首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Climate dominantly controls vegetation over most regions at most times, and vegetation responses to climate change are often asymmetric with temporal effects. However, systematic analysis of the time-lag and time-accumulation effects of climate on vegetation growth, has rarely been conducted, in particular for different vegetation growing phases. Thus, this study aimed to leverage normalized difference vegetation index (NDVI) to determine the spatiotemporal patterns of climatic effects on global vegetation growth considering various scenarios of time-lag and/or accumulation effects. The results showed that (i) climatic factors have time-lag and -accumulation effects as well as their combined effects on global vegetation growth for the whole growing season and its subphases (i.e., the growing and senescent phases). However, these effects vary with climatic factors, vegetation types, and regions. Compared with those of temperature, both precipitation and solar radiation display more significant time-accumulation effects in the whole growing season worldwide, but behave differently in the growing and senescent phases in the middle-high latitudes of the Northern Hemisphere; (ii) compared to the scenario without time effects, considering time-lag and -accumulation effects as well as their combined effects increased by 17 %, 15 %, and 19 % the overall explanatory power of vegetation growth by climate change for the whole growing season, the growing phase, and senescent phase, respectively; (iii) considering the time-lag and -accumulation effects as well as their combined effects, climate change controls 70 % of areas with a significant NDVI variation from 1982 to 2015, and the primary driving factor was temperature, followed by solar radiation and precipitation. This study highlights the significant time-lag and -accumulation effects of climatic factors on global vegetation growth. We suggest that these effects need to be incorporated into dynamic vegetation models to better understand vegetation growth under accelerating climate change.  相似文献   

2.
基于遥感的植被年际变化及其与气候关系研究进展   总被引:61,自引:0,他引:61  
马明国  王建  王雪梅 《遥感学报》2006,10(3):421-431
植被具有明显的年际变化和季节变化特点,对植被的动态监测可以从一定程度上反映气候变化的趋势,因此监测植被动态变化以及分析这种变化与气候的关系已经成为全球变化研究的一个重要领域.随着遥感卫星获得长时间系列逐日观测数据,许多国际组织和机构制定了全球卫星数据接收、处理和生成数据集计划,所产生的标准数据集则极大地促进了该项研究.大量研究在全球尺度、洲际尺度(北美洲和欧亚大陆)以及区域尺度上广泛开展.在阅读国内外大量文献的基础上,比较分析了常用于植被监测的卫星传感器和主要数据集,汇总了植被年际变化及其与气候关系研究的主要研究方法和研究结果.结果表明近20年来全球植被活动明显增强,表现为北半球普遍存在增加的趋势,南半球干旱半干旱区出现降低的植被光合作用,但这些变化因空间位置不同和研究尺度不一样体现出不同的动态变化特征.气温和降水是影响植被变化的最主要的因素.  相似文献   

3.
本文借助Google Earth Engine(GEE)云平台,以Landsat影像、气温降水和土地利用类型为基础,利用Theil-Sen Median趋势分析、Mann-Kendall检验、偏相关性和多元回归残差分析法,分析了1999—2018年陕北黄土高原植被覆盖时空特征、变化趋势及气候变化与人类活动对于不同土地利用类型的影响,得出以下结论:(1)1999—2018年陕北黄土高原年际FVC呈改善趋势,其平均增速为0.004 9/a(P<0.01),植被覆盖度呈增加趋势的面积占总面积的74.43%;(2)植被覆盖度与降水和气温的偏相关系数具有明显的空间差异,植被生长对降水变化较敏感;(3)气候变化和人类活动的共同作用是植被生长的主要原因,其中气候变化对植被FVC的影响范围为-0.001 0/a~0.003 6/a,而人类活动对植被FVC的影响范围为-0.046 1/a~0.049 0/a;(4)在不同土地利用类型中,气候变化对水体增幅影响最大,对针叶林和阔叶林增幅影响最小,而人类活动变化对人类占用地增幅影响最大,对阔叶林增幅影响最小。  相似文献   

4.
This study uses a multiple linear regression method to composite standard Normalized Difference Vegetation Index (NDVI) time series (1982-2009) consisting of three kinds of satellite NDVI data (AVHRR, SPOT, and MODIS). This dataset was combined with climate data and land cover maps to analyze growing season (June to September) NDVI trends in northeast Asia. In combination with climate zones, NDVI changes that are influenced by climate factors and land cover changes were also evaluated. This study revealed that the vegetation cover in the arid, western regions of northeast Asia is strongly influenced by precipitation, and with increasing precipitation, NDVI values become less influenced by precipitation. Spatial changes in the NDVI as influenced by temperature in this region are less obvious. Land cover dynamics also influence NDVI changes in different climate zones, especially for bare ground, cropland, and grassland. Future research should also incorporate higher-spatial-resolution data as well as other data types (such as greenhouse gas data) to further evaluate the mechanisms through which these factors interact.  相似文献   

5.
The Asia-Pacific (AP) region has experienced faster warming than the global average in recent decades and has experienced more climate extremes, however little is known about the response of vegetation growth to these changes. The updated Global Inventory Modeling and Mapping Studies third-generation global satellite Advanced Very High Resolution Radiometer Normalized Difference Vegetation Index dataset and gridded reanalysis climate data were used to investigate the spatiotemporal changes in both trends of vegetation dynamic indicators and climatic variables. We then further analyzed their relations associated with land cover across the AP region. The main findings are threefold: (1) at continental scales the AP region overall experienced a gradual and significant increasing trend in vegetation growth during the last three decades, and this NDVI trend corresponded with an insignificant increasing trend in temperature; (2) vegetation growth was negatively and significantly correlated with the Pacific Decadal Oscillation index and the El Niño/Southern Oscillation (ENSO) in AP; and (3) at pixel scales, except for Australia, both vegetation growth and air temperature significantly increased in the majority of study regions and vegetation growth spatially correlated with temperature; In Australia and other water-limited regions vegetation growth positively correlated with precipitation.  相似文献   

6.
齐丹宁  胡政军  赵尚民 《测绘通报》2021,(9):98-102,107
研究采矿扰动区内植被变化规律,能够为矿区生态修复提供理论依据。本文以山西省西山煤田为研究区,通过设立对比试验区,利用MODIS/NDVI(2001-2019年)结合同期的气温、降水气候因子,分别从植被指数的时空变化及与气象因子之间的关系等方面展开对比,用于探究采矿扰动区内植被变化情况。研究结果表明:①19年来西山煤田与间接影响区及校验区的植被均呈增加趋势,但西山煤田相比于校验区NDVI均值低11.42%。②西山煤田相较于自然生态条件下植被增长率为-5.53%。③西山煤田与校验区的NDVI值均受到气温、降水两种气象因子的影响,但是与降水的相关性更高,即受降水影响更大。  相似文献   

7.
Global climate change has led to significant vegetation changes in the past half century. North China Plain, the most important grain production base of china, is undergoing a process of prominent warming and drying. The vegetation coverage, which is used to monitor vegetation change, can respond to climate change (temperature and precipitation). In this study, GIMMS (Global Inventory Modelling and Mapping Studies)-NDVI (Normalized Difference Vegetation Index) data, MODIS (Moderate-resolution Imaging Spectroradiometer) – NDVI data and climate data, during 1981–2013, were used to investigate the spatial distribution and changes of vegetation. The relationship between climate and vegetation on different spatial (agriculture, forest and grassland) and temporal (yearly, decadal and monthly) scales were also analyzed in North China Plain. (1) It was found that temperature exhibiting a slight increase trend (0.20 °C/10a, P < 0.01). This may be due to the disappearance of 0 °C isotherm, the rise of spring temperature. At the same time, precipitation showed a significant reduction trend (−1.75 mm/10a, P > 0.05). The climate mutation period was during 1991–1994. (2) Vegetation coverage slight increase was observed in the 55% of total study area, with a change rate of 0.00039/10a. Human activities may not only accelerate the changes of the vegetation coverage, but also c effect to the rate of these changes. (3) Overall, the correlation between the vegetation coverage and climatic factor is higher in monthly scale than yearly scale. The correlation analysis between vegetation coverage and climate changes showed that annual vegetation coverage was better correlatend with precipitation in grassland biome; but it showed a better correlated with temperature i the agriculture biome and forest biome. In addition, the vegetation coverage had sensitive time-effect respond to precipitation. (4) The vegetation coverage showed the same increasing trend before and after the climatic variations, but the rate of increase slowed down. From the vegetation coverage point of view, the grassland ecological zone had an obvious response to the climatic variations, but the agricultural ecological zones showed a significant response from the vegetation coverage change rate point of view. The effect of human activity in degradation region was higher than that in improvement area. But after the climate abruptly changing, the effect of human activity in improvement area was higher than that in degradation region, and the influence of human activity will continue in the future.  相似文献   

8.
Droughts are projected to occur more frequently with future climate change of rising temperature and low precipitation. However, its impact on regional and global vegetation production is not well understood, which in turn contributes to uncertainties to model carbon sequestration under drought scenarios. Using long-term continuous eddy covariance measurements (168 site-year), we present an analysis of the influences of interannual summer drought on vegetation production across 29 sites representing diverse ecoregions and plant functional types in North America. Results showed that interannual summer drought, which was evaluated by the increase in summer temperature or decrease in soil moisture, would cause reductions of both summer gross primary production (GPP) and net ecosystem production (NEP) in non-forest sites (e.g., grasslands and crops). On the contrary, forest ecosystems presented a very different pattern. For evergreen forests, lower summer soil moisture decreased both GPP and NEP; however, higher summer temperature only reduced NEP with no apparent impacts on GPP. Furthermore, summer drought did not show evident impacts on either summer GPP or NEP in deciduous forests, suggesting a better potential of deciduous forests in resisting summer drought and accumulating carbon from atmosphere. These observations imply diverse responses of vegetation production to interannual summer drought and such features would be useful to improve the strengths and weaknesses of ecosystem models to better comprehend the impacts of summer drought with future climate change.  相似文献   

9.

Background

Large spatial, seasonal and annual variability of major drivers of the carbon cycle (precipitation, temperature, fire regime and nutrient availability) are common in the Sahel region. This causes large variability in net ecosystem exchange and in vegetation productivity, the subsistence basis for a major part of the rural population in Sahel. This study compares the 2005 dry and wet season fluxes of CO2 for a grass land/sparse savanna site in semi arid Sudan and relates these fluxes to water availability and incoming photosynthetic photon flux density (PPFD). Data from this site could complement the current sparse observation network in Africa, a continent where climatic change could significantly impact the future and which constitute a weak link in our understanding of the global carbon cycle.

Results

The dry season (represented by Julian day 35–46, February 2005) was characterized by low soil moisture availability, low evapotranspiration and a high vapor pressure deficit. The mean daily NEE (net ecosystem exchange, Eq. 1) was -14.7 mmol d-1 for the 12 day period (negative numbers denote sinks, i.e. flux from the atmosphere to the biosphere). The water use efficiency (WUE) was 1.6 mmol CO2 mol H2O-1 and the light use efficiency (LUE) was 0.95 mmol CO2 mol PPFD-1. Photosynthesis is a weak, but linear function of PPFD. The wet season (represented by Julian day 266–273, September 2005) was, compared to the dry season, characterized by slightly higher soil moisture availability, higher evapotranspiration and a slightly lower vapor pressure deficit. The mean daily NEE was -152 mmol d-1 for the 8 day period. The WUE was lower, 0.97 mmol CO2 mol H2O-1 and the LUE was higher, 7.2 μmol CO2 mmol PPFD-1 during the wet season compared to the dry season. During the wet season photosynthesis increases with PPFD to about 1600 μmol m-2s-1 and then levels off.

Conclusion

Based on data collected during two short periods, the studied ecosystem was a sink of carbon both during the dry and wet season 2005. The small sink during the dry season is surprising and similar dry season sinks have not to our knowledge been reported from other similar savanna ecosystems and could have potential management implications for agroforestry. A strong response of NEE versus small changes in plant available soil water content was found. Collection and analysis of flux data for several consecutive years including variations in precipitation, available soil moisture and labile soil carbon are needed for understanding the year to year variation of the carbon budget of this grass land/sparse savanna site in semi arid Sudan.  相似文献   

10.
ABSTRACT

This paper addresses warm season hydroclimatic variability in the southern Appalachian region of the southeastern U.S., where precipitation can vary as much as 127?mm or more, with maximum seasonal totals exceeding 736?mm in extreme cases. Despite the occurrence of droughts, floods, and their socioecological impacts, hydroclimate variability is still poorly understood. This study characterizes the regional scale variations in the hydroclimate by examining the daily distribution of precipitation patterns in different topographic environments. Parameter-elevation relationships on independent slopes model (PRISM) gridded precipitation estimates are used to identify the location and frequency of different types of rainfall events. Several types of clustering algorithms are used as a regionalization approach to define areas where the precipitation regime exhibits similarities in its frequency of occurrence. The results are compared with internal validation statistics and a visualization is used to assess how well the resulting hydroclimatic regions align with different topographic environments. This study reveals the intricate spatial footprint of dry and wet regimes and demonstrates how clustering applications can be used with gridded climate data to determine where extremes are most likely to develop across mountain catchments.  相似文献   

11.
25年来秦岭NDVI指数的气候响应   总被引:1,自引:0,他引:1  
利用1982-2006年的植被指数和研究区域内4个气象站的气温、降水数据,研究陕西秦岭地区植被指数、气温、降水的多年变化趋势,分析植被指数与气温和降水的相关关系。利用植被类型数据分析不同植被种类的NDVI与不同气候因子的相关程度。结果表明,1982-2006年,研究区域年均气温有明显的上升,升幅达2.1℃,而年总降水量每10年下降约72 mm,秦岭地区NDVI略有上升。整体而言,植被指数的变化与气温之间的相关性在中部最大,向东西两侧递减;与降水之间的相关性在中部最小,向东西两侧递增。气温对果树园、经济林的影响最大,降水对阔叶林的影响最大。气温是影响该地区植被指数变化的主要因素。  相似文献   

12.
基于MODIS-NDVI数据分析澜沧江流域生长季植被NDVI时空特征和变化趋势,结合地形数据、气象站点数据和植被类型数据,利用趋势分析和相关性分析法研究植被NDVI变化对气候因子的响应。结果表明:1)2000-2017年澜沧江流域生长季植被NDVI均值为0.592,整体呈现出由西北向东南波动增加趋势,增长速率为0.09%/10年;2) 2000-2017年澜沧江流域气温呈上升趋势,降水呈下降趋势,植被NDVII总体与平均气温的相关性高于累积降水量;3)澜沧江流域生长季植被NDVI驱动因子分析表明,气候驱动中以气温降水联合驱动为主,流域植被NDVI变化整体为非气候驱动。  相似文献   

13.
This research investigated the effects of climate and land cover change on variation in sagebrush ecosystems. We combined information of multi-year sagebrush distribution derived from multitemporal remote sensing imagery and climate data to study the variation patterns of sagebrush ecosystems under different potential disturbances. We found that less than 40% of sagebrush ecosystem changes involved abrupt changes directly caused by landscape transformations and over 60% of the variations involved gradual changes directly related to climatic perturbations. The primary increases in bare ground and declines in sagebrush vegetation abundance were significantly correlated with the 1996-2006 decreasing trend in annual precipitation.  相似文献   

14.
The Qinghai-Tibetan Plateau plays an important role in global climate and environmental change and holds the largest lake area in China, with a total surface area of 36,900 km2. The expansion and shrinkage of these lakes are critical to the water cycle and ecological and environmental systems across the plateau. In this paper, surface areas of major lakes within the plateau were extracted based on a topographic map from 1970, and Landsat MSS, TM and ETM+ satellite images from the 1970s to 2008. Then, a multivariate correlation analysis was conducted to examine the relationship between the changes in lake surface areas and the changes in climatic variables including temperature, precipitation, evaporation, and sunshine duration. Initial results suggest that the variations in lake surface areas within the plateau are closely related to the warming, humidified climate transition in recent years such as the rise of air temperature and the increase in precipitation. In particular, the rising temperature accelerates melting of glaciers and perennial snow cover and triggers permafrost degradation, and leads to the expansion of most lakes across the plateau. In addition, different distributions and types of permafrost may cause different lake variations in the southern Tibetan Plateau.  相似文献   

15.
Given the complexity of vegetation dynamic patterns under global climate change, multi-scale spatiotemporal explicit models are necessary in order to account for environmental heterogeneity. However, there is no efficient time-series tool to extract, reconstruct and analyze the multi-scale vegetation dynamic patterns under global climate change. To fill this gap, a Multi-Scale Spatio-Temporal Modeling (MSSTM) framework which can incorporate the pixel, scale, and time-specific heterogeneity was proposed. The MSSTM method was defined on proper time-series models for multi-temporal components through wavelet transforms. The proposed MSSTM approach was applied to a subtropical mountainous and hilly agro-forestry ecosystem in southeast China using the moderate resolution imaging spectroradiometer enhanced vegetation index (EVI) time-series data sets from 2001 to 2011. The MSSTM approach was proved to be efficient in characterizing and forecasting the complex vegetation dynamic patterns. It provided good estimates of the peaks and valleys of the observed EVI and its average percentages of relative absolute errors of reconstruction was low (6.65). The complexity of the relationship between vegetation dynamics and meteorological parameters was also revealed through the MSSTM method: (1) at seasonal level, vegetation dynamic patterns are strongly associated with climatic variables, primarily the temperature and then precipitation, with correlations slight decreasing (EVI–temperature)/increasing (EVI–precipitation) with altitudinal gradients. (2) At inter-annual scale, obvious positive correlations were primarily observed between EVI and temperature. (3) Despite very low-correlation coefficients observed at intra-seasonal scales, considerable proportions of EVI anomalies are associated with climatic variables, principally the precipitation and sunshine durations.  相似文献   

16.
A growing number of studies have focused on variations in vegetation phenology and their correlations with climatic factors. However, there has been little research on changes in spatial heterogeneity with respect to the end of the growing season (EGS) and on responses to climate change for alpine vegetation on the Qinghai–Tibetan Plateau (QTP). In this study, the satellite-derived normalized difference vegetation index (NDVI) and the meteorological record from 1982 to 2012 were used to characterize the spatial pattern of variations in the EGS and their relationship to temperature and precipitation on the QTP. Over the entire study period, the EGS displayed no statistically significant trend; however, there was a strong spatial heterogeneity throughout the plateau. Those areas showing a delaying trend in the EGS were mainly distributed in the eastern part of the plateau, whereas those showing an advancing trend were mostly scattered throughout the western part. Our results also showed that change in the vegetation EGS was more closely correlated with air temperature than with precipitation. Nonetheless, the temperature sensitivity of the vegetation EGS became lower as aridity increased, suggesting that precipitation is an important regulator of the response of the vegetation EGS to climate warming. These results indicate spatial differences in key environmental influences on the vegetation EGS that must be taken into account in current phenological models, which are largely driven by temperature.  相似文献   

17.
房世波  韩威  裴志方 《遥感学报》2020,24(3):326-332
2020年初非洲东北和印巴边境沙漠蝗群席卷多个国家,大面积农田及自然植被被啃食,是什么气候条件促成了此次沙漠蝗灾?距离中国最近的印巴边境蝗群成为研究以及社会关注的热点,蝗灾对当地植被的影响如何?其发展趋势如何?从气候学上分析,蝗灾历史上是否曾经或者未来是否向印度东边迁飞而进入中国呢?本研究利用长时间序列的卫星遥感数据和气象气候观测数据,对沙漠蝗群可能扩展趋势进行了分析。研究结果表明:(1)由于沙漠蝗群的啃食,2020年1月和2月,在蝗群分布区大面积植被区的归一化植被指数较常年大幅度下降,2月(2月3日数据)的啃食面积较1月明显扩大;(2)发生在2018年5月和10月两次印度洋飓风和2019年12月强热带风暴等几个罕见气旋给非洲和阿拉伯半岛带来的强降水,是本次非洲-西亚蝗灾的形成重要原因;(3)从影响沙漠蝗群起飞的气温和沙漠蝗虫适合的降水条件来看,历史上或未来沙漠蝗群迁徙到印度东边的机会很少,进入中国的可能性非常小。  相似文献   

18.
This paper investigated spatiotemporal dynamic pattern of vegetation, climate factor, and their complex relationships from seasonal to inter-annual scale in China during the period 1982–1998 through wavelet transform method based on GIMMS data-sets. First, most vegetation canopies demonstrated obvious seasonality, increasing with latitudinal gradient. Second, obvious dynamic trends were observed in both vegetation and climate change, especially the positive trends. Over 70% areas were observed with obvious vegetation greening up, with vegetation degradation principally in the Pearl River Delta, Yangtze River Delta, and desert. Overall warming trend was observed across the whole country (>98% area), stronger in Northern China. Although over half of area (58.2%) obtained increasing rainfall trend, around a quarter of area (24.5%), especially the Central China and most northern portion of China, exhibited significantly negative rainfall trend. Third, significantly positive normalized difference vegetation index (NDVI)–climate relationship was generally observed on the de-noised time series in most vegetated regions, corresponding to their synchronous stronger seasonal pattern. Finally, at inter-annual level, the NDVI–climate relationship differed with climatic regions and their long-term trends: in humid regions, positive coefficients were observed except in regions with vegetation degradation; in arid, semiarid, and semihumid regions, positive relationships would be examined on the condition that increasing rainfall could compensate the increasing water requirement along with increasing temperature. This study provided valuable insights into the long-term vegetation–climate relationship in China with consideration of their spatiotemporal variability and overall trend in the global change process.  相似文献   

19.
Multitemporal NOAA/AVHRR NDVI images and monthly temperature and precipitation data were obtained across Yangtze River basin covering the period 1981–2001. The spatial and temporal patterns of NDVI are the same, while spatial analysis shows that the NDVI is influenced by the vegetation types growing in the study regions, and NDVI presents an increasing trend during the study period in the whole basin. The climate indicators play an important role in the changes of vegetation cover in the river basin. In the two Indicators, temperature has a significant effect on the NDVI values than precipitation in the whole basin. However, in the 11 subbasins, the different rules are shown in different subbasins.  相似文献   

20.
In semiarid regions the occurrence of alternating long drought and heavy rainfall periods directly impacts water availability, affecting human water supply, agriculture development and the provision of ecosystem services. Because of that, research on the water input and output fluxes at the basin scale is of paramount importance. In this sense, rainfall-evapotranspiration (ET) dynamics play a critical role in water, soil and vegetation interactions, in hydrometeorological modelling and in the energy fluxes dynamics of semiarid regions. Therefore, the objective of this study was to quantify daily ET during a wet year and a dry year in a watershed located in the Brazilian Semiarid, by using remote sensing data and formulations based on the Simplified Surface Energy Balance Index (S-SEBI) and the Simplified Surface Energy Balance (SSEB) algorithms. Land surface temperature, albedo and NDVI data from MODIS sensor and solar radiation data from weather stations located in the basin were used. Rainfall analysis indicated 2009 and 2012 as being representatives of anomalously wet and dry years respectively, which were selected for the quantification of ET. The proposed algorithm was adjusted and verified with data from a flux tower equipped with eddy covariance system. Daily remote sensing ET estimates showed good agreement with observed values (RMSE = 0.79 mm.d−1) and the annual ET relative error was of 7.7% (35.4 mm.year−1). Results showed that the native vegetation can delay its dormant state for five months during wet years. During the wet year, ET differences between land cover classes were less noticeable due to soil saturation and the urgency of vegetated surfaces to meet their physiological needs. In dry year, however, differences were more evident, with bare soil presenting lower ET rates and vegetation classes showing higher ET values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号