首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Extreme rainfall in June 1949 and November 1985 triggered numerous large debris flows on the steep slopes of North Fork Mountain, eastern West Virginia. Detailed mapping at four sites and field observations of several others indicate that the debris flows began in steep hillslope hollows, propagated downslope through the channel system, eroded channel sediment, produced complex distributions of deposits in lower gradient channels, and delivered sediment to floodwaters beyond the debris-flow termini. Based on the distribution of deposits and eroded surfaces, up to four zones were identified with each debris flow: an upper failure zone, a middle transport/erosion zone, a lower deposition zone, and a sediment-laden floodwater zone immediately downstream from the debris-flow terminus. Geomorphic effects of the debris flows in these zones are spatially variable. The initiation of debris flows in the failure zones and passage through the transport/erosion zones are characterized by degradation; 2300 to 17 000 m3 of sediment was eroded from these zones. The total volume of channel erosion in the transport/erosion zones was 1·3 to 1·5 times greater than the total volume of sediment that initially failed, indicating that the debris flows were effective erosion agents as they travelled through the transport/erosion zones. The overall response in the deposition zones was aggradation. However, up to 43 per cent of the sediment delivered to these zones was eroded by floodwaters from joining tributaries immediately after debris-flow deposition. This sediment was incorporated into floodwaters downstream from the debris-flow termini causing considerable erosion and deposition in these channels. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
This paper describes and analyses a hillslope–channel slope failure event that occurred at Wet Swine Gill, Lake District, northern England. This comprised a hillslope slide (180 m3, c. 203 ± 36 t), which coupled with the adjacent stream, resulting in a channelized debris flow and fluvial flood. The timing of the event is constrained between January and March 2002. The hillslope failure occurred in response to a rainfall/snowmelt trigger, on ground recently disturbed by a heather moorland fire and modified by artificial drainage. Slide and flow dynamics are estimated using reconstructed velocity and discharge values along the sediment transfer path. There is a rapid downstream reduction in both maximum velocity, from 9·8 to 1·3 m s?1; and maximum discharge, ranging from 33·5 to 2·4 m3 s?1. A volumetric sediment budget quantified a high degree of coupling between the hillslope and immediate channel (~92%: 167 m3), but virtually all of the sediment was retained in the first‐order tributary channel. Approximately 44% (81 m3) of the slide volume was retained in the run‐up deposit, and termination of the debris flow prior to the main river meant that the remainder did not discharge into the fluvial system downstream. These results suggest poor transmission of sediment to the main river at the time of the event, but importantly an increase in available material for post‐event sediment transfer processes within the small upland tributary. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Following the Painted Cave Fire of 25 June 1990 in Santa Barbara, California which burned 1214 ha, an emergency watershed protection plan was implemented consisting of stream clearing, grade stabilizers and construction of debris basins. Research was initiated focusing on hydrological response and channel morphology changes on two branches of Maria Ygnacio Creek, the main drainage of the burned area. Research results support the hypothesis that the response of small drainage basins in chaparral ecosystems to wildfire is complex and flushing of sediment by fluvial processes is more likely than by high magnitude debris flows. During the winter of 1990–1991, 35–66 cm of rainfall and intensities up to 10 cm per hour for a five-minute period were recorded with a seasonal total of 100% of average (normal) rainfall (average=63 cm/year). During the winter of 1991–1992, 48–74 cm of rainfall and intensities up to 8 cm per hour were recorded with a seasonal total of 115% of normal. Even though there was moderate rainfall on barren, saturated soils, no major debris flows occurred in burned areas. The winter of 1992–1993 recorded total precipitation of about 170% of normal, annual average intensities were relatively low and again no debris flows were observed. The response to winter storms in the first three years following the fire was a moderate but spectacular flushing of sediment, most of which was derived from the hillslopes upstream of the debris basins. The first significant storm and stream flow of the 1990–1991 winter was transport-limited resulting in large volumes of sediment being deposited in the channel of Maria Ygnacio Creek; the second storm and stream flow was sediment-limited and the channel scoured. Debris basins trapped about 23 000 m3, the majority coming from the storm of 17–20 March 1991. Sediment transported downstream during the three winters following the fire and not trapped in the debris basins was eventually flushed to the estuarine reaches of the creeks below the burn area, where approximately 108 000 m3 accumulated. Changes in stream morphology following the fire were dramatic as pools filled with sediment which greatly smoothed longitudinal and cross-sectional profiles. Major changes in channel morphology occur following a fire as sediment derived from the hillslope is temporarily stored in channels within the burned area. However, this sediment may quickly move downstream of the burned region, where it may accumulate reducing channel capacity and increasing the flood hazard. Ecological consequences of wildfire to the riparian zone of streams in the chaparral environment are virtually unknown, but must be significant as the majority of sediment (particularly gravel necessary for fish and other aquatic organisms) entering the system does so in response to fires. © 1997 John Wiley & Sons, Ltd.  相似文献   

4.
Field studies that investigate sediment transport between debris-flow-producing headwaters and rivers are uncommon, particularly in forested settings, where debris flows are infrequent and opportunities for collecting data are limited. This study quantifies the volume and composition of sediment deposited in the arterial channel network of a 14-km2 catchment (Washington Creek) that connects small, burned and debris-flow-producing headwaters (<1 km2) with the Ovens River in SE Australia. We construct a sediment budget by combining new data on deposition with a sediment delivery model for post-fire debris flows. Data on deposits were plotted alongside the slope–area curve to examine links between processes, catchment morphometry and geomorphic process domains. The results show that large deposits are concentrated in the proximity of three major channel junctions, which correspond to breaks in channel slope. Hyperconcentrated flows are more prominent towards the catchment outlet, where the slope–area curve indicates a transition from debris flow to fluvial domains. This shift corresponds to a change in efficiency of the flow, determined from the ratio of median grain size to channel slope. Our sediment budget suggests a total sediment efflux from Washington Creek catchment of 61 × 103 m3. There are similar contributions from hillslopes (43 ± 14 × 103 m3), first to third stream order channel (35 ± 12 × 103 m3) and the arterial fourth to fifth stream order channel (31 ± 17 × 103 m3) to the total volume of erosion. Deposition (39 ± 17 × 103 m3) within the arterial channel was higher than erosion (31 ± 17 × 103 m3), which means a net sediment gain of about 8 × 103 m3 in the arterial channel. The ratio of total deposition to total erosion was 0.44. For fines <63 μm, this ratio was much smaller (0.11), which means that fines are preferentially exported. This has important implications for suspended sediment and water quality in downstream rivers. © 2019 John Wiley & Sons, Ltd.  相似文献   

5.
This paper assesses the mechanisms and pathways by which peat blocks are eroded and transported in upland fluvial systems. Observations and experiments from the north Pennines (UK) have been carried out on two contrasting river systems. Mapping of peat block distributions and appraisal of reach‐based sediment budgets clearly demonstrates that macro‐size peat is an important stream load component. In small streams block sizes can approximate the channel width and much of the peat is transported overbank. Local ‘peat jams’ and associated mineral deposition may provide an important component of channel storage. In larger systems peat blocks rapidly move down‐channel and undergo frequent exchanges between bed and bank storage. Results of peat block tracing using painted blocks indicate that once submerged, blocks of all sizes are easily transported and blocks break down rapidly by abrasion. Vegetation and bars play an important role in trapping mobile peat. In smaller streams large block transport is limited by channel jams. Smaller blocks are transported overbank but exhibit little evidence of downstream fining. In larger rivers peat blocks are more actively sorted and show downstream reduction in size from source. A simple model relating peat block diameter (Dp) to average flow depth (d) suggests three limiting transport conditions: flotation (Dp < d), rolling (d < Dp > d/2) and deposition (Dp > d/2). Experiments demonstrate that peat block transport occurs largely by rolling and floating and the transport mechanism is probably controlled by relative flow depth (d/Dp ratio). Transport velocity varies with transport mechanism (rolling is the slowest mode) and transport lengths increase as flow depth increases. Abrasion rates vary with the transport mechanism. Rolling produces greater abrasion rates and more rounded blocks. Abrasion rates vary from 0 to 10 g m?1 for blocks ranging in mass from 10 to 6000 g. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
The debris deposits at the bottom of very steep natural channels and streams in high mountain areas can be mobilized by runoff, triggering a water–sediment mixture flow known as debris flow. The routing of debris flow through human settlements can cause damage to civil structures and loss of human lives. The prediction of such an event, or the runoff discharge that triggers it, assumes an interest in risk analyses and the planning of defence measures. The object of this study is to find a method to determine the critical runoff value that triggers debris flow as a result of channel‐bed failure. Historical and rainfall data on 30 debris flows that occurred in six watersheds of the Dolomites (north‐eastern Italian Alps) were collected from different sources. Field investigations at the six sites, together with the hydrologic response to the rainfalls that triggered the events, were performed to obtain a realistic scenario of the formation of the debris flow there occurred. Field observations include a survey along the channel of the triggering reach of debris flow, with measurements of the channel slope and cross‐section and sampling of debris deposits for grain size distribution. Simulated runoff discharge values based on the rainfall recorded by pluviometers were then compared with values obtained through experimental criteria on the initiation and formation of debris flow by bed failure. The results are discussed to provide a plausible physical‐based method for the prediction of the triggering of debris flow by channel‐bed failure. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Accumulations of stored sediments in a sub-alpine environment of a front range of New Zealand's Southern Alps closely resemble sieve deposits previously described from southeastern California. The locations of such deposits, within active river channels, has important implications for long term sediment yields from catchments where such deposits occur. The catastrophic failure of a sieve deposit in the Torlesse Stream catchment, the site of an earlier investigation of mountain stream sediments, resulted in a sediment yield equivalent to a third of the total yield recorded over an eight-year period. Derived bed-load transport rates represent, at a minimum, a four-fold increase over calculated average transport rates. Such deposits are only likely to fail during extreme low frequency events since their highly permeable gravels allow for the continuation of stream flow underneath the bulk of the deposit and restricts significant increases in moisture content within the deposit. The loss of water is responsible for the inhibition of flowage-type mass movement transport mechanisms wherein available water contributes to the maintenance of positive pore pressures. For the example studied here the percentage of silt and clay is less than 3 per cent of the total sample while sorting values (σ1) are generally less than 2.0?. These values are approximately one-third and one-half respectively, of typical values obtained for these parameters from debris flow deposits. The feature described here is believed to have originated through failure of a higher altitude perched scree-field. This mode of origin would account for the distinctive sediment size parameters.  相似文献   

8.
The behaviour and form of, and bedload sediment transport through, a 3.5 m wide forest stream have been monitored for nearly three years. Bedload transport is highly episodic and spatially variable, and is controlled less by water discharge than by sediment availability. Organic debris in the channel creates temporary base levels and sites at which coarse sediment may remain stored for long periods; collapse or disruption of log and debris jams makes sediment available for transport in only a small proportion of the runoff events that are actually competent to move the material. Even then, sediment travels only a short distance before being redeposited, frequently behind debris accumulations further downstream. Rates of sediment transport during a given runoff event can vary markedly over short distances along the stream, again depending on whether sediment was made available for transport by log jam collapse upstream. Organic debris is therefore a major constraint on the application of physical laws and theories to explaining sediment movement in, and the morphology of, this stream.  相似文献   

9.
The process of dam removal establishes the channel morphology that is later adjusted by high-flow events. Generalities about process responses have been hypothesized, but broad applicability and details remain a research need. We completed laboratory experiments focused on understanding how processes occurring immediately after a sediment release upon dam removal or failure affect the downstream channel bed. Flume experiments tested three sediment mixtures at high and low flow rates. We measured changes in impounded sediment volume, downstream bed surface, and rates of deposition and erosion as the downstream bed adjusted. Results quantified the process responses and connected changes in downstream channel morphology to sediment composition, temporal variability in impounded sediment erosion, and spatial and temporal rates of bedload transport. Within gravel and sand sediments, the process response depended on sediment mobility. Dam removals at low flows created partial mobility with sands transporting as ripples over the gravel bed. In total, 37% of the reservoir eroded, and half the eroded sediment remained in the downstream reach. High flows generated full bed mobility, eroding sands and gravels into and through the downstream reach as 38% of the reservoir eroded. Although some sediment deposited, there was net erosion from the reach as a new, narrower channel eroded through the deposit. When silt was part of the sediment, the process response depended on how the flow rate influenced reservoir erosion rates. At low flows, reservoir erosion rates were initially low and the sediment partially exposed. The reduced sediment supply led to downstream bed erosion. Once reservoir erosion rates increased, sediment deposited downstream and a new channel eroded into the deposits. At high flows, eroded sediment temporarily deposited evenly over the downstream channel before eroding both the deposits and channel bed. At low flows, reservoir erosion was 17–18%, while at the high flow it was 31–41%.  相似文献   

10.
Abstract

Previous work on the initiation of debris flows has emphasized the roles played by material strength, stream gradient, and fluid pressure, but in most published models the friction angle (φ′) of the channel material is assigned some characteristic or constant value. The model presented here retains gradient and pressure as variables, and considers the probable changes in φ′ and hydraulic conductivity, K, of channel debris over time. Preliminary results from the Howe Sound area in southwest British Columbia suggest that stream reworking may lead to small increases in φ′ and large increases in K, rendering channel debris more stable with time. This is partially offset by a local increase in channel gradient as debris accumulates. These factors favour the growth of large, marginally stable debris deposits, and may lead to high-magnitude, low-frequency debris torrents in channels not steep enough to produce torrents directly from hillslope failure events.  相似文献   

11.
Effects of large organic material on channel form and fluvial processes   总被引:1,自引:0,他引:1  
Stream channel development in forested areas is profoundly influenced by large organic debris (logs, limbs and rootwads greater than 10 cm in diameter) in the channels. In low gradient meandering streams large organic debris enters the channel through bank erosion, mass wasting, blowdown, and collapse of trees due to ice loading. In small streams large organic debris may locally influence channel morphology and sediment transport processes because the stream may not have the competency to redistribute the debris. In larger streams flowing water may move large organic debris, concentrating it into distinct accumulations (debris jams). Organic debris may greatly affect channel form and process by: increasing or decreasing stability of stream banks; influencing development of midchannel bars and short braided reaches; and facilitating, with other favourable circumstances, development of meander cutoffs. In steep gradient mountain streams organic debris may enter the channel by all the processes mentioned for low gradient streams. In addition, considerable debris may also enter the channel by way of debris avalanches or debris torrents. In small to intermediate size mountain streams with steep valley walls and little or no floodplain or flat valley floor, the effects of large organic debris on the fluvial processes and channel form may be very significant. Debris jams may locally accelerate or retard channel bed and bank erosion and/or deposition; create sites for significant sediment storage; and produce a stepped channel profile, herein referred to as ‘organic stepping’, which provides for variable channel morphology and flow conditions. The effect of live or dead trees anchored by rootwads into the stream bank may not only greatly retard bank erosion but also influence channel width and the development of small scour holes along the channel beneath tree roots. Once trees fall into the stream, their influence on the channel form and process may be quite different than when they were defending the banks, and, depending on the size of the debris, size of the stream, and many other factors, their effects range from insignificant to very important.  相似文献   

12.
— SedFlux simulates the fill of sedimentary basins, and can be used to examine the location and attributes of sediment failure on continental margins and the runout of their associated sediment gravity flows. Numerical experiments show how the evolving boundary conditions of sea-level fluctuations, floods, storms, tectonic and other relevant processes control the rate and size of slope instabilities. By tracking deposit properties (pore pressures, grain size, bulk density, porosity), a finite-slope factor-of-safety analysis of marine deposits examines failure potential. A decider routine is used to determine whether the failed material will travel down slope as turbidity current or a debris flow. Examples provided insight into: (i) why fjords dominated by turbidity current deposition often contain debris flow deposits; (ii) how glaciated margins prograde seaward through shallow failures of low yield strength material; and, (iii) how large-scale basin subsidence can control the onset of canyon formation across continental slopes.  相似文献   

13.
Understanding patterns of expansion, contraction, and disconnection of headwater stream length in diverse settings is invaluable for the effective management of water resources as well as for informing research in the hydrology, ecology, and biogeochemistry of temporary streams. More accurate mapping of the stream network and quantitative measures of flow duration in the vast headwater regions facilitate implementation of water quality regulation and other policies to protect waterways. We determined the length and connectivity of the wet stream and geomorphic channel network in 3 forested catchments (<75 ha) in each of 4 physiographic provinces of the Appalachian Highlands: the New England, Appalachian Plateau, Valley and Ridge, and Blue Ridge. We mapped wet stream length 7 times at each catchment to characterize flow conditions between exceedance probabilities of <5% and >90% of the mean daily discharge. Stream network dynamics reflected geologic controls at both regional and local scales. Wet stream length was most variable at two Valley and Ridge catchments on a shale scarp slope and changed the least in the Blue Ridge. The density and source area of flow origins differed between the crystalline and sedimentary physiographic provinces, as the Appalachian Plateau and Valley and Ridge had fewer origins with much larger contributing areas than New England and the Blue Ridge. However, the length and surface connectivity of the wet stream depended on local lithology, geologic structure, and the distribution of surficial deposits such as boulders, glacially derived material, and colluival debris or sediment valley fills. Several proxies indicate the magnitude of stream length dynamics, including bankfull channel width, network connectivity, the base flow index, and the ratio of geomorphic channel to wet stream length. Consideration of geologic characteristics at multiple spatial scales is imperative for future investigations of flow intermittency in headwaters.  相似文献   

14.
Te Whaiau Formation is a massive volcaniclastic deposit interbedded within gravelly and sandy volcanogenic sediments of the northwestern Tongariro ring plain. The ca. 0.5-km3 deposit comprises a clay-rich, matrix-supported diamicton with lithological and physical properties that are typical of a cohesive debris-flow deposit. Clays identified in the matrix are derived from hydrothermally altered andesite lava and pyroclastic rocks. The distribution pattern of the deposit, and the nature of the clay matrix, point to a source area that was located in the vicinity of Mt. Tongariro's current summit (1967 m). Most of the proximal zone is buried under late Pleistocene lavas forming the northwestern flank of the massif. In contrast, the medial and distal zones are well exposed to the northwest in the Whanganui River catchment. Lithofacies exposed in these latter zones contain isolated volcaniclastic megaclasts and well-preserved, jointed blocks of andesite. Small hummocks, up to 5 m high, are present only in the distal margins of the deposit. Based on these observations, possible source areas and analogy with similar deposits elsewhere, we infer that Te Whaiau Formation was initiated as a fluid-saturated debris avalanche that transformed downstream into a single, cohesive debris flow. It is interpreted that the mass flow was initially confined to the northwestern flank of Tongariro before spreading laterally onto the lowlands to the northwest. The resulting heterolithological diamicton filled stream channels in the western sector of the Tongariro ring plain. At 15 km from source, the debris flow encountered an elevated terrain, which acted as a barrier to further spreading to the north. The stratigraphy of the cover beds and K/Ar data on an underlying lava indicate that Te Whaiau Formation was emplaced between 55 and 60 ka, a cool period characterized by intense volcaniclastic sedimentation around the Tongariro massif. Jigsaw-fit fractured volcanic bombs suggest that an explosive eruption through hydrothermally altered rock and pyroclastic deposits probably triggered the mass flow. The characteristics of the deposit indicate that a large portion of the proto-Tongariro edifice collapsed en masse to form the initial avalanche. Hence, we infer that the current morphology of Tongariro volcano is derived not only from glacial erosion, but also from gravitational failure. Prehistoric eruptions and current geothermal activity on the upper northern and western slopes of the Tongariro massif suggest that avalanche-induced debris flows must be considered a potential future volcanic hazard for the region.  相似文献   

15.
This study examined the thermal regime of a headwater stream within a clear‐cut. The stream had a complex morphology dominated by step–pool features, many formed by sediment accumulation upstream of woody debris. Maximum daily temperatures increased up to 5 °C after logging, and were positively associated with maximum daily air temperature and negatively with discharge. Maximum daily temperatures generally increased with downstream distance through the cut block, but decreased with distance in two segments over distances of tens of metres, where the topography indicated relatively concentrated lateral inflow. Localized cool areas within a step–pool unit were associated with zones of concentrated upwelling. Bed temperatures tended to be higher and have greater ranges in areas of downwelling flow into the bed. Heat budget estimates were made using meteorological measurements over the water surface and a model of net radiation using canopy characteristics derived from fisheye photography. Heat exchange driven by hyporheic flow through the channel step was a cooling effect during daytime, with a magnitude up to approximately 25% that of net radiation during the period of maximum daytime warming. Heat budget calculations in these headwater streams are complicated by the heterogeneity of incident solar radiation and channel geometry, as well as uncertainty in estimating heat and water exchanges between the stream and the subsurface via hyporheic exchange and heat conduction. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
As a response to channelization projects undertaken near the turn of the 20th century and in the late 1960s, upstream reaches and tributaries of the Yalobusha River, Mississippi, USA, have been rejuvenated by upstream‐migrating knickpoints. Sediment and woody vegetation delivered to the channels by mass failure of streambanks has been transported downstream to form a large sediment/debris plug where the downstream end of the channelized reach joins an unmodified sinuous reach. Classification within a model of channel evolution and analysis of thalweg elevations and channel slopes indicates that downstream reaches have equilibrated but that upstream reaches are actively degrading. The beds of degrading reaches are characterized by firm, cohesive clays of two formations of Palaeocene age. The erodibility of these clay beds was determined with a jet‐test device and related to critical shear stresses and erosion rates. Repeated surveys indicated that knickpoint migration rates in these clays varied from 0·7 to 12 m a?1, and that these rates and migration processes are highly dependent upon the bed substrate. Resistant clay beds of the Porters Creek Clay formation have restricted advancement of knickpoints in certain reaches and have caused a shift in channel adjustment processes towards bank failures and channel widening. Channel bank material accounts for at least 85 per cent of the material derived from the channel boundaries of the Yalobusha River system. Strategies to reduce downstream flooding problems while preventing upstream erosion and land loss are being contemplated by action agencies. One such proposal involves removal of the sediment/debris plug. Bank stability analyses that account for pore‐water and confining pressures have been conducted for a range of hydrologic conditions to aid in predicting future channel response. If the sediment/debris plug is removed to improve downstream drainage, care should be taken to provide sufficient time for drainage of groundwater from the channel banks so as not to induce accelerated bank failures. Published in 2002 John Wiley & Sons, Ltd.  相似文献   

17.
Alluvial fans and debris cones link two zones of the fluvial system (e.g. hillslope gully systems to stream channels; mountain catchment sediment source areas to main river systems or to sedimentary basins) and therefore have important coupling or buffering roles. These roles may be both functional and preservational. The functional role includes debris‐cone coupling, which controls sediment supply from hillslope gully systems to stream channels, influencing channel morphology. Coupling through larger alluvial fans, expressed by fanhead trenching, causes a distal shift in sedimentation zones, or when expressed by through‐fan trenching, causes complete sediment by‐pass. The preservational role stems from the fact that fans and cones are temporary sediment storage zones, and may preserve a record of source–area environmental change more sensitively than would sediments preserved further downsystem. Fan coupling mechanisms include distally‐induced coupling (basal scour, ‘toe cutting’, marginal incision) and proximally‐induced coupling (fanhead and midfan trenching). These mechanisms lead initially to partial coupling, either extending the immediate sediment source area to the stream system or shifting the focus of sedimentation distally. Complete coupling involves transmission of sediment from the feeder catchment through the fan environment into the downstream drainage or a sedimentary basin. The implications of coupling relate to downstream channel response, fan morphology, sedimentation patterns and vertical sedimentary sequences. Temporal and spatial scales of coupling are related, and with increasing scales the dominant controls shift from storm events to land cover to climatic and base‐level change and ultimately to the relationships between tectonics and accommodation space. Finally, future research challenges are identified. Modern dating techniques and sophisticated analysis of remotely sensed data can greatly improve our understanding of fan dynamics, and should lead to better cross‐scale integration between short‐term process‐based approaches and long‐term sedimentological applications, while maintaining high quality field‐based observations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
The coupling relationships between hillslope and channel network are fundamental for the understanding of mountainous landscapes' evolution. Here, we applied dendrogeomorphic methods to identify the hillslope–channel relationship and the sediment transfer dynamics within an alpine catchment, at the highest possible resolution. The Schimbrig catchment is located in the central Swiss Alps and can be divided into two distinct geomorphic sectors. To the east, the Schimbrig earth flow is the largest sediment source of the basin, while to the west, the Rossloch channel network is affected by numerous shallow landslides responsible for the supply of sediment from hillslopes to channels. To understand the connectivity between hillslopes and channels and between sources and sink, trees were sampled along the main Rossloch stream, on the Schimbrig earth flow and on the Rossloch depositional area. Geomorphic observations and dendrogeomophic results indicate different mechanisms of sediment production, transfer and deposition between upper and lower segments of the channel network. In the source areas (upper part of the Rossloch channel system), sediment is delivered to the channel network through slow movements of the ground, typical of earth flow, shallow landslides and soil creep. Contrariwise, in the depositional area (lower part of the channel network), the mechanisms of sediment transfer are mainly due to torrential activity, floods and debris flows. Tree analysis allowed the reconstruction of periods of high activity during the last century for the entire catchment. The collected dataset presents a very high temporal resolution but we encountered some limitations in establishing the source‐to‐sink connectivity at the catchment‐wide scale. Despite these uncertainties, for decennial timescales the results suggest a direct coupling between hillslopes and neighbouring channels in the Rossloch channel network, and a de‐coupling between sediment sources and sink farther downstream, with connections possible only during extraordinary events. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Previously undocumented deposits are described that store suspended sediment in gravel‐bedded rivers, termed ‘fine‐grained channel margin’ (FGCM) deposits. FGCM deposits consist of sand, silt, clay, and organic matter that accumulate behind large woody debris (LWD) along the margins of the wetted perimeter of the single‐thread, gravel‐bed South River in Virginia. These deposits store a total mass equivalent to 17% to 43% of the annual suspended sediment load. Radiocarbon, 210Pb and 137C dating indicate that sediment in FGCM deposits ranges in age from 1 to more than 60 years. Reservoir theory suggests an average turnover time of 1·75 years and an annual exchange with the water column of a mass of sediment equivalent to 10% to 25% of the annual sediment load. The distribution of ages in the deposits can be fitted by a power function, suggesting that sediment stored in the deposits has a wide variety of transit times. Most sediment in storage is reworked quickly, but a small portion may remain in place for many decades. The presence of FGCM deposits indicates that suspended sediment is not simply transported downstream in gravel‐bed rivers in agricultural watersheds: significant storage can occur over decadal timescales. South River has a history of mercury contamination and identifying sediment sources and sinks is critical for documenting the extent of contamination and for developing remediation plans. FGCM deposits should be considered in future sediment budget and sediment transport modeling studies of gravel‐bed rivers in agricultural watersheds. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The purpose of this study is to analyze variability in rainfall threshold for debris flow (critical rainfall for debris flow triggering) after the ML 7.3 Chi-Chi earthquake in central Taiwan in 1999. Two study sites with different geological conditions were surveyed in the earthquake area. Streambed surveys were conducted to continuously monitor debris flows between 1999 and 2006. During the 7-year study period, every debris flow event was identified, and the streambed characterized. Results show that the rainfall threshold for debris flow was remarkably lower just after the Chi-Chi Earthquake, but gradually recovered. To date, this rainfall threshold is still lower than the original level prior to the earthquake. This variability in rainfall threshold is closely related to the mount of sediment material in the initiation area of debris flow, which increased rapidly due to landslides resulting from the earthquake. With the increase in sediment material, the rainfall threshold was lowered severely during the first year following the Chi-Chi earthquake. However, heavy rainfalls mobilized the sediment material, causing debris flows and transporting sediment downstream. With the decrease in sediment material, the rainfall threshold recovered gradually over time. Furthermore, debris flows occurred only in the subbasins that had sufficient sediment material to cause significant movement. Hence, these results confirm that the sediment material in the initiation area of debris flow is a crucial component of the rainfall threshold for debris flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号