保山盆地西缘断裂带、蒲缥-施甸断裂、畹町断裂带等。同时,通过整理分析近代强震资料发现,仅根据历史强震资料所揭示的高地震烈度区是不全面的,结合最新的活动断裂调查成果,对大瑞铁路沿线区域的地震烈度分区进行重新划分后,认为大瑞铁路工程场地区从东到西至少存在:大理-弥渡、保山、蒲缥-施甸、镇安-荆竹坪和瑞丽-畹町5个大于等于区级的高地震烈度区,需要在铁路工程建设的抗震设防时给予重点关注。  相似文献   

13.
The Tan-Lu fault zone (TLFZ) traverses the Liaohe western depression (LHWD), affords an exceptional opportunity to reveal the structural deformation and evolution of a major strike-slip fault of the LHWD using three dimensional seismic data and well data. In this paper, based on structural interpretations of the 3-D seismic data of the LHWD, combined with depth slice and seismic coherency, a variety of structural features in relation to right-lateral strike-slip fault (the western branch of the Tan-Lu fault) have been revealed presence in the depression, such as thrust faults (Xinlongtai, Taian-Dawa, and Chenjia faults), structural wedges, positive flower structures, and en echelon normal faults. Fault cutoffs, growth strata and the Neogene unconformity developed in the LHWD verify that the activity of right-lateral strike-slip from the late Eocene to Neogene (ca. 43–23 Ma). The study indicates that the right-lateral strike-slip played an important role in controlling the structural deformation and evolution of the LHWD in the early Cenozoic. Moreover, the front structural wedge generated the gross morphology of the Xinlongtai anticline and developed the Lengdong faulted anticline during the late Eocene, and the back structural wedge refolded the Lengdong faulted anticline zone in the late Eocene to the early Oligocene. Wrench-related structures (the Chenjia thrust fault and the en echelon normal faults) were developed during the late Oligocene. Uniform subsidence in the Neogene to Quaternary. Furthermore, the driving force of the right-lateral strike-slip deformation was originated from N–S extension stress related to the opening of the Japan Sea and NE–SW compression, as the far-field effect of India–Eurasia convergence.  相似文献   

14.
南京湖山地区大石碑断层位于大石碑向斜北西翼,在北东方向人工开采的剖面上表现为正断层性质。通过对大石碑 断层及其附近断层和节理的构造要素测量分析、构造应力场求解等研究,文章认为该断层以右行平移断层为主,兼有正断 层的性质。印支期该区在北西-南东方向挤压构造应力场作用下,形成北东方向的褶皱(宁镇山脉)、北西方向的右行平移 断层和北北西方向左行平移断层,其中北西方向的右行平移断层在北东方向的剖面上表现出正断层的假象,是断层效应的 一个典型教学实例。  相似文献   

15.
Several strike–slip faults at Crackington Haven, UK show evidence of right-lateral movement with tip cracks and dilatational jogs, which have been reactivated by left-lateral strike–slip movement. Evidence for reactivation includes two slickenside striae on a single fault surface, two groups of tip cracks with different orientations and very low displacement gradients or negative (left-lateral) displacements at fault tips.

Evidence for the relative age of the two strike–slip movements is (1) the first formed tip cracks associated with right-lateral slip are deformed, whereas the tip cracks formed during left-lateral slip show no deformation; (2) some of the tip cracks associated with right-lateral movement show left-lateral reactivation; and (3) left-lateral displacement is commonly recorded at the tips of dominantly right-lateral faults.

The orientation of the tip cracks to the main fault is 30–70° clockwise for right-lateral slip, and 20–40° counter-clockwise for left-lateral slip. The structure formed by this process of strike–slip reactivation is termed a “tree structure” because it is similar to a tree with branches. The angular difference between these two groups of tip cracks could be interpreted as due to different stress distribution (e.g., transtensional/transpressional, near-field or far-field stress), different fracture modes or fractures utilizing pre-existing planes of weakness.

Most of the dx profiles have similar patterns, which show low or negative displacement at the segment fault tips. Although the dx profiles are complicated by fault segments and reactivation, they provide clear evidence for reactivation. Profiles that experienced two opposite slip movements show various shapes depending on the amount of displacement and the slip sequence. For a larger slip followed by a smaller slip with opposite sense, the profile would be expected to record very low or reverse displacement at fault tips due to late-stage tip propagation. Whereas for a smaller slip followed by larger slip with opposite sense, the dx profile would be flatter with no reverse displacement at the tips. Reactivation also decreases the ratio of dmax/L since for an original right-lateral fault, left lateral reactivation will reduce the net displacement (dmax) along a fault and increase the fault length (L).

Finally we compare Crackington Haven faults with these in the Atacama system of northern Chile. The Salar Grande Fault (SGF) formed as a left-lateral fault with large displacement in its central region. Later right-lateral reactivation is preserved at the fault tips and at the smaller sub-parallel Cerro Chuculay Fault. These faults resemble those seen at Crackington Haven.  相似文献   


16.
GPS results from 25 stations in Macedonia measured in 1996 and 2000 show that Macedonia moves SSE relative to Eurasia essentially as a single crustal piece along with parts of westernmost Bulgaria. Geological studies show active N–S normal faults and two NNW-striking right-lateral faults in western Macedonia, and NW-trending left-lateral faults SE Macedonia, with a region in central Macedonia essentially devoid of active faults. Distribution of seismic activity supports the geological studies. However, the GPS results cannot discriminate the active faulting, except perhaps in the northern part of Macedonia in the Skopje and adjacent areas, where active ~NS extension occurs. Slip-rates on the strike-slip faults must be low, in the range of 0–2 mm/year. There is a progressive increase in GPS velocities southward in northern Greece toward the North Anatolian fault zone, across which the velocities increase and change direction dramatically.  相似文献   

17.
基于对俄罗斯远东鄂霍茨克海域内的北萨哈林盆地石油地质条件的分析和已发现油气田的解剖,总结了盆地油气分布特征,结合构造演化分析,对影响油气成藏及分布的主控因素进行了探讨。研究表明:北萨哈林盆地油气分布具有陆上储量规模小、海域陆架规模大的特点,在纵向上可以划分为两大成藏组合,但油气主要富集于达吉组和努托夫组。这两个主要含油气层已发现油气藏在平面分布上具有明显的分带性,靠陆内带以达吉组油气藏分布为主,远陆外带以努托夫组油气藏分布为主。油气富集受多旋回构造演化、富油气凹陷及构造活动差异性等控制,海域陆架裂后坳陷内的低幅度隆起构造区为高丰度大中型油气田聚集的主要有利区。  相似文献   

18.
Before the Plio-Pleistocene, the proto North Anatolian fault zone was occupied by two separate faults: a WNW-striking right-lateral eastern segment which extended to the Black Sea, and a WSW-striking left-lateral western segment. During the Plio-Pleistocene most of the right-lateral displacement on the eastern fault was transferred from the Black Sea extension to the western fault, converting the latter to a right-lateral structure, and giving rise to the modern North Anatolian fault zone. This model explains the evidence first reported by Hancock & Barka for an apparent Plio-Pleistocene reversal of displacement along the western part of the fault. The model may also account for the Plio-Pleistocene change in regional stress in southwestern Anatolia.  相似文献   

19.
Sakhalin has been affected by several phases of Cretaceous and Tertiary deformation due to the complex interaction of plates in the northwest Pacific region. A detailed understanding of the strain is important because it will provide constraints on plate-scale processes that control the formation and deformation of marginal sedimentary basins. Anisotropy of magnetic susceptibility (AMS) data were obtained from fine-grained mudstones and siltstones from 22 localities in Sakhalin in order to provide information concerning tectonic strain. AMS data reliably record ancient strain tensor orientations before significant deformation of the sediments occurred. Paleomagnetically determined vertical-axis rotations of crustal rocks allow rotation of the fabrics back to their original orientation. Results from southwest Sakhalin indicate a N035°E-directed net tectonic transport from the mid-Paleocene to the early Miocene, which is consistent with the present-day relative motion between the Okhotsk Sea and Eurasian plates. Reconstruction of early–late Miocene AMS fabrics in east Sakhalin indicates a tectonic transport direction of N040°E. In west Sakhalin, the transport direction appears to have remained relatively consistent from the Oligocene to the late Miocene, but it has a different attitude of N080°E. This suggests local deflection of the stress and strain fields, which was probably associated with opening of the northern Tatar Strait. A northward-directed tectonic transport is observed in Miocene sediments in southeast Sakhalin, mid-Eocene sediments in east Sakhalin, and in Late Cretaceous rocks of west and northern Sakhalin, which may be associated with northwestward motion and subduction of the Pacific Plate in the Tertiary period. The boundaries of the separate regions defined by the AMS data are consistent with present-day plate models and, therefore, provide meaningful constraints on the tectonic evolution of Sakhalin.  相似文献   

20.
北萨哈林盆地作为俄罗斯远东地区最大的含油气盆地,其热流分布和演化过程对油气勘探有重要意义。本文通过单井和区域热流分析,恢复了北萨哈林盆地和鄂霍茨克海域各时期热流值的分布范围;对沉积盆地热演化各期次进行数值模拟,改进了简单沉降模型,使其适用于弧后拉分盆地;利用EASY%Ro 方法对热演化过程进行恢复,并与理论计算的热流值进行对比分析。研究表明,北萨哈林盆地各时期热流分布极为不均,热演化可以分成两个阶段:1) 古近纪,盆地内陆和海域具有各自的热流中心,其热演化过程相对独立;2) 晚渐新世后,盆地受弧后拉张和断裂剪切的共同作用,热流范围发生改变,构造拼合带成为新的热流中心。本文认为岩浆活动强弱和沉降速率差异是造成该现象的内因和外因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号