首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A displacement-based design procedure is proposed for proportioning hysteretic damped braces (HYDBs) in order to attain, for a specific level of seismic intensity, a designated performance level of a reinforced concrete (r.c.) in-elevation irregular framed building which has to be retrofitted. To check the effectiveness and reliability of the design procedure, a numerical investigation is carried out with reference to a six-storey r.c. framed building, which, originally designed according to an old Italian seismic code (1996) for a medium-risk zone, has to be retrofitted by inserting of HYDBs to attain performance levels imposed by the current Italian code (NTC08) in a high-risk zone. To simulate a vertical irregularity, a change of use of the first two floors, from residential to office, is also supposed; moreover, masonry infill walls, regularly distributed along the perimeter, are substituted with glass windows on these floors. Nonlinear dynamic analyses of unbraced (UF), infilled (IF) and damped braced infilled (DBIF) frames are carried out considering sets of artificially generated and real ground motions, whose response spectra match those adopted by NTC08 for different performance levels. To this end, r.c. frame members are idealized by a two-component model, assuming a bilinear moment–curvature law whose ultimate bending moment depends on the axial load, while the response of an HYDB is idealized by a bilinear law, to prevent buckling. Finally, masonry infills are represented as equivalent diagonal struts, reacting only in compression, with an elastic–brittle linear law.  相似文献   

2.
A displacement-based design procedure is proposed for proportioning hysteretic damped braces in order to attain, for the in-plan least seismic capacity direction and a specific level of seismic intensity, a designated performance level of a reinforced concrete (r.c.) irregular framed building to be retrofitted. To this end, a computer code for the nonlinear static analysis of spatial frames is developed to obtain the pushover curve for an assigned in-plan direction of the seismic loads. The town hall of Spilinga (Italy), a two-storey r.c. framed structure with an L-shaped plan built at the beginning of the 1960s, has been considered as case study. Four alternative structural solutions are examined, derived from the first one by the insertion of hysteretic damped braces, considering: the extended N2 and the extended pushover methods combined with a proportional and an inversely proportional in-plan stiffness distributions of hysteretic damped braces. To check the effectiveness and reliability of the design procedure, the nonlinear static response of the unbraced and damped braced frames is compared for different in-plan directions of the seismic loads. Frame members are simulated with a lumped plasticity model, including a flat surface modeling of the axial load-biaxial bending moment elastic domain, while the behavior of a hysteretic damped brace is idealized through the use of a bilinear law. Vulnerability index domains are adopted to estimate the directions of least seismic capacity at the ultimate (i.e. life-safety and collapse prevention) limit states prescribed by Italian and European seismic codes.  相似文献   

3.
The nonlinear dynamic response of reinforced concrete (r.c.) framed buildings subjected to near-fault ground motions is studied to check the effectiveness of current code provisions with reference to study cases. Three-, six- and twelve-storey r.c. plane frames, representative of symmetric framed buildings, are designed according to the European seismic code (EC8), assuming medium and high ductility classes and stratigraphic profiles A (rock) and D (soft soil) in a high-risk seismic region. The nonlinear seismic analysis is performed using a step-by-step procedure; a bilinear model idealizes the behaviour of the r.c. frame members. Artificially generated motions (matching EC8 response spectra for subsoil classes A and D) and horizontal motions (recorded on rock- and soft soil-site at near-fault areas) are considered. The results indicate that near-fault ground motions may require a special consideration in the code, in particular when designing r.c. framed structures placed on a soft soil-site; particular attention should be paid to the design of the frame members of the lower storeys.  相似文献   

4.
A displacement-based design (DBD) procedure aiming to proportion hysteretic damped braces (HYDBs) in order to attain, for a specific level of seismic intensity, a designated performance level of a structure is proposed for the retrofitting of framed buildings. A key step for the reliability of the DBD procedure is the selection of the equivalent viscous damping in order to account for the energy dissipated by the damped braced frame. In this paper, expressions of the equivalent damping are obtained considering the energy dissipated by the HYDBs and the framed structure. To this end, dynamic analyses of an equivalent single degree of freedom system, whose response is idealized by a trilinear model, are carried out considering real accelerograms matching, on the average, Eurocode 8 (EC8) response spectrum for a medium subsoil class. Then, a three-storey reinforced concrete (r.c.) framed structure of a school building, designed in a medium-risk seismic region according to the Italian code in force in 1975, is supposed as retrofitted as if in a high-risk seismic region of the current seismic code (NTC08) by the insertion of HYDBs. Nonlinear static analyses are carried out to evaluate the vulnerability of the primary structure, characterized by the lack of interior girders along the floor slab direction, and to select optimal properties of the HYDBs. The effectiveness of the retrofitting solutions is checked referring to nonlinear dynamic analyses, considering artificially generated accelerograms whose response spectra match those adopted by NTC08 for the earthquake design levels corresponding to the serviceability and ultimate limit states.  相似文献   

5.
A displacement-based design procedure using hysteretic damped braces (HYDBs) is proposed for the seismic retrofitting of unsymmetric-plan structures. An expression of the viscous damping equivalent to the hysteretic energy dissipated by the damped braced frame is proposed under bidirectional seismic loads, where corrective factors are assumed as a function of design parameters of the HYDBs. To this end, the nonlinear dynamic analysis of an equivalent two degree of freedom system is firstly carried out on seven pairs of real ground motions whose displacement response spectra match, on average, the design spectrum proposed by the Italian seismic code for a high-risk seismic zone and a medium subsoil class. Then, the extended N2 method considered by the European seismic code, which combines the nonlinear static analysis along the in-plan principal directions of the structure with elastic modal analysis, is adopted to evaluate the higher mode torsional effects. The town hall of Spilinga (Italy), a reinforced concrete (r.c.) framed building with an L-shaped plan, is supposed to be retrofitted with HYDBs. Six structural solutions are compared considering two alternative in-plan distributions of the HYDBs, to eliminate (elastic) torsional effects, and three design values of the frame ductility combined with a constant design value of the damper ductility. To check the effectiveness and reliability of the DBD procedure, the nonlinear static analysis of the test structures is carried out, by evaluating the vulnerability index of r.c. frame members and the ductility demand of HYDBs for different in-plan directions of the seismic loads.  相似文献   

6.
The out-of-plane (OOP) behaviour of masonry infills (MIs), inserted in reinforced concrete (r.c.)–framed buildings, is recognized as one of the most important failure modes of this nonstructural element during an earthquake, which may be a consequence of simultaneous or prior in-plane (IP) damage. A five-element macro-model, with four diagonal OOP non-linear beams and one horizontal IP non-linear truss, with an equivalent mass of the infill panel divided between two central nodes, takes into account the IP and OOP failure modes occurring in the event of seismic loading. Pivot hysteretic models predict the non-linear IP and OOP force-displacement laws of the infill panel, based on geometrical rules defining loading and unloading branches. Firstly, a calibration of the proposed IP-OOP interaction model of MIs is carried out considering full-scale experimental results of traditional masonry typologies. Each specimen is initially subjected to in-plane quasi-static cyclic loading, until a maximum drift is reached, and then one-sided OOP cycles are imposed pushing in the horizontal direction and back to zero force. Then a numerical investigation considers masonry infills of an existing six-storey r.c.-framed building designed in compliance with a former Italian seismic code. To evaluate the interaction, the results of simultaneous IP and OOP cyclic tests on MIs at the top, intermediate, and lowest levels of the test structure are presented, assuming different displacement histories: (1) OOP loading faster than IP, at the sixth storey; (2) equal IP and OOP loading, at the third storey; (3) IP loading faster than OOP, at the first storey. Finally, attention is focused on the contribution of masonry infills to the IP and OOP energy dissipation of r.c.-framed structures.  相似文献   

7.
基于OpenSees的CFRP加固RC短柱抗震性能数值模拟   总被引:3,自引:1,他引:2  
采用地震工程开源模拟软件OpenSees对CFRP加固RC短柱进行了静力Push over分析和低周往复加载分析,并与通用有限元软件ANSYS模拟结果进行对比研究.研究结果表明:利用CFRP进行加固,不仅阻止了RC短柱的脆性剪切破坏,而且使破坏模式转化为延性弯曲破坏,增强了结构延性,进而有效地提高其抗震性能;同ANSYS相比,OpenSees可以宏观的反映CFRP与混凝土共同作用的非线性力学特征,有效地对构件和结构进行加固后的承载力及抗震性能分析.  相似文献   

8.
The opportunities provided by the use of fiber‐reinforced polymer (FRP) for the seismic retrofit of existing reinforced concrete (RC) structures were assessed on a full‐scale three‐story framed structure. The structure, designed only for gravity loads, was subjected to a bi‐directional pseudo‐dynamic (PsD) test at peak ground acceleration (PGA) equal to 0.20g at the ELSA Laboratory of the Joint Research Centre. The seismic deficiencies exhibited by the structure after the test were confirmed by post‐test assessment of structural seismic capacity performed by nonlinear static pushover analysis implemented on the lumped plasticity model of the structure. In order to allow the structure to withstand 0.30g PGA seismic actions, a retrofit using glass fiber‐reinforced polymer (GFRP) laminates was designed. The retrofit design was targeted to achieve a more ductile and energy dissipating global performance of the structure by increasing the ductility of columns and preventing brittle failure modes. Design assumptions and criteria along with nonlinear static pushover analysis to assess the overall capacity of the FRP‐retrofitted structure are presented and discussed. After the retrofit execution, a new series of PsD tests at both 0.20g and 0.30g PGA level were carried out. Theoretical predictions are compared with the main experimental outcomes to assess the effectiveness of the proposed retrofit technique and validate the adopted design procedures. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
The design provisions of current seismic codes are generally not very accurate for assessing effects of near-fault ground motions on reinforced concrete(r.c.)spatial frames,because only far-fault ground motions are considered in the seismic codes.Strong near-fault earthquakes are characterized by long-duration(horizontal)pulses and high values of the ratio α_(PGA)of the peak value of the vertical acceleration,PGA_V,to the analogous value of the horizontal acceleration,PGA_H,which can become critical for girders and columns.In this work,six- and twelve-storey r.c.spatial frames are designed according to the provisions of the Italian seismic code,considering the horizontal seismic loads acting(besides the gravity loads)alone or in combination with the vertical ones.The nonlinear seismic analysis of the test structures is performed using a step-by-step procedure based on a two-parameter implicit integration scheme and an initial stress-like iterative procedure.A lumped plasticity model based on the Haar-Karman principle is adopted to model the inelastic behaviour of the frame members.For the numerical investigation,five near-fault ground motions with high values of the acceleration ratio α_(PGA) are considered.Moreover,following recent seismological studies,which allow the extraction of the largest(horizontal) pulse from a near-fault ground motion,five pulse-type(horizontal)ground motions are selected by comparing the original ground motion with the residual motion after the pulse has been extracted.The results of the nonlinear dynamic analysis carried out on the test structures highlighted that horizontal and vertical components of near-fault ground motions may require additional consideration in the seismic codes.  相似文献   

10.
In this paper the effects of deep excavation on seismic vulnerability of existing buildings are investigated. It is well known that deep excavations induce significant changes both in stress and strain fields of the soil around them, causing a displacement field which can modify both the static and dynamic responses of existing buildings. A FEM model of a real case study, which takes into account geometry, non-linear soil behavior, live and dead loads, boundary conditions and soil–structure interaction, has been developed in order to estimate the soil displacements and their effects on seismic behavior of a reinforced concrete framed system close to deep excavation. Considering a significant accelerometric seismic input, the non-linear dynamic responses of the reinforced concrete framed structure, both in the pre and post-excavation configurations, have been evaluated and, then, compared to estimate the modification in seismic vulnerability, by means of different seismic damage indices and inter-story drifts.  相似文献   

11.
Recent earthquakes, that stroked Italian regions in past decades (Umbria— Marche 1997; Molise 2002; L’Aquila 2009), pointed out the high vulnerability of reinforced concrete existing buildings causing severe damages in the structures and consequently life losses. This is mainly due to the fact that such structures were often built without reference to seismic actions or on the basis of old standard provisions. Nowadays in Italy, Public Authorities are requested to evaluate the seismic vulnerability of their building stock assessing the actual capacity of such structures, as a consequence of new hazard levels and seismic microzonation introduced by new standards. According to Eurocode 8 or Italian standard NTC 2008, the seismic analysis of existing reinforced concrete buildings can be performed by one of the established procedure (i.e. Linear Static Analysis LSA, Linear Dynamic Analysis LDA, Nonlinear Static Analysis NSA, Nonlinear Dynamic Analysis NDA), depending on the achieved knowledge level about the structural system and materials. In order to compare efficiency and differences of previously described approaches, a deep investigation was executed on a reinforced concrete existing building whose dynamic behaviour was evaluated by an experimental dynamic analysis. In such a way, updated models were obtained and adopted for seismic analysis performed by using linear and nonlinear approaches, taking into account the stiffness and strength contribution of masonry infill walls. It was so possible to get useful indications on the reliability and discrepancies of different modelling approaches as well as on the influence of masonry infills on the seismic response of existing r.c. buildings.  相似文献   

12.
A new seismic energy dissipation shear wall structure is proposed in this paper. The new shear wall is one with purposely built‐in vertical slits within the wall panel, and rubber belts as seismic energy dissipation devices are installed in the vertical slits. In order to verify this concept, shaking table tests of a 10‐storey shear wall model with rubber belts filled in the vertical slits were carried out, and comparison of seismic behaviour was made between the new shear wall system and a shear wall with reinforced concrete connecting beams as energy dissipation. Furthermore, the seismic behaviour of this new shear wall is analysed by a finite element time history analysis method. The test and analysis show that the new shear wall system has a very good ability to dissipate seismic energy and is easy to use in engineering practice. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
Amplification of structural response of r.c. base-isolated structures is expected under near-fault ground motions, yet there is a lack of knowledge of their behavior in the case of fire. To investigate the nonlinear seismic response following a fire, an incremental dynamic analysis is carried out on five-storey r.c. base-isolated framed buildings with fire-protected High-Damping-Laminated-Rubber Bearings (HDLRBs), designed in line with the Italian seismic code. Horizontal components of near-fault ground motions characterized by forward-directivity or fling-step pulse-type are considered. The nonlinear seismic response of base-isolated structures in a no fire situation is compared with that in the event of fire, at 45 (i.e. R45) and 60 (i.e. R60) minutes of fire resistance, assuming both damaged (i.e. DS) and repaired (i.e. RS) stiffness conditions. Five fire scenarios are considered assuming the fire compartment confined to the area of the first level (i.e. F1), the first two (i.e. F1/2) and the upper (i.e. Fi, i=3–5) levels, with the parametric temperature–time fire curve evaluated in accordance with Eurocode 1. The nonlinear seismic analysis is performed by using a step-by-step procedure based on a two-parameter implicit integration scheme and an initial-stress-like iterative procedure. At each step of the analysis, plastic conditions are checked at the critical (end) sections of the girders and columns, where thermal mapping with reduced mechanical properties is evaluated with the 500 °C isotherm method proposed by Eurocode 2. A viscoelastic model with variable stiffness properties in the horizontal and vertical directions, depending on the axial force and lateral deformation, simulates the response of an HDLRB.  相似文献   

14.
15.
空间结构正在向着超大跨度发展,结构自重是限制其实现这种跨越能力的重要因素。碳纤维复合材料(CFRP)具有轻质高强的特点,为这一问题的解决提供了有效的途径。以空间结构中最普遍采用的平板网架为研究对象,采用Pushover分析方法,对CFRP平板网架的抗震能力、失效破坏模式及其控制方法进行了研究。首先,研究了CFRP网架竖向多模态Pushover分析方法;其后,以一个100m跨度正放四角锥CFRP网架为例,研究了考虑支座情况下CFRP网架在单向水平、双向水平、竖向及三向等荷载情况作用下的失效准则、失效模式及其控制方法。分析结果表明,CFRP网架支座的建模方法对网架的Pushover分析结果有很大影响。在水平地震荷载及三向地震荷载作用下,控制CFRP网架失效的关键条件是网架支座水平位移不超过其位移限值。  相似文献   

16.
The results of experimental tests carried out on reinforced concrete (RC) full‐scale 2‐storey 2‐bays framed buildings are presented. The unretrofitted frame was designed for gravity loads only and without seismic details; such frame was assumed as a benchmark system in this study. A similar RC frame was retrofitted with buckling‐restrained braces (BRBs). The earthquake structural performance of both prototypes was investigated experimentally using displacement‐controlled pushover static and cyclic lateral loads. Modal response properties of the prototypes were also determined before and after the occurrence of structural damage. The results of the dynamic response analyses were utilized to assess the existing design rules for the estimation of the elastic and inelastic period of vibrations. Similarly, the values of equivalent damping were compared with code‐base relationships. It was found that the existing formulations need major revisions when they are used to predict the structural response of as‐built RC framed buildings. The equivalent damping ratio ξeq was augmented by more than 50% when the BRBs was employed as bracing system. For the retrofitted frame, the overstrength Ω and the ductility µ are 1.6 and 4.1, respectively; the estimated R‐factor is 6.5. The use of BRBs is thus a viable means to enhance efficiently the lateral stiffness and strength, the energy absorption and dissipation capacity of the existing RC substandard frame buildings. The foundation systems and the existing members of the superstructure are generally not overstressed as the seismic demand imposed on them can be controlled by the axial stiffness and the yielding force of the BRBs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
An extensive experimental program of shaking table tests on reduced‐scale structural models was carried out within the activities of the MANSIDE project, for the development of new seismic isolation and energy dissipation devices based on shape memory alloys (SMAs). The aim of the experimental program was to compare the behaviour of structures endowed with innovative SMA‐based devices to the behaviour of conventional structures and of structures endowed with currently used passive control systems. This paper presents a comprehensive overview of the main results of the shaking table tests carried out on the models with and without special braces. Two different types of energy dissipating and re‐centring braces have been considered to enhance the seismic performances of the tested model. They are based on the hysteretic properties of steel elements and on the superelastic properties of SMAs, respectively. The addition of passive control braces in the reinforced concrete frame resulted in significant benefits on the overall seismic behaviour. The seismic intensity producing structural collapse was considerably raised, interstorey drifts and shear forces in columns were drastically reduced. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
The insertion of steel braces equipped with viscoelastic dampers (VEDs) (‘dissipative braces’) is a very effective technique to improve the seismic or wind behaviour of framed buildings. The main purpose of this work is to compare the earthquake and wind dynamic response of steel‐framed buildings with VEDs and achieve optimal properties of dampers and supporting braces. To this end, a numerical investigation is carried out with reference to the steel K‐braced framed structure of a 15‐storey office building, which is designed according to the provisions of Eurocodes 1 and 3, and to four structures derived from the first one by the insertion of additional diagonal braces and/or VEDs. With regard to the VEDs, the following cases are examined: absence of dampers; insertion of dampers supported by the existing K‐braces in each of the structures with or without additional diagonal braces; insertion of dampers supported by additional diagonal braces. Dynamic analyses are carried out in the time domain using a step‐by‐step initial stress‐like iterative procedure. For this purpose, the frame members and the VEDs are idealized, respectively, by a bilinear model, which allows the simulation of the nonlinear behaviour under seismic loads, and a six‐element generalized model, which can be considered as an in‐parallel‐combination of two Maxwell models and one Kelvin model. Artificially generated accelerograms, whose response spectra match those adopted by Eurocode 8 for a medium subsoil class and for different levels of peak ground acceleration, are considered to simulate seismic loads. Along‐wind loads are considered assuming, at each storey, time histories of the wind velocity for a return period Tr=5 years, according to an equivalent spectrum technique. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents a detailed study on feasibility of un‐bonded fiber reinforced elastomeric isolator (U‐FREI) as an alternative to steel reinforced elastomeric isolator (SREI) for seismic isolation of un‐reinforced masonry buildings. Un‐reinforced masonry buildings are inherently vulnerable under seismic excitation, and U‐FREIs are used for seismic isolation of such buildings in the present study. Shake table testing of a base isolated two storey un‐reinforced masonry building model subjected to four prescribed input excitations is carried out to ascertain its effectiveness in controlling seismic response. To compare the performance of U‐FREI, same building is placed directly on the shake table without isolator, and fixed base (FB) condition is simulated by restraining the base of the building with the shake table. Dynamic response characteristic of base isolated (BI) masonry building subjected to different intensities of input earthquakes is compared with the response of the same building without base isolation system. Acceleration response amplification and peak response values of test model with and without base isolation system are compared for different intensities of table acceleration. Distribution of shear forces and moment along the height of the structure and response time histories indicates significant reduction of dynamic responses of the structure with U‐FREI system. This study clearly demonstrates the improved seismic performance of un‐reinforced masonry building model supported on U‐FREIs under the action of considered ground motions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
广州花园酒店原结构及改造后结构均不满足我国现行规范的抗震构造要求。本文依据基于性能的抗震设计思想,提出结构宏观上的层间位移角目标和微观上的结构构件变形及损伤目标,采用PKPM系列2005年版SATWE和ETABS 9.0中文版进行结构弹性分析,采用PKPM系列EPDA和美国Buffalo大学的IDARC 2D 6.0进行弹塑性静力推覆分析和弹塑性动力时程分析,并采用TNO公司的DIANA8.0进行单榀剪力墙的极限承载力分析,研究结构是否满足设定的整体及结构构件性能目标要求,确保改造后的结构达到"小震不坏、中震可修、大震不倒"的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号