首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Patterns of the South China Sea (SCS) circulation variability are extracted from merged satellite altimetry data from October 1992 through August 2004 by using the self-organizing map (SOM). The annual cycle, seasonal and inter-annual variations of the SCS surface circulation are identified through the evolution of the characteristic circulation patterns. The annual cycle of the SCS gener- al circulation patterns is described as a change between two opposite basin-scale SW-NE oriented gyres embedded with eddies: low sea surface height anomaly (SSHA) (cyclonic) in winter and high SSHA (anticyclonic) in summer half year. The transition starts from July--August (January--February) with a high (low) SSHA tongue east of Vietnam around 12°~14° N, which de- velopa into a big anticyclonic (cyclonic) gyre while moving eastward to the deep basin. During the transitions, a dipole structure, cyclonic (anticyclonic) in the north and anticyclonic (cyclonic) in the south, may be formed southeast off Vietnam with a strong zonal jet around 10°~12° N. The seasonal variation is modulated by the interannual variations. Besides the strong 1997/1998 e- vent in response to the peak Pacific El Nino in 1997, the overall SCS sea level is found to have a significant rise during 1999~ 2001, however, in summer 2004 the overall SCS sea level is lower and the basin-wide anticyclonic gyre becomes weaker than the other years.  相似文献   

2.
With its strong seasonal variation in wave climate and various bathymetric features due to the complex tectonics, the South China Sea (SCS) provides a natural laboratory to study the microseism. We collected data from seismic stations around the SCS and calculated their noise spectra, through which seasonal and spatial variations of microseism, as well as the general feature of seismic ambient noise in this marginal sea were revealed. Microseism seasonal variations in general reflect influences of the East Asian monsoon in winter and the Indian monsoon in summer, respectively. The two microseism components, the single frequency microseism (SFM) and the double frequency microseism (DFM), show striking alternating variation patterns both seasonally and spatially. These variation patterns, along with the bathymetric feature near the stations, indicate SFM and DFM are generated through different physical mechanisms. More interestingly, seasonal and spatial variations of DFM appear to be consistent with the basin-scale surface circulation model of the SCS, in which the upper SCS experiences cyclonic in winter and anti-cyclonic in summer. These consistencies provide observational evidence for the hypothesis that the cyclonic depression is a favorable condition to generate DFM.  相似文献   

3.
南海混合层深度的季节变化及年际变化特征   总被引:2,自引:0,他引:2  
通过分析新的SODA(Simple Ocean Data Assimilation)资料,得到南海混合层时空场的分布特征,剖析了南海混合层深度的季节及年际变化特征。资料分析表明:南海混合层存在着显著的季节和年际变化,且两者的均方差分布存在一定的差异。在季节变化中,冬季混合层在南海北部及西北陆架区深,在南海南部及吕宋冷涡处浅;夏季混合层在南海西北部浅,东南深。南海这种混合层深度分布特征除了与热通量的季节变化有关外,在相当大的程度上与季风引起的Ekman输送及Ekman抽吸有关。混合层深度距平场EOF(Empirical Othorgnal Function)第一模和第二模时间变化的主信号均为周期的年际变化信号,其中第一模态约为3 a,第二模态则有1.8,2.4和4.3 a的3个显著周期。EOF第一模显示混合层深度在南海东南部年际变化幅度最大,且滞后Nino3指数7个月时相关性最好(相关系数为0.422 3);EOF第二模显示在南海南部和北部混合层深度呈反位相变化。  相似文献   

4.
南海大尺度动力场年循环和年际变化   总被引:8,自引:2,他引:8  
应用COADS风应力、Levitus温度资料,描述南海上层海洋动力场的年循环及其与热力场之间的关系和南海大尺度动力场的年际变化。针对冬、夏2个季节,分析Sverdrup环流场与上层海温之间的关系。研究发现,上层海温变化与上层海洋环流基本结构非常相似,即上层海温变化在一定程度上反映了南海Sverdrup平衡,而且随着浓度的增加,平均海温场与流函数场之间的对应关系更好。本文还着重分析了El Nino期间和La Nina期间的南海异常流函数场。研究发现,异常流函数场在El Nino期间的夏季主要是强化南海自身的环流结构,即强化南部反气旋式涡流(gvre)和强化北部气旋式涡流;冬季则削弱整个南海的气旋式流场。LaNina期间对夏季环流态的影响主要集中在南海北部,即削弱北部气旋式涡流,而对于南海南部的影响甚微;冬季则强化整个南海的气旋式流场。  相似文献   

5.
南海暖水季节和年际变化的初步研究   总被引:1,自引:1,他引:1  
南海暖水具有明显的季节和年际变化。利用气候平均的COADS资料和NCEP大气资料分析了南海暖水的季节变化及其与海面净热通量的关系,以及由此引起的南海地区大气环流的变化。发现海面净热通量在南海暖水的季节变化过程中起到了主要的作用;冬季无暖水存在时,最大上升气流位于赤道及以南地区的印尼群岛附近,夏季最大上升气流北移到了南海暖水上空,南海暖水上空对流强烈,成为大气的对流活动中心。利用50年逐月的SODA海温资料进行垂直方向的3次样条插值,定义并计算南海暖水的强度指数,分析南海暖水的年际变化,并对南海暖水的几个异常暖年份作了合成分析,探讨了暖水年际变化的形成因素。  相似文献   

6.
Recent progress in studies of the South China Sea circulation   总被引:13,自引:1,他引:12  
The South China Sea (SCS) is a semi-enclosed marginal sea with deep a basin. The SCS is located at low latitudes, where the ocean circulations are driven principally by the Asia-Australia monsoon. Ocean circulation in the SCS is very complex and plays an important role in both the marine environment and climate variability. Due to the monsoon-mountain interactions the seasonal spatial pattern of the sea surface wind stress curl is very specific. These distinct patterns induce different basin-scale circulation and gyre in summer and winter, respectively. The intensified western boundary currents associated with the cyclonic and anticyclonic gyres in the SCS play important roles in the sea surface temperature variability of the basin. The mesoscale eddies in the SCS are rather active and their formation mechanisms have been described in recent studies. The water exchange through the Luzon Strait and other straits could give rise to the relation between the Pacific and the SCS. This paper reviews the research results mentioned above.  相似文献   

7.
Primary productivity (PP) and phytoplankton structure play an important role in regulating oceanic carbon cycle. The unique seasonal circulation and upwelling pattern of the South China Sea (SCS) provide an ideal natural laboratory to study the response of nutrients and phytoplankton dynamics to climate variation. In this study, we used a three-dimensional (3D) physical–biogeochemical coupled model to simulate nutrients, phytoplankton biomass, PP, and functional groups in the SCS from 1958 to 2009. The modeled results showed that the annual mean carbon composition of small phytoplankton, diatoms, and coccolithophores was 33.7, 52.7, and 13.6 %, respectively. Diatoms showed a higher seasonal variability than small phytoplankton and coccolithophores. Diatoms were abundant during winter in most areas of the SCS except for the offshore of southeastern Vietnam, where diatom blooms occurred in both summer and winter. Higher values of small phytoplankton and coccolithophores occurred mostly in summer. Our modeled results indicated that the seasonal variability of PP was driven by the East Asian Monsoon. The northeast winter monsoon results in more nutrients in the offshore area of the northwestern Luzon Island and the Sunda Shelf, while the southwest summer monsoon drives coastal upwelling to bring sufficient nutrients to the offshore area of southeastern Vietnam. The modeled PP was correlated with El Niño/Southern Oscillation (ENSO) at the interannual scale. The positive phase of ENSO (El Niño conditions) corresponded to lower PP and the negative phase of ENSO (La Niña conditions) corresponded to higher PP.  相似文献   

8.
To understand the confounding fishing effect and physical influence on fish production, catch time series in the East China Seas were analyzed. Principal component analysis partitioned 18 catch time series into interannual trends and variations. While the trends were attributed to growth in fishing effort, variations in catches were related to precipitation and monsoon wind speed. Correlations of catch variations with the physical variables suggest that land-based runoff and monsoon circulation of the diluted coastal water masses are the physical forces dominating catch variability and the influences are largely through the associated nutrient supply on primary production. Runoff inputs nutrients to the coastal ecosystem, while monsoons drive their distribution. Offshore diffusion of the coastal water masses by the summer monsoon increases distribution and efficiency of nutrients and has a positive effect on fish production. Southerly transport of coastal currents alongshore by the winter monsoon confines nutrient distribution and induces nutrient loss from the northern waters. This process reduces overall and northern production, but increases production to the south. A long-term variation in catches was identified, which corresponds to a trend in the local winter monsoon as well as large-scale atmospheric changes. Prediction of the catch variation by the local wind speed suggests that large-scale atmospheric circulation determines the trend in the local winter monsoon, and the local winter monsoon that drives nutrient distribution should be directly responsible for the long-term variation of fish production in the East China Seas.  相似文献   

9.
基于ROMS模型数值研究南海温跃层的季节变化   总被引:2,自引:0,他引:2  
On the basis of the regional ocean modeling system (ROMS), the seasonal variations of the thermocline in the South China Sea (SCS) were numerically investigated. The simulated hydrodynamics are in accordance with previous studies: the circulation pattern in the SCS is cyclonic in winter and anticyclonic in summer, and such a change is mostly driven by the monsoon winds. The errors between the modeled temperature profiles and the observations obtained by cruises are quite small in the upper layers of the ocean, indicating that the ocean status is reasonably simulated. On the basis of the shapes of the vertical temperature profiles, five thermocline types (shallow thermocline, deep thermocline, hybrid thermocline, double thermocline, and multiple thermocline) are defined herein. In winter, when the northeasterly monsoon prevails, most shallow shelf seas in the northwest of the SCS are well mixed, and there is no obvious thermocline. The deep region generally has a deep thermocline, and the hybrid or double thermocline often occurs in the areas near the cold eddy in the south of the SCS. In summer, when the southwesterly monsoon prevails, the shelf sea area with a shallow thermocline greatly expands. The distribution of different thermocline types shows a relationship with ocean bathymetry: from shallow to deep waters, the thermocline types generally change from shallow or hybrid to deep thermocline, and the double or multiple thermocline usually occurs in the steep regions. The seasonal variations of the three major thermocline characteristics (the upper bound depth, thickness, and intensity) are also discussed. Since the SCS is also an area where tropical cyclones frequently occur, the response of thermocline to a typhoon process in a short time scale is also analyzed.  相似文献   

10.
利用卫星遥感资料反演出的海洋大气参数,应用目前世界较为先进的通量算法(CORAER 3.0),计算了西太平洋区域海-气热通量(感热通量和潜热通量)。首先分析了海-气热通量的多年平均场和气候场变化的基本特征,以及年际和年代际变化特征;进而对其与南海夏季风爆发之间的关系进行了初步探讨。结果表明,西太平洋海-气热通量具有明显的时空分布特征,感热通量的最大值出现在黑潮区域,潜热通量的最大值出现在北赤道流区和黑潮区域。在气候平均场中,黑潮区域的感热通量和潜热通量最大值均出现在冬季,最小值出现在夏季;暖池区域感热通量除了春季较小外,冬、夏和秋季基本相同,而潜热通量最大值出现在秋、冬季,最小值出现在春、夏季。另外,海-气热通量还具有显著的年际变化和年代际变化,感热通量和潜热通量均存在16 a周期,与南海夏季风爆发存在相同的周期。由相关分析可知,4月份暖池区域的海-气热通量与滞后3 a的南海夏季风爆发之间存在密切相关关系,这种时滞相关性,可以用于进行南海夏季风爆发的预测,为我国汛期降水预报提供科学依据。基于以上结论,建立多元回归方程对2012年的南海夏季风爆发进行了预测,预测2012年南海夏季风爆发将偏晚1~2候左右。  相似文献   

11.
南海海域内岛礁众多, 渔业资源丰富, 而目前针对岛礁周边海区生态要素开展的研究仍较少。本文利用近20年多卫星融合水色遥感数据, 分析了南海38个主要岛礁周边区域海面叶绿素浓度的空间分布、季节变化和年际变化特征。结果表明, 岛礁周边普遍存在叶绿素浓度高值区, 其浓度约在离岛礁5个等效半径外降至海区背景水平。岛礁周边海域的叶绿素(相对于背景值的)浓度异常受海区背景值影响, 两者在南海的空间分布格局与背景值基本一致: 在平均温度较低、季风强度较大的东沙、西沙海区, 叶绿素浓度异常高于温度较高、季风强度相对较弱的中沙、南沙海区。叶绿素浓度呈现出明显的季节变化和年际变化特征, 一般在冬季风期间升高, 而在夏季风爆发前降至最低; 在El Ni?o次年随海温升高和季风减弱而下降, 在La Ni?a次年则相反。岛礁周边的叶绿素浓度异常受到温度变化的影响, 随着近年来海温变化幅度加大, 其年均水平呈显著下降趋势(P=5.05×10 -5)。这些结果可为我国岛礁区域渔业资源的开发和管理提供信息支持。  相似文献   

12.
Seasonal variations of phytoplankton/chlorophyll-a (Chl-a) distribution, sea surface wind, sea height anomaly, sea surface temperature and other oceanic environments for long periods are analyzed in the South China Sea (SCS), especially in the two typical regions off the east coast of Vietnam and off the northwest coast of Luzon, using remote sensing data and other oceanographic data. The results show that seasonal and spatial distributions of phytoplankton biomass in the SCS are primarily influenced by the monsoon winds and oceanic environments. Off the east coast of Vietnam, Chl-a concentration is a peak in August, a jet shape extending into the interior SCS, which is associated with strong southwesterly monsoon winds, the coastal upwetling induced by offshore Ekman transport and the strong offshore current in the western SCS. In December, high Chl-a concentration appears in the upwelling region off the northwest coast of Luzon and spreads southwestward. Strong mixing by the strong northeasterly monsoon winds, the cyclonic circulation, southwestward coastal currents and river discharge have impacts on distribution of phytoplankton, so that the high phytoplankton biomass extends from the coastal areas over the northern SCS to the entire SCS in winter. These research activities could be important for revealing spatial and temporal patterns of phytoplankton and their interactions with physical environments in the SCS.  相似文献   

13.
南海深水海盆环流和温跃层深度的季节变化   总被引:4,自引:0,他引:4  
受南海季风和复杂地形的影响,南海环流场具有复杂的空间结构和明显的季节变化,同时此海域又是中尺度涡多发海域,这些特征必然对南海温跃层深度的水平分布及季节变化有显著影响。首先,基于GDEM(General-ized Digital Environmental Model)的温、盐资料和利用P矢量方法计算并分析了南海的表层环流和多涡结构的空间分布特征和季节变化规律。在此基础上,分析了南海温跃层深度的空间分布特征和季节变化规律。结果表明,南海环流和多涡结构对南海温跃层具有显著的影响。  相似文献   

14.
中国海和泰国湾海域海平面的经向涛动   总被引:1,自引:0,他引:1  
李立 《海洋学报》2014,36(9):7-17
卫星高度计遥感海面高度距平资料(1992-2012年)的分析结果证实中国海(渤、黄、东海及南海)和泰国湾作为一个半封闭的狭长水域,其海平面存在显著的南北经向涛动。涛动呈现明显的季节性,冬季南高北低,夏季北高南低,以渤海和泰国湾的海平面高差作为涛动的测度,其多年平均波动幅度达63cm,较差超过80cm。时间序列分析显示,在季节尺度上这一涛动几乎完全受东亚季风的支配,表明东亚季风的局地强迫是造成季节涛动的主要原因。进一步的分析发现,除季节波动之外研究海域海平面的经向涛动还存在明显的年际变化。不过,与季节尺度的波动有所不同,经向涛动的年际变化不仅是东亚季风区局地作用的结果,而且与太平洋海盆尺度的大气强迫有关,其作用与季风在同一数量级。涛动的年际变化大致滞后各气候因子两个月。采用多输入线性模型做偏相关分析筛选的结果显示,除东亚季风指数之外,研究海域的海平面涛动指数主要与太平洋的南方涛动指数(SOI)和西太平洋遥相关指数(WP)相关。这表明外部强迫既来自热带,也来自中纬度。南方涛动所导致的赤道海域海平面的东西向年际涛动,以及中纬度西风急流年际波动对西北太平洋海平面的作用,都有可能导致研究海域海平面经向涛动的年际变化,其机制有待进一步探讨。  相似文献   

15.
Using the National Center for Enviromental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data and NOAA satellite-obser ved outgoing long-wave radiation (OLR) data, the development of the South China Sea (SCS) summer monsoon and intraseasonal (30-60 d) oscillation (ISO) have been examined. The results show that there exists obvious interannual variability of intraseasonal oscillaiton. Using the 16 a time series of filtered OLR averaged over the SCS, an index is defined to define ““onset events““ over the SCS on the ISO time scales. Of the 16 a examined here, 10 shows a strong ISO signal in the onset of monsoon convection over the SCS. In these cases, the ISO initially suppresses the seasonal development of southwesterly and cyclonic circulation over the SCS before the ISO onset. As the ISO propagates northeastward, the low frequency cyclonic circulation anomaly occurs in the SCS and the low frequency southwesterly wind and convection over here dramatically intensify. The northeast progression of the ISO anomaleis plays a role in the initial suppression and then acceleration of the seasonal cycle of the SCS summer monsoon.  相似文献   

16.
The variability of the sea surface temperature(SST) in the China seas has been studied in seasonal,interannual and interdecadal scales based on the monthly data of HadISST spanning from 1870 to 2007. The main results obtained are SST in the China offshore changes most actively at the seasonal scale with the intensity diminishing from north to south,as the temperature differences between summer and winter reaching 17 and 4 C in the northern and southern areas,respectively. Moreover,seasonal variation near the coastal regions seems relatively stronger than that far from the coastline;significant interannual variations are detected,with the largest positive anomaly occurring in 1998 in the overall area. But as far as different domains are concerned,there exists great diversity,and the difference is also found between winter and summer. Differed from the seasonal variations,where the strongest interannual variability takes place,resides to the south of that of the seasonal ones in the northern section,nevertheless in the South China Sea,the most significant interannual variability is found in the deep basin;interdecadal changes of summer,winter and annual mean SST in different domains likewise present various features. In addition,a common dominant warming in recent 20 a are found in the overall China offshore with the strongest center located in the vicinity of the Changjiang Estuary in the East China Sea,which intensifies as high as 1.3 C during the past 130 a.  相似文献   

17.
基于南沙群岛海域综合科学考察11个航次的实测资料,研究了南沙群岛海域的混合层深度季节变化特征。研究结果表明,南沙群岛海域混合层深度存在明显的季节变化,并且与季风和海表热通量的变化密切相关。春季,风速较小且风向不稳定,海面得到的净热通量全年最大,上层水体层结稳定,混合层深度较小;夏季,南海西南季风盛行,上层为反气旋式环流,海面得到的净热通量减少,混合层呈加深的趋势;秋季,海面净热通量继续减少,混合层深度达到最大值;冬季,东北季风驱动下形成的上层气旋式环流引起深层冷水的上升,限制了混合层的加深。  相似文献   

18.
The South China Sea (SCS) exhibits strong variations on seasonal to interannual time scale, and the changing Southeast Asian Monsoon has direct impacts on the nutrients and phytoplankton dynamics, as well as the carbon cycle. A Pacific basin-wide physical-biogeochemical model has been developed and used to investigate the physical variations, ecosystem responses, and carbon cycle consequences. The Pacific basin-wide circulation model, based on the Regional Ocean Model Systems (ROMS) with a 50-km spatial resolution, is driven with daily air-sea fluxes derived from the National Centers for Environmental Prediction (NCEP) reanalysis between 1990 and 2004. The biogeochemical processes are simulated with the Carbon, Si(OH)4, Nitrogen Ecosystem (CoSINE) model consisting of multiple nutrients and plankton functional groups and detailed carbon cycle dynamics. The ROMS-CoSINE model is capable of reproducing many observed features and their variability over the same period at the SouthEast Asian Time-series Study (SEATS) station in the SCS. The integrated air-sea CO2 flux over the entire SCS reveals a strong seasonal cycle, serving as a source of CO2 to the atmosphere in spring, summer and autumn, but acting as a sink of CO2 for the atmosphere in winter. The annual mean sea-to-air CO2 flux averaged over the entire SCS is +0.33 moles CO2 m−2year−1, which indicates that the SCS is a weak source of CO2 to the atmosphere. Temperature has a stronger influence on the seasonal variation of pCO2 than biological activity, and is thus the dominant factor controlling the oceanic pCO2 in the SCS. The water temperature, seasonal upwelling and Kuroshio intrusion determine the pCO2 differences at coast of Vietnam and the northwestern region of the Luzon Island. The inverse relationship between the interannual variability of Chl-a in summer near the coast of Vietnam and NINO3 SST (Sea Surface Temperature) index in January implies that the carbon cycle and primary productivity in the SCS is teleconnected to the Pacific-East Asian large-scale climatic variability.  相似文献   

19.
使用NCEP/NCAR的海表温度(SST)、海面10 m风场的月平均再分析资料,用联合SVD(CSVD)的方法研究了不同季节南海的海气耦合模的时空分布特征及其与中国夏季降水的关系。通过对不同季节的海-气耦合模的年际变化特征的分析。结果发现:第一模态为最显著模态,模态协方差贡献比在四季均超过80%,空间上SST表现为与南海等深线相一致的海盆模态,风场上主要表现为弱的冬季风或弱的夏季风,各个季节的海-气耦合模态都主要反映了SST-蒸发-风反馈这样1种正反馈的海-气相互作用过程,而且冬季风期间这种相互作用要更强烈些。时间系数均主要表现为一致的上升趋势和1976年前后的年代际突变,以及与ENSO相关的年际变化特征。冬、夏季弱的季风对应暖SST的特征体现了这种耦合模态隔季相关的特征,都对应夏季华南旱(涝)、江南涝(旱),华北、山东半岛旱(涝),东北涝(旱)这样1种波列状的旱涝相间分布。  相似文献   

20.
Temporal and spatial variations of sea surface circulation in the South China Sea were revealed with use of altimetric data provided by TOPEX/POSEIDON from December 1992 to October 1997. The estimated distribution of sea surface dynamic heights from altimetric data coincide well with the results of observation by Soong et al. (1995) and Chu et al. (1998). The RMS variability of sea surface dynamic height, which is obtained after tidal correction based on Yanagi et al. (1997), is high in the central part of the South China Sea, the Gulf of Tongking, the Sunda Shelf and the Gulf of Thailand. The high RMS variability in the Gulf of Tongking, the Sunda Shelf and the Gulf of Thailand is due to set up and set down of sea water by the East Asian monsoon, which is northeasterly during winter and southwesterly during summer. Also, the high RMS variability in the central part of the South China Sea is due to the variations of basin-wide circulation. The circulations are dominant in the central part of the South China Sea during summer and winter, an anticyclonic circulation during summer and a cyclonic circulation during winter. It is suggested that these circulations are controlled by the East Asian monsoon. Hence, there is an interannual variability of the basin-wide circulation associated with the variation of the East Asian monsoon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号