首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rock explosion has always been a complex problem because neither rock characteristics nor explosion waves could be accurately estimated. As such, this imposes a high uncertainty on deterministic methodologies available for damage prediction. In this paper, by defining two damage zones around the blast hole, including crushed and cracked zones, a first-order reliability analysis (FORM) was adopted to address this issue. For this purpose, FORM was used in a double-loop algorithm, where the inner loop was responsible for converging the FORM, and the outer loop was assigned to feed the inner loop with new cases. Using such nested-loop algorithm, the probability of exceedance was calculated for any desired damage zone radius. The maximum effect of the involved parameters on the failure probability induced around the blast hole was additionally studied using a parametric reliability analysis. The results showed that the radii for crushed and cracked zones are limited to 0.5 and 4.2?m, respectively, so that the probability of going beyond these limits is less than 1%. Moreover, the analyses of decoupled explosions showed that increasing the gap between the explosion charge and wall of the borehole could severely reduce the failure probability; however, the maximum effect of decoupling ratio occurs in the small range of radii between 0.3?mm and 2.35?m.  相似文献   

2.
白羽  朱万成  魏晨慧  魏炯 《岩土力学》2013,34(Z1):466-471
考虑岩石介质的非均匀性,把爆破过程视为爆炸应力波和爆生气体压力共同作用的结果,基于损伤力学理论建立了岩石爆破的力学模型,并对不同地应力条件下岩石双孔爆破裂纹演化规律进行了数值模拟,分析了不同侧压力系数和埋 深对裂纹扩展规律的影响。数值模拟结果表明:①爆炸应力波导致裂纹的萌生,爆生气体压力则会使裂纹进一步扩展和贯通; ②裂纹演化过程与地应力密切相关,裂纹扩展的主方向趋于最大地应力方向;③随着埋深增加和初始地应力增大,裂纹扩展半径和裂纹区面积减小,地应力对爆破致裂的抑制作用明显。  相似文献   

3.
Probabilistic seismic hazard analysis for Bangalore   总被引:5,自引:3,他引:2  
This article presents the results of probabilistic seismic hazard analysis (PSHA) for Bangalore, South India. Analyses have been carried out considering the seismotectonic parameters of the region covering a radius of 350 km keeping Bangalore as the center. Seismic hazard parameter ‘b’ has been evaluated considering the available earthquake data using (1) Gutenberg–Richter (G–R) relationship and (2) Kijko and Sellevoll (1989, 1992) method utilizing extreme and complete catalogs. The ‘b’ parameter was estimated to be 0.62 to 0.98 from G–R relation and 0.87 ± 0.03 from Kijko and Sellevoll method. The results obtained are a little higher than the ‘b’ values published earlier for southern India. Further, probabilistic seismic hazard analysis for Bangalore region has been carried out considering six seismogenic sources. From the analysis, mean annual rate of exceedance and cumulative probability hazard curve for peak ground acceleration (PGA) and spectral acceleration (Sa) have been generated. The quantified hazard values in terms of the rock level peak ground acceleration (PGA) are mapped for 10% probability of exceedance in 50 years on a grid size of 0.5 km × 0.5 km. In addition, Uniform Hazard Response Spectrum (UHRS) at rock level is also developed for the 5% damping corresponding to 10% probability of exceedance in 50 years. The peak ground acceleration (PGA) value of 0.121 g obtained from the present investigation is slightly lower (but comparable) than the PGA values obtained from the deterministic seismic hazard analysis (DSHA) for the same area. However, the PGA value obtained in the current investigation is higher than PGA values reported in the global seismic hazard assessment program (GSHAP) maps of Bhatia et al. (1999) for the shield area.  相似文献   

4.
In this work, an attempt has been made to evaluate the spatial variation of peak horizontal acceleration (PHA) and spectral acceleration (SA) values at rock level for south India based on the probabilistic seismic hazard analysis (PSHA). These values were estimated by considering the uncertainties involved in magnitude, hypocentral distance and attenuation of seismic waves. Different models were used for the hazard evaluation, and they were combined together using a logic tree approach. For evaluating the seismic hazard, the study area was divided into small grids of size 0.1° × 0.1°, and the hazard parameters were calculated at the centre of each of these grid cells by considering all the seismic sources within a radius of 300 km. Rock level PHA values and SA at 1 s corresponding to 10% probability of exceedance in 50 years were evaluated for all the grid points. Maps showing the spatial variation of rock level PHA values and SA at 1 s for the entire south India are presented in this paper. To compare the seismic hazard for some of the important cities, the seismic hazard curves and the uniform hazard response spectrum (UHRS) at rock level with 10% probability of exceedance in 50 years are also presented in this work.  相似文献   

5.
Summary This paper reports the second part of the study carried out by the authors on the underground explosion-induced stress wave propagation and damage in a rock mass. In the accompanying paper reporting the first part of the study, equivalent material properties were used to model the effects of existing cracks and joints in the rock mass. The rock mass and its properties were treated as deterministic. In this paper, existing random cracks and joints are modeled as statistical initial damage of the rock mass. In numerical calculation, an anisotropic continuum damage model including both the statistical anisotropic initial damage and cumulative damage dependent on principal tensile strain and stochastic critical tensile strain is suggested to model rock mass behavior under explosion loads. The statistical estimation of stress wave propagation in the rock mass due to underground explosion is evaluated by Rosenblueth's point estimate method. The suggested models and statistical solution process are also programmed and linked to Autodyn3D as its user's subroutines. Numerical results are compared with the field test data and those presented in the accompanying paper obtained with equivalent material property approach.  相似文献   

6.
Development of a probabilistic approach for rock wedge failure   总被引:5,自引:0,他引:5  
For rock slope engineering, uncertainty and variability are inherent in data collected on orientation and strength of discontinuities, yielding a range of results. Unfortunately, conventional deterministic analysis based on the factor of safety concept, requires a fixed representative value for each parameter without regard to the degree of uncertainty involved. Therefore, the deterministic analysis fails to properly represent uncertainty and variability, so common in engineering geology studies. To overcome this shortcoming, the probabilistic analysis method was proposed and used for more than a decade in rock slope stability analysis. However, most probabilistic analyses included a deterministic model as part of the analysis procedure causing subsequent problems, which went uncorrected. The objectives of this paper are to develop a solution for these difficulties in probabilistic analyses and to propose an appropriate simulation procedure for the probabilistic analysis of rock wedge failures. As part of the solution, probability of kinematic instability and probability of kinetic instability are evaluated separately to provide a proper, combined evaluation for failure probability. To evaluate the feasibility of this new probabilistic approach, the procedure is applied to a practical example, a major, highway rock cut in North Carolina, USA. Results of the probabilistic approach are compared to those of the deterministic analysis; findings are significantly different, indicating that the deterministic analysis does not depict rock slope variations, particularly where significant scatter in parameter data occurs.  相似文献   

7.
The process of cutting homogeneous soft material has been investigated extensively. However, there are not so many studies on cutting heterogeneous brittle material. In this paper, R‐T2D (Rock and Tool interaction), based on the rock failure process analysis model, is developed to simulate the fracture process in cutting heterogeneous brittle material. The simulated results reproduce the process involved in the fragmentation of rock or rock‐like material under mechanical tools: the build‐up of the stress field, the formation of the crushed zone, surface chipping, and the formation of the crater and subsurface cracks. Due to the inclusion of heterogeneity in the model, some new features in cutting brittle material are revealed. Firstly, macroscopic cracks sprout at the two edges of the cutter in a tensile mode. Then with the tensile cracks releasing the confining pressure, the rock in the initially high confining pressure zone is compressed into failure and the crushed zone gradually comes into being. The cracked zone near the crushed zone is always available, which makes the boundary of the crushed zone vague. Some cracks propagate to form chipping cracks and some dip into the rock to form subsurface cracks. The chipping cracks are mainly driven to propagate in a tensile mode or a mixed tensile and shear mode, following curvilinear paths, and finally intersect with the free surface to form chips. According to the simulated results, some qualitative and quantitative analyses are performed. It is found that the back rake angle of the cutter has an important effect on the cutting efficiency. Although the quantitative analysis needs more research work, it is not difficult to see the promise that the numerical method holds. It can be utilized to improve our understanding of tool–rock interaction and rock failure mechanisms under the action of mechanical tools, which, in turn, will be useful in assisting the design of fragmentation equipment and fragmentation operations. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
With increasing threat to lives and properties, identifying and assessing disaster potentials has become necessary and prior for effective disaster preparation and rescue planning. This study first introduces practical methods currently used in Taipei City, Taiwan, to identify and assess heavy rainfall–induced potential risks on flood, debris flow, and landslide. The identified disaster potential information is further applied to a series of deterministic and probabilistic risk analyses using Shilin District of Taipei City as a case study. The deterministic risk analyses are conducted to evaluate the impact of various heavy rainfall intensities on the residents. The probabilistic risk analyses are performed to establish risk curves for the population affected by heavy rainfall–induced hazards. The risk curve represents the relationships between the affected population and the annual exceedance probability. This study found the annual exceedance probability is very sensitive to the assumed coefficients of variation of the affected population. It is recommended historical statistical data on the correlation between affected population and rainfall intensity should be recorded and compiled in order to assess the actual probability distribution function of the affected population. Risk analysis results are further applied to assess the community evacuation capacity in this district. Last, short-term and long-term mitigation strategies and recommendations are discussed.  相似文献   

9.
Northeast India is one of the most highly seismically active regions in the world with more than seven earthquakes on an average per year of magnitude 5.0 and above. Reliable seismic hazard assessment could provide the necessary design inputs for earthquake resistant design of structures in this region. In this study, deterministic as well as probabilistic methods have been attempted for seismic hazard assessment of Tripura and Mizoram states at bedrock level condition. An updated earthquake catalogue was collected from various national and international seismological agencies for the period from 1731 to 2011. The homogenization, declustering and data completeness analysis of events have been carried out before hazard evaluation. Seismicity parameters have been estimated using G–R relationship for each source zone. Based on the seismicity, tectonic features and fault rupture mechanism, this region was divided into six major subzones. Region specific correlations were used for magnitude conversion for homogenization of earthquake size. Ground motion equations (Atkinson and Boore 2003; Gupta 2010) were validated with the observed PGA (peak ground acceleration) values before use in the hazard evaluation. In this study, the hazard is estimated using linear sources, identified in and around the study area. Results are presented in the form of PGA using both DSHA (deterministic seismic hazard analysis) and PSHA (probabilistic seismic hazard analysis) with 2 and 10% probability of exceedance in 50 years, and spectral acceleration (T = 0. 2 s, 1.0 s) for both the states (2% probability of exceedance in 50 years). The results are important to provide inputs for planning risk reduction strategies, for developing risk acceptance criteria and financial analysis for possible damages in the study area with a comprehensive analysis and higher resolution hazard mapping.  相似文献   

10.
The territory of Croatia and neighboring regions is divided into 17 seismic source zones, considering available seismological and geological data. On this basis, seismic hazard elements (seismicity rate, maximum magnitude, b-value, probabilities of exceedance and return periods for a predefined set of magnitudes) are computed using the maximum likelihood method appropriate for treating data-sets with variable completeness thresholds. The values of long term expected peak horizontal acceleration obtained by using a combination of the deterministic and the probabilistic procedure are the highest in the Dubrovnik zone, while the Zagreb zone has the highest earthquake hazard in the continental part of the country. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
吴果  冉洪流  周庆 《地球科学》2022,47(3):844-855
同震位错对川藏铁路等跨断层工程的安全造成严重威胁,合理评价活断层的位错参数具有重要的应用价值.由于传统的确定性评价方法存在无法区分工程场点的重要程度和其在断层上的相对位置等缺陷,越来越多的学者推荐采用概率断层位错危险性分析(PFDHA).然而基于经典的概率性方法开展PFDHA原理复杂且实现困难,不利于吸收断层地震活动性研究的最新成果,也有碍于PFDHA的普及和推广.相比经典的概率性方法,蒙特卡洛模拟具备逻辑清晰易懂、程序易于实现且兼容性和扩展性好的优点.本研究基于蒙特卡洛模拟实现了概率断层位错危险性分析的一般性算法,并将该方法应用于鲜水河断裂带的炉霍段.结果显示,PFDHA的结果随着超越概率水准或工程场点在断层上的相对位置的不同而显著变化.适当考虑最大同震位错和地表破裂长度的不确定性得到的位错参数更加合理.超越概率大于等于100年2%时,PFDHA的结果显著小于确定性方法的结果.然而随着断层活动性的提高,100年超越概率1%的结果可能会大于确定性方法的结果.按照不同类型工程的抗震设防水准选择相应的PFDHA评价结果,既有利于工程的安全,也有助于大多数工程节约成本.PFDHA相比确定性方法具备多种优势,有望为川藏铁路等重大工程的抗断参数评估提供技术支撑.   相似文献   

12.
赵海军  马凤山  李志清  郭捷  张家祥 《地球科学》2022,47(12):4401-4416
应用概率地震危险性评价模型进行地震滑坡危险性区划,是解决潜在地震诱发滑坡危险性评价中震源不确定性与诱发滑坡时空不确定性的有效方法 .通过理论分析,结合鲁甸地震区的实际情况,对基于力学原理的Newmark滑块位移模型与概率地震滑坡危险性分析方法中的参数的不确定性问题进行了分析,将斜坡岩土体地震作用下的强度衰减效应、地震加速度地形放大效应、断层破碎带效应融合到了斜坡累积位移计算模型中,进行了模型计算参数的优化.改进后的分析模型,更好地反映了高陡斜坡地形与断层破碎带对地震滑坡灾害发育的控制作用,在鲁甸地震区域滑坡应用中,优化模型中的滑坡失稳极高风险区与实际地震滑坡分布表现出了较好的一致性,在超越概率2%的滑坡失稳概率分布中,鲁甸地区包谷垴-小河断裂、鲁甸-昭通断裂带及牛栏江河谷地带地震滑坡高-极高风险区分布面积增幅十分显著.因此,在Newmark滑块位移模型中考虑地震动参数与岩土参数动态响应规律与变量间的定量关系,对于提高区域斜坡稳定性分析的可靠性具有重要意义.  相似文献   

13.
爆炸应力波作用下分支裂纹动态力学特性试验   总被引:1,自引:0,他引:1  
李清  张茜  李晟源  谢建文  孟宁宁 《岩土力学》2011,32(10):3026-3032
应用爆炸加载的透射式动焦散线测试系统,分析了平板中预制贯通裂纹在爆炸应力波作用下端部衍生分支裂纹及爆炸主裂纹的扩展规律。预制贯通裂纹面在压缩应力波及反射拉伸波作用下表现出明显的张开和闭合交替变化,预制贯通裂纹减弱了爆炸主裂纹的动态扩展行为,爆炸主裂纹难以穿过预制贯通裂纹继续扩展。分支裂纹是爆炸应力波在预制贯通裂纹端部衍射效应形成应力集中而衍生、起裂、扩展,其开裂角与预制贯通裂纹、爆炸应力波入射角密切相关,分支裂纹尖端沿着最大能量释放率方向起裂,逐渐平行于最大主应力的方向稳定扩展,中后期扩展多表现为复合型断裂。爆炸分支裂纹的动态应力强度因子、扩展速度低于爆炸主裂纹,获得了分支裂纹起裂韧度为0.50~0.65 MN/m3/2、止裂韧度为0.25~0.35 MN/m3/2。  相似文献   

14.
针对地下工程岩体压碎和塑性变化两种损伤形式,本文以莫尔-库伦准则为岩体在爆破荷载作用下的破坏条件,提出了冲击波作用下岩体压碎圈范围的计算式,运用Von Mises屈服条件,计算了应力波作用下岩体塑性区范围。以KUBELA 420炸药为例,估算了重庆主城区常见砂岩在爆破过程中形成的压碎圈范围不超过1.7倍装药半径,应力波作用下岩体塑性区范围不超过25.06倍装药半径,其与数值模拟预测的结果较接近。  相似文献   

15.
节理岩体的剪切特性是主导岩体工程稳定性的关键因素。基于PFC2D离散元颗粒流程序,结合室内试验结果对比分析,选取合理的细观参数进行数值模拟,分别从细观角度研究了节理岩石的裂纹发展、能量转化及声发射现象等特性,从宏观角度研究了节理岩石的强度模型和破坏形态。结果表明:节理岩体主要呈现磨损和剪断两种破坏形态,不同的破坏形态对应不同的强度模型;随着剪切变形增加,岩体沿节理面发生破坏,弹性阶段以法向裂纹为主,而塑性阶段切向裂纹起主导作用,滑移区R、P裂纹贯通形成破碎带,节理面产生较大滑移;在应力达到峰值强度前,边界能主要转化为应变能,法向裂纹生成较多;越过峰值强度后,摩擦能快速增长,并伴随大量切向裂纹产生。与室内试验结果相比,PFC2D较好地模拟了节理岩体剪切力学特性,弥补了室内试验中无法进行细观特性研究的缺陷,对于节理岩体后期研究提供了一些参考。  相似文献   

16.
The ground motion hazard for Sumatra and the Malaysian peninsula is calculated in a probabilistic framework, using procedures developed for the US National Seismic Hazard Maps. We constructed regional earthquake source models and used standard published and modified attenuation equations to calculate peak ground acceleration at 2% and 10% probability of exceedance in 50 years for rock site conditions. We developed or modified earthquake catalogs and declustered these catalogs to include only independent earthquakes. The resulting catalogs were used to define four source zones that characterize earthquakes in four tectonic environments: subduction zone interface earthquakes, subduction zone deep intraslab earthquakes, strike-slip transform earthquakes, and intraplate earthquakes. The recurrence rates and sizes of historical earthquakes on known faults and across zones were also determined from this modified catalog. In addition to the source zones, our seismic source model considers two major faults that are known historically to generate large earthquakes: the Sumatran subduction zone and the Sumatran transform fault. Several published studies were used to describe earthquakes along these faults during historical and pre-historical time, as well as to identify segmentation models of faults. Peak horizontal ground accelerations were calculated using ground motion prediction relations that were developed from seismic data obtained from the crustal interplate environment, crustal intraplate environment, along the subduction zone interface, and from deep intraslab earthquakes. Most of these relations, however, have not been developed for large distances that are needed for calculating the hazard across the Malaysian peninsula, and none were developed for earthquake ground motions generated in an interplate tectonic environment that are propagated into an intraplate tectonic environment. For the interplate and intraplate crustal earthquakes, we have applied ground-motion prediction relations that are consistent with California (interplate) and India (intraplate) strong motion data that we collected for distances beyond 200 km. For the subduction zone equations, we recognized that the published relationships at large distances were not consistent with global earthquake data that we collected and modified the relations to be compatible with the global subduction zone ground motions. In this analysis, we have used alternative source and attenuation models and weighted them to account for our uncertainty in which model is most appropriate for Sumatra or for the Malaysian peninsula. The resulting peak horizontal ground accelerations for 2% probability of exceedance in 50 years range from over 100% g to about 10% g across Sumatra and generally less than 20% g across most of the Malaysian peninsula. The ground motions at 10% probability of exceedance in 50 years are typically about 60% of the ground motions derived for a hazard level at 2% probability of exceedance in 50 years. The largest contributors to hazard are from the Sumatran faults.  相似文献   

17.
赵林  曾宪明  李世民  林大路  陆卫国 《岩土力学》2011,32(10):3019-3025
优化复合锚固结构是由土钉和在土钉端部系统而规律地设置的一定长度的经特殊处理的空孔段群组成。空孔群在围岩介质中造成一个弱化区,弱化区介于支护结构与围岩介质之间,将原有的二介质系统(支护结构和围岩),改变为三介质系统(支护结构、弱化区和围岩)。爆炸条件下,优先由弱化区产生变形、破碎、压实或压密,同时大量吸收爆炸能,使支护结构的危机得以转移至弱化区而本身不受损。优化复合锚固结构对比单一锚固结构具有优异的抗动静载性能。因此进行对比试验,研究优化复合锚固结构及单一锚固结构的抗爆性能。试验结果表明,在支护结构产生临界破坏前后,单一锚固结构的质点加速度量值是优化复合锚固结构的2.22倍以上,前者的动应变量值是后者的5.30~4.50倍以上。在临界破坏条件下,优化复合锚固结构的抗力是单一锚固结构的5.10倍以上,在极限破坏状条件下,前者是后者的4.13~3.40倍以上。  相似文献   

18.
王超  张社荣  于茂 《岩土力学》2014,35(5):1383-1390
从概率的观点出发,结合确定性矢量和安全系数方法,对设计基准期内随机地震条件下的重力坝岸坡坝段动力抗滑稳定性评估方法问题进行了初步探讨。首先,基于确定性动力时程分析法,得出坝段抗滑矢量和安全度时程曲线,评价一次确定性设计地震作用下的坝体稳定;然后,考虑基准期设计烈度下地震的随机性,进行坝体动力稳定的可靠度分析。通过Gram-Charlier级数拟合法和随机加权最大熵法,得到坝体动力稳定安全度时变曲线中最小值的概率分布函数及其动力可靠度;最后,结合确定性和概率性分析结果,综合评价设计基准期内地震作用下的坝体抗滑稳定性。工程实例分析结果表明,采用确定性与概率性结合的互补方法,能够进一步认识动力稳定分析中安全裕度的合理性评价问题,进而更加合理地评估整个设计基准期内重力坝的动力抗滑稳定性。  相似文献   

19.
A seismic hazard analysis was conducted in Laoag City, Northern Philippines to determine the design ground motion for liquefaction potential assessment of the area. Because the hazard analysis was done within the framework of liquefaction potential assessment, only those earthquakes with magnitude–distance combinations that are capable of generating liquefaction were considered in the study. Both probabilistic and deterministic approaches were used in the analysis. From the results of the probabilistic analysis, seismic hazard curves were generated from which the ground motion with a 10% probability of exceedance in 50years was obtained. This was then modified in consideration of the soft soil condition in the study area. Deaggregation was performed to determine the most likely earthquake to generate the said level of ground shaking.  相似文献   

20.
Statistical Analysis of Anisotropic Damage of the Bukit Timah Granite   总被引:1,自引:0,他引:1  
Summary This paper presents a method to analyze probabilistic anisotropic initial damage of a rock mass. A three-dimensional geometric model of cracks in a rock mass is established in terms of several parameters, such as orientations, spacing and normalized sizes of cracks in the rock mass. The dip, dip direction, spacing, and normalized size of cracks of the Bukit Timah granite in Singapore were obtained from visual inspection of rock cores, color TV imaging, and impression packer tests in the boreholes at a site of geological investigation. Using the measured data, probabilistic distribution laws of geometric parameters of cracks on the surface of the boreholes are derived. Based on these statistical distributions and using Monte-Carlo simulation method, the distribution of anisotropic initial damage of the Bukit Timah granite is derived and found to have a beta distribution. This anisotropic initial damage distribution of a rock mass can be used in probabilistic analysis of rock mass responses to both static and dynamic loads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号