首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Focusing on preplanetary grains growth, we discuss the properties of dust aggregation driven by magnetic dipole forces. While there is no direct evidence for the existence of magnetic grains present in the solar nebula, there are reasons to assume they may have been present. We derive analytical expressions for the cross section of two interacting dipoles. The effective cross section depends upon the strength of the magnetic dipoles and the initial velocities. For typical conditions the magnetic cross section is between two and three orders of magnitude larger than the geometric cross section. We study the growth dynamics of magnetic grains and find that the mass of the aggregates should increase with time as t3.2 whereas Brownian motion growth behaves as t2. A numerical tool is introduced which can be used to model dust aggregation in great detail, including the treatment of contact forces, aggregate restructuring processes, and long-range forces. This tool is used to simulate collisions between magnetic grains or clusters and to validate the analytical cross sections. The numerically derived cross section is in excellent agreement with the analytical expression. The numerical tool is also used to demonstrate that structural changes in the aggregates during collisions can be significant.  相似文献   

2.
We present the characteristics of the dust comae of two comets, 126P/IRAS, a member of the Halley family (a near-isotropic comet), and 2P/Encke, an ecliptic comet. We have primarily used mid- and far-infrared data obtained by the ISOPHOT instrument aboard the Infrared Space Observatory (ISO) in 1996 and 1997, and mid-infrared data obtained by the SPIRIT III instrument aboard the Midcourse Space Experiment (MSX) in 1996. We find that the dust grains emitted by the two comets have markedly different thermal and physical properties. P/IRAS's dust grain size distribution appears to be similar to that of fellow family member 1P/Halley, with grains smaller than 5 microns dominating by surface area, whereas P/Encke emits a much higher fraction of big (20 μm and higher) grains, with the grain mass distribution being similar to that which is inferred for the interplanetary dust population. P/Encke's dearth of micron-scale grains accounts for its visible-wavelength classification as a “gassy” comet. These conclusions are based on analyses of both imaging and spectrophotometry of the two comets; this combination provides a powerful way to constrain cometary dust properties. Specifically, P/IRAS was observed preperihelion while 1.71 AU from the Sun, and seen to have a 15-arcmin long mid-infrared dust tail pointing in the antisolar direction. No sunward spike was seen despite the vantage point being nearly in the comet's orbital plane. The tail's total mass at the time was about 8×109 kg. The spectral energy distribution (SED) is best fit by a modified greybody with temperature T=265±15 K and emissivity ε proportional to a steep power law in wavelength λ: ελα, where α=0.50±0.20(2σ). This temperature is elevated with respect to the expected equilibrium temperature for this heliocentric distance. The dust mass loss rate was between 150-600 kg/s (95% confidence), the dust-to-gas mass loss ratio was about 3.3, and the albedo of the dust was 0.15±0.03. Carbonaceous material is depleted in the comet's dust by a factor of 2-3, paralleling the C2 depletion in P/IRAS's gas coma. P/Encke, on the other hand, observed while 1.17 AU from the Sun, had an SED that is best fit by a Planck function with T=270±15 K and no emissivity falloff. The dust mass loss rate was 70-280 kg/s (95% confidence), the dust-to-gas mass loss ratio was about 2.3, and the albedo of the dust was about 0.06±0.02. These conclusions are consistent with the strongly curved dust tail and bright dust trail seen by Reach et al. (2000; Icarus 148, 80) in their ISO 12-μm imaging of P/Encke. The observed differences in the P/IRAS and P/Encke dust are most likely due to the less evolved and insolated state of the P/IRAS nuclear surface. If the dust emission behavior of P/Encke is typical of other ecliptic comets, then comets are the major supplier of the interplanetary dust cloud.  相似文献   

3.
Observations of sungrazing comets, all of which belong to the Kreutz family, provide the opportunity of studying the properties of dust in the comae and tails of the comets. On the basis of available information on cometary and interplanetary dust as well as observations of dust in the tails of sungrazers, we model dust in sungrazing comets as fluffy silicate aggregates of submicrometer sizes. To better interpret observational data, we numerically calculate the solar radiation pressure, the equilibrium temperature, and the sublimation and crystallization rates of silicate grains near the Sun. Our results show that the dust tails contain aggregates of submicrometer crystal grains, but not amorphous grains, since amorphous silicates mostly crystallize after release from the comets. The peak in the lightcurves of the dust comae observed either at 11.2 or 12.3 solar radii (R) seems to result from sublimation of fluffy aggregates consisting of crystalline or amorphous olivines, respectively. We attribute an additional enhancement in the lightcurves inside 7 R to increasing out-flow of crystalline and amorphous pyroxenes composed fluffy aggregates. According to our model, the observed lightcurves indicate a high abundance of olivine and a low abundance of pyroxene in the comets, which may bear implications about the dynamical and thermal history of the sungrazers and their progenitor.  相似文献   

4.
We elaborate the model of accretion disks of young stars with the fossil large-scale magnetic field in the frame of Shakura and Sunyaev approximation. Equations of the MHD model include Shakura and Sunyaev equations, induction equation and equations of ionization balance. Magnetic field is determined taking into account ohmic diffusion, magnetic ambipolar diffusion and buoyancy. Ionization fraction is calculated considering ionization by cosmic rays and X-rays, thermal ionization, radiative recombinations and recombinations on the dust grains. Analytical solution and numerical investigations show that the magnetic field is coupled to the gas in the case of radiative recombinations. Magnetic field is quasi-azimuthal close to accretion disk inner boundary and quasi-radial in the outer regions. Magnetic field is quasi-poloidal in the dusty “dead” zones with low ionization degree, where ohmic diffusion is efficient. Magnetic ambipolar diffusion reduces vertical magnetic field in 10 times comparing to the frozen-in field in this region. Magnetic field is quasi-azimuthal close to the outer boundary of accretion disks for standard ionization rates and dust grain size a d=0.1 μm. In the case of large dust grains (a d>0.1 μm) or enhanced ionization rates, the magnetic field is quasi-radial in the outer regions. It is shown that the inner boundary of dusty “dead” zone is placed at r=(0.1–0.6) AU for accretion disks of stars with M=(0.5–2)?M . Outer boundary of “dead” zone is placed at r=(3–21) AU and it is determined by magnetic ambipolar diffusion. Mass of solid material in the “dead” zone is more than 3?M for stars with M≥1?M .  相似文献   

5.
This work was carried out with the PROGRA2 experiment developed to measure the angular dependence of the polarization of light scattered by dust particles. The dust samples are fluffy aggregates (size range 0.01-1 mm) with constituent grains of about 10 nm. Various setups were used: samples deposited on surfaces, the same samples lifted under the effect of a draft, and particles levitating in microgravity conditions on board the CNES dedicated aircraft. For deposited particles, the maximum value of polarization (Pmax) follows the Umov law. For a cloud of particles (Pmax) near 100° phase angle decreases when: (i) multiple scattering between the particles—or between the grains inside the particles—increases, or (ii) the real part of the refractive index of the materials increases, or (iii) the size parameter of the constituent grains increases between 0.05 and 0.5. A negative branch in the polarization phase curve is found for deposited samples. For levitating particles made of a single material and a single size distribution, a positive increase of polarization appears at phase angles smaller than 20°; for mixtures of these materials the polarization is negative at the same phase angles. These results are compared to modeling results as well as to polarimetric observations of comets.  相似文献   

6.
Narrowband filter photometry observations of Comet Hyakutake (1996 B2) were used to investigate this comet's short-term variability as well as its behavior for the apparition as a whole. Utilizing measurements obtained on a total of 13 nights between February 9, 1996, and April 14, 1996, we find that the heliocentric distance (rH) dependence of the production rates of OH and NH were much shallower than those for either the carbon-bearing species or the visible dust. Based on the OH measurements, the derived water rH-dependence was also significantly less steep than expected from a basic water vaporization model and required an effective active surface area of about 29 km2 at rH=1.8 AU, 16 km2 at rH=1 AU, and only 13 km2 at rH=0.6 AU. This decrease in active area may be due to seasonally induced variations of a heterogeneous surface, or due to a decreasing contribution of gas from icy grains in the innermost coma. The relative abundances of the minor gas species place Hyakutake into the “typical” category of comets in the A'Hearn et al. (1995, Icarus118, 223-270) taxonomic classification system. The spectrum is generally redder at shorter wavelengths throughout the apparition; however, the dust color progressively changes from being significantly reddened (37%/1000 Å) at large rH to near-solar at small rH. This change of color with distance implies a significant change in grain sizes or a changing proportion between two or more grain populations.A major outburst was initiated near March 19.9, just prior to the comet's close approach to Earth. The characteristic recovery from the outburst differed among the observed species, with OH recovering most rapidly, essentially returning to its baseline values by March 25. The spatial radial fall-off of OH throughout this interval was consistent with the expected nominal spatial distribution, while CN and C2 displayed fall-offs consistent with a distributed source, and the dust fall-off was significantly less steep than 1/ρ, possibly due to fragmenting grains. Rotational lightcurve amplitudes were largest for the OH, NH, and dust, again consistent with the carbon-bearing species primarily originating from a distributed source. Significant variations were observed in the lightcurve amplitude and phase shifts as functions of aperture size. Finally, a refined value for the rotation period of 0.2614±0.0003 day was determined.  相似文献   

7.
We investigate the method by which nearby supernovae – within a few tens of pc of the solar system – can penetrate the solar system and deposit live radioactivities on earth. The radioactive isotopic signatures that could potentially leave an observable geological imprint are in the form of refractory metals; consequently, it is likely they would arrive in the form of supernova-produced dust grains. Such grains can penetrate into the solar system more easily than the bulk supernova plasma, which gets stalled and deflected near the solar system due to the solar wind plasma pressure. We therefore examine the motion of charged grains as they decouple from the supernova plasma and are influenced by the solar magnetic, radiation, and gravitational fields. We characterize the dust trajectories with analytical approximations which display the roles of grain size, initial velocity, and surface voltage. These results are verified with full numerical simulations for wide ranges of dust properties. We find that supernova dust grains traverse the inner solar system nearly undeflected, if the incoming grain velocity – which we take to be that of the incident supernova remnant – is comparable to the solar wind speeds and much larger than the escape velocity at 1 AU. Consequently, the dust penetration to 1 AU has essentially 100% transmission probability and the dust capture onto the earth should have a geometric cross section. Our results cast in a new light the terrestrial deposition of radioisotopes from nearby supernovae in the geological past. For explosions beyond ~10 pc from earth, dust grains can still deliver supernova ejecta to earth, and thus the amount of supernova material deposited is set by the efficiency of dust condensation and survival in supernovae. Turning the problem around, we use observations of live 60Fe in both deep-ocean and lunar samples to infer a conservative lower bound iron condensation efficiency of Mdust,Fe/Mtot,Fe ? 4  × 10?4 for the supernova which apparently produced these species 2–3 Myr ago.  相似文献   

8.
A fine grained magnetic iron oxide precipitate found in Denmark has been studied with regard to grain size, magnetic properties, aerosol transport, grain electrification, aggregation and optical reflectance. It has shown itself to be a good Martian dust analogue. The fraction of the Salten Skov I soil sample <63 μm was separated from the natural sample by dry sieving. This fraction could be dispersed by ultrasonic treatment into grains of diameter ~1 μm, in reasonable agreement with suspended dust grains in the Martian atmosphere estimated from the Viking, Pathfinder and Mars Exploration Rover missions. Though mineralogical and chemical differences exist between this analogue and Martian dust material, in wind tunnel experiments many of the physical properties of the atmospheric dust aerosol are reproduced.  相似文献   

9.
This paper synthesizes information on the size distribution and physical properties of interplanetary dust grains obtained from analyses of lunar microcraters performed until 1979. The different aspects of these analyses (counting methods, simulation, calibrations) are summarized and a large amount of data is collected and discussed in order to clarify past contradictions. The number of small microcraters (Dc < 5 μm) is found to be higher than previously derived and the ratio P/Dc (depth to crater diameter) to depend upon their sizes. All results converge to a two-component dust population: Population 1 consists principally of large grains (d > 2 μm) with density typical of silicates while Population 2 consists of small grains (d < 2 μm) with higher density typical of iron, with a minor component of silicates. The conclusion appears to be further supported by spatial measurements and collection experiments. Fluffy grains of very low density (0.3 g/cm3) are probably not present to a large extent.  相似文献   

10.
Dust is a major environmental factor on the surface and in the atmosphere of Mars. Knowing the electrical charge state of this dust would be of both scientific interest and important for the safety of instruments on the Martian surface. In this study the first measurements have been performed of dust electrification using suspended Mars analogue material. This has been achieved by attracting suspended dust onto electrodes placed inside a Mars simulation wind tunnel. The Mars analogue used was from Salten Skov in Denmark, this contained a high concentration of ferric oxide precipitate. Once suspended, this dust was found to consist of almost equal quantities of negatively (46±6%) and positively (44±15%) charged grains.These grains were estimated to typically carry a net charge of around 105e, this is sufficient to dominate the processes of adhesion and cohesion of this suspended dust. Evidence is presented for electrostatic aggregation of the dust while in suspension. Development of a simple instrument for measuring electrical charging of the suspended dust on Mars will be discussed.  相似文献   

11.
We present thermal infrared photometry and spectrophotometry of six Near-Earth Asteroids (NEAs) using the 3.8 m United Kingdom Infrared Telescope (UKIRT) together with quasi-simultaneous optical observations of five NEAs taken at the 1.0 m Jacobus Kapteyn Telescope (JKT). For Asteroid (6455) 1992 HE we derive a rotational period P=2.736±0.002 h, and an absolute visual magnitude H=14.32±0.24. For Asteroid 2002 HK12 we derive . The Standard Thermal Model (STM), the Fast Rotating Model (FRM) and the Near-Earth Asteroid Thermal Model (NEATM) have been fitted to the measured fluxes to derive albedos and effective diameters. The derived geometric albedos and effective diameters are (6455) 1992 HE: pv=0.26±0.08, Deff=3.55±0.5 km; 1999 HF1: pv=0.18±0.07, ; 2000 ED104: pv=0.18±0.05, Deff=1.21±0.2 km; 2002 HK12: , Deff=0.62±0.2 km; 2002 NX18: pv=0.031±0.009, Deff=2.24±0.3 km; 2002 QE15: , Deff=1.94±0.4 km. The limitations of using the NEATM to observe NEAs at high phase angles are discussed.  相似文献   

12.
The temperatures of prolate and oblate spheroidal dust grains in the envelopes of stars of various spectral types are calculated. Homogeneous particles with aspect ratios a/b≤10 composed of amorphous carbon, iron, dirty ice, various silicates, and other materials are considered. The temperatures of spherical and spheroidal particles were found to vary similarly with particle size, distance to the star, and stellar temperature. The temperature ratio T d(spheroid)/T d(sphere) depends most strongly on the grain chemical composition and shape. Spheroidal grains are generally colder than spherical particles of the same volume; only iron spheroids can be slightly hotter than iron spheres. At a/b≈2, the temperature differences do not exceed 10%. If a/b≥4, the temperatures can differ by 30–40%. For a fixed dust mass in the medium, the fluxes at wavelengths λ≥100 are higher if the grains are nonspherical, which gives overestimated dust masses from millimeter observations. The effect of grain shape should also be taken into account when modeling Galactic-dust emission properties, which are calculated when searching for fluctuations of the cosmic microwave background radiation in its Wien wing.  相似文献   

13.
The observed relation between the interstellar linear polarization curve parameters K and λ max characterizing the width and the wavelength of the polarization maximum, respectively, is interpreted quantitatively. We have considered 57 stars located in four dark clouds with evidence of star formation: in Taurus, Chamaeleon, around the stars ρ Oph and R CrA. In our modeling we have used the spheroidal dust grain model applied previously to simultaneously interpret the interstellar extinction and polarization curves in a wide wavelength range. The observed trend K ≈ 1.7λ max is shown to be most likely related to the growth of dust grains due to coagulation rather than accretion. The relationship of the interstellar polarization curve parameters K and λ max to the mean dust grain size is discussed.  相似文献   

14.
The Mars Express spacecraft has a highly inclined orbit around Mars and so has been able to observe the south pole of Mars in illuminated conditions at the end of the southern summer (Ls=330). Spectra from the planetary Fourier spectrometer (PFS) short wavelength (SW) channel were recorded over the permanent ice cap to study its composition in terms of CO2 ice and H2O ice. Models are fitted to the observed data, which include a spatial mixture of soil (not covered by ice) and CO2 frost (with a specific grain size and a small amount of included dust and H2O ice). Two different kinds of spectra were observed: those over the permanent polar cap with almost pure CO2 ice, negligible water ice, no soil fraction required, and bright; and those over mixed terrain (at the edge of the cap or near troughs) containing a significant soil spatial fraction, more water ice and smaller CO2 grain size. The amount of water ice given by fits to scaled albedo models is less than 10 ppm by weight. When using multi-stream reflectance models with the appropriate lighting geometry, the water amount must be 2-5 times greater than the albedo fit (less than 50 ppm). At the periphery of the residual polar cap, we found a region almost completely covered by water frost, modeled as a mixture of micron-sized and sub-mm sized grains. Our result using a granular mixture of micron-sized grains of water ice and dust with the CO2 grains is different from the modeling of OMEGA polar cap observations using molecular mixtures.  相似文献   

15.
We studied the relationship between the power-law exponent γ on the rigidity R of the spectrum of galactic cosmic-ray (GCR) intensity variation (δD(R)/D(R)∝R ?γ ) and the exponents ν y and ν z of the power spectral density (PSD) of the B y and B z components of the interplanetary magnetic field (IMF) turbulence (PSD~f ?ν , where f is the frequency). We used the data from neutron monitors and IMF for the period of 1968?–?2002. The exponents ν y and ν z were calculated in the frequency interval Δf=f 2?f 1=3×10?6 Hz of the resonant frequencies (f 1=1×10?6 Hz, f 2=4×10?6 Hz) that are responsible for the scattering of GCR particles with the rigidity range detected by neutron monitors. We found clear inverse correlations between γ and ν y or ν z when the time variations of the resonant frequencies were derived from in situ measurements of the solar wind velocity U sw and IMF strength B during 1968?–?2002. We argue that these inverse relations are a fundamental feature in the GCR modulation that is not restricted to the analyzed years of 1968?–?2002.  相似文献   

16.
Dust particles in interplanetary space are expected to charge up to an electrostatic potential of about +5 V mostly by the solar UV (Horányi, 1996, Annu. Rev. Astrophys. 34, 383). Since the dynamics of charged grains may be quite different from neutral particles, the knowledge of the grain charge Qd is highly desirable. In the last two decades, several detectors on spacecraft were flown to measure the dust charge in-situ, but the instrumentation was not capable of determining the dust charge unambiguously. The Cosmic Dust Analyser (CDA) on the Cassini spacecraft includes a charge sensitive entrance grid system (QP detector). While entering the instrument, sufficiently charged particles induce a characteristic charge feature onto the grid system, which allows a reliable determination of Qd as well as of the impact speed vd. Here we report the first successful in-situ measurement of charged interplanetary dust grains by CDA. Amongst 37 impacts by interplanetary grains registered between November 1999 and January 2000, we identified 6 impacts whose QP signals show a clear feature caused by charged grains, corresponding to Qd between 1.3 and 5.4 fC. Knowledge of Qd also allows us to estimate the grain mass md. Assuming a potential of φd≈+5 V and spheroidal grain morphologies with ratios of the maximum size to the minimum size of less than 2 the masses derived from Qd were found to be in excess of 10−13 kg. The dynamics of such particles are dominated by the Sun's gravity. In the framework of the micro-meteoroid models of the Solar System these grains belong to the core population of interplanetary grains (Divine, 1993, J. Geophys. Res. 98, 17029). Furthermore, a rate of 6 impacts of grains with md?10−13 kg during 107 days is in good agreement with the predictions of the interplanetary dust environment model by Staubach et al. (1997, Adv. Space Res. 19, 301). This result demonstrates that charge detectors as the CDA QP system offer a reliable in-situ technique for determining simultaneously both the mass and velocity of big interplanetary grains. The primary CDA subsystem to determine md and vd, however, is an impact ionisation detector. The majority of the 37 recorded dust impacts produced impact charges are well outside the calibrated range. Moreover, these impacts were usually characterised by impact ionisation signals which differ significantly from signals taken in calibration experiments. In this paper we took advantage of the fact that the measurement of Qd is not affected by the subsequent impact of the grain with the detector. By relating md and vd derived from Qd of the 6 QP impactors to their corresponding ionisation signals we show that in many cases even for energetic impacts outside the calibrated range meaningful values for the dust mass can be obtained. The observed deviations of the ionisation signals from the calibration measurements are likely due to the large amount of plasma generated by such impacts. We discuss the implications of these findings on a meaningful reduction of impact ionisation signals caused by big particle impacts. A new scheme to identify and to evaluate such signals is presented. These finding are of great importance for future Cassini measurements in the saturnian system.  相似文献   

17.
Túnyi  I.  Guba  P.  Roth  L. E.  Timko  M. 《Earth, Moon, and Planets》2003,93(1):65-74
Lightning discharge generated in the protoplanetary nebula is viewed as a temporally isolated surge in the flow of electrically charged particles, similar to that of terrestrial lightning. If the current is intense enough, a powerful circular impulse magnetic field is generated around the instantaneous virtual electric conductor. Such magnetic field is capable of magnetizing dust grains containing ferromagnetic components present in its vicinity to their saturation levels. As a result, dust grains attract one another, forming the aggregates. This magnetically driven attraction suggests an important process possibly operational at an early stage of the planetary accretion. Based on both a classical model for electric conductor, and the theory of Lienard–Wiechert electromagnetic potentials, our calculations show that the magnetic impulse due to a discharge channel of a few cm in diameter transferring a charge of about 104 electrons reaches as high as 10 T. At these magnetic fields, the ferromagnetic dust grains, and possibly the already-formed larger aggregates as well, are easily magnetized to the saturation levels, producing compact clusters exhibiting permanent magnetic moments.  相似文献   

18.
J. J. Aly 《Solar physics》1992,138(1):133-162
Some useful properties of a finite energy, constant-α, force-free magnetic field B α occupying a half-space D are presented. In particular:
  1. Fourier and Green representations of B α are obtained and used to derive conditions for the existence and uniqueness of a B α having a given normal component B z on the boundary ?D.
  2. The asymptotic behaviour of B α at infinity as well as stability results against changes in the boundary condition on ?D and in the value of α are established.
  3. The energy of B α is shown to be smaller than the energy of the open field having the same B z on ?D, thus confirming an earlier conjecture (Aly, 1984).
  4. B α is proved to not be a Taylor-Heyvaerts-Priest state, in spite of the fact that its relative helicity H is finite and that it is the only solution of the Lagrange-Euler equation associated with the problem of minimizing the energy among all the fields having the same value of H and the same B z on ?D.
  相似文献   

19.
Augusto Carballido 《Icarus》2011,211(1):876-884
Numerical magnetohydrodynamic (MHD) simulations of a turbulent solar nebula are used to study the growth of dust mantles swept up by chondrules. A small neighborhood of the solar nebula is represented by an orbiting patch of gas at a radius of 3 AU, and includes vertical stratification of the gas density. The differential rotation of the nebular gas is replaced by a shear flow. Turbulence is driven by destabilization of the flow as a result of the magnetorotational instability (MRI), whereby magnetic field lines anchored to the gas are continuously stretched by the shearing motion. A passive contaminant mimics small dust grains that are aerodynamically well coupled to the gas, and chondrules are modeled by Lagrangian particles that interact with the gas through drag. Whenever a chondrule enters a region permeated by dust, its radius grows at a rate that depends on the local dust density and the relative velocity between itself and the dust. The local dust abundance decreases accordingly. Compaction and fragmentation of dust aggregates are not included. Different chondrule volume densities ρc lead to varying depletion and rimmed-chondrule size growth times. Most of the dust sweep-up occurs within ~1 gas scale-height of the nebula midplane. Chondrules can reach their asymptotic radius in 10–800 years, although short growth times due to very high ρc may not be altogether realistic. If the sticking efficiency Q of dust to chondrules depends on their relative speed δv, such that Q < 10?2 whenever δv > vstick  34 cm/s (with vstick a critical sticking velocity), then longer growth times result due to the prevalence of high MRI-turbulent relative velocities. The vertical variation of nebula turbulent intensity results in a moderate dependence of mean rimmed-chondrule size with nebula height, and in a ~20% dispersion in radius values at every height bin. The technique used here could be combined with Monte Carlo (MC) methods that include the physics of dust compaction, in a self-consistent MHD-MC model of dust rim growth around chondrules in the solar nebula.  相似文献   

20.
A. Carbognani 《Icarus》2011,211(1):519-527
A rotating frequency analysis in a previous paper, showed that two samples of C and S-type asteroids belonging to the Main Belt, but not to any families, present two different values for the transition diameter to a Maxwellian distribution of the rotation frequency, respectively 48 and 33 km. In this paper, after a more detailed statistical analysis, aiming to verify that the result is physically relevant, we found a better estimate for the transition diameter, respectively DC = 44 ± 2 km and DS = 30 ± 1 km. The ratio between these estimated transition diameters, DC/DS = 1.5 ± 0.1, can be supported with the help of the YORP (Yarkovsky-O’Keefe-Radzievskii-Paddack) effect, although other physical causes cannot be completely ruled out.In this paper we have derived a simple scaling law for YORP which, taking into account the different average heliocentric distance, the bulk density, the albedo and the asteroid “asymmetry surface factor”, has enabled us to reasonably justify the ratio between the diameters transition of C-type and S-type asteroids. The same scaling law can be used to estimate a new ratio between the bulk densities of S and C asteroids samples (giving ρS/ρC ≈ 2.9 ± 0.3), and can explain why the asteroids near the transition diameter have about the same absolute magnitude. For C-type asteroids, using the found density ratio and other estimates of S-type density, it is also possible to estimate an average bulk density equal to 0.9 ± 0.1 g cm−3, a value compatible with icy composition. The suggested explanation for the difference of the transition diameters is a plausible hypothesis, consistent with the data, but it needs to be studied more in depth with further observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号