首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Volcanic plumes on Jupiter's moon Io are modeled using the direct simulation Monte Carlo (DSMC) method. The modeled volcanic vent is interpreted as a “virtual” vent. A parametric study of the “virtual” vent gas temperature and velocity is performed to constrain the gas properties at the vent by observables, particularly the plume height and the surrounding condensate deposition ring radius. Also, the flow of refractory nano-size particulates entrained in the gas is modeled with “overlay” techniques which assume that the background gas flow is not altered by the particulates. The column density along the tangential line-of-sight and the shadow cast by the plume are calculated and compared with Voyager and Galileo images. The parametric study indicates that it is possible to obtain a unique solution for the vent temperature and velocity for a large plume like Pele. However, for a small Prometheus-type plume, several different possible combinations of vent temperature and velocity result in both the same shock height and peak deposition ring radius. Pele and Prometheus plume particulates are examined in detail. Encouraging matches with observations are obtained for each plume by varying both the gas and particle parameters. The calculated tangential gas column density of Pele agrees with that obtained from HST observations. An upper limit on the size of particles that track the gas flow well is found to be ∼10 nm, consistent with Voyager observations of Loki. While it is certainly possible for the plumes to contain refractory dust or pyroclastic particles, especially in the vent vicinity, we find that the conditions are favorable for SO2 condensation into particles away from the vent vicinity for Prometheus. The shadow cast by Prometheus as seen in Galileo images is also reproduced by our simulation. A time averaged frost deposition profile is calculated for Prometheus in an effort to explain the multiple ring structure observed around the source region. However, this multiple ring structure may be better explained by the calculated deposition of entrained particles. The possibility of forming a dust cloud on Io is examined and, based on a lack of any such observed clouds, a subsolar frost temperature of less than 118 K is suggested.  相似文献   

2.
In February 2003, March 2003 and January 2004 Pele plume transmission spectra were obtained during Jupiter transit with Hubble's Space Telescope Imaging Spectrograph (STIS), using the 0.1″ wide slit and the G230LB grating. The STIS spectra covered the 2100-3100 Å wavelength regions and extended spatially along Io's limb encompassing the region directly above and northward of the vent of the Pele volcano. The S2 and SO2 absorption signatures evident in these data indicate that the gas signature at Pele was temporally variable, and that an S2 absorption signature was present ∼12° from the Pele vent near 6±5 S and 264±15 W, suggesting the presence of another S2 bearing plume on Io. Contemporaneous with the spectral data, UV and visible-wavelength images of the plume were obtained in reflected sunlight with the Advanced Camera for Surveys (ACS) prior to Jupiter transit. The dust scattering recorded in these data provide an additional qualitative measure of plume activity on Io, indicating that the degree of dust scattering over Pele varied as a function of the date of observation, and that there were several other dust bearing plumes active during the observations. We present constraints on the composition and variability of the gas abundances of the Pele plume as well as the plumes detected by ACS and recorded within the STIS data, as a function of time.  相似文献   

3.
P.E. Geissler  M.T. McMillan 《Icarus》2008,197(2):505-518
Io's volcanic plumes erupt in a dazzling variety of sizes, shapes, colors and opacities. In general, the plumes fall into two classes, representing distinct source gas temperatures. Most of the Galileo imaging observations were of the smaller, more numerous Prometheus-type plumes that are produced when hot flows of silicate lava impinge on volatile surface ices of SO2. Few detections were made of the giant, Pele-type plumes that vent high temperature, sulfur-rich gases from the interior of Io; this was partly because of the insensitivity of Galileo's camera to ultraviolet wavelengths. Both gas and dust spout from plumes of each class. Favorably located gas plumes were detected during eclipse, when Io was in Jupiter's shadow. Dense dust columns were imaged in daylight above several Prometheus-type eruptions, reaching heights typically less than 100 km. Comparisons between eclipse observations, sunlit images, and the record of surface changes show that these optically thick dust columns are much smaller in stature than the corresponding gas plumes but are adequate to produce the observed surface deposits. Mie scattering calculations suggest that these conspicuous dust plumes are made up of coarse grained “ash” particles with radii on the order of 100 nm, and total masses on the order of 106 kg per plume. Long exposure images of Thor in sunlight show a faint outer envelope apparently populated by particles small enough to be carried along with the gas flow, perhaps formed by condensation of sulfurous “snowflakes” as suggested by the plasma instrumentation aboard Galileo as it flew through Thor's plume [Frank, L.A., Paterson, W.R., 2002. J. Geophys. Res. (Space Phys.) 107, doi:10.1029/2002JA009240. 31-1]. If so, the total mass of these fine, nearly invisible particles may be comparable to the mass of the gas, and could account for much of Io's rapid resurfacing.  相似文献   

4.
We report the discovery of the forbidden electronic a1Δ→X3Σ transition of the SO radical on Io at 1.7 μm with the W. M. Keck II telescope on 24 September 1999 (UT), while the satellite was eclipsed by Jupiter. The shape of the SO emission band suggests a rotational temperature of ∼1000 K; i.e., the gas is extremely hot. We interpret the observed emission rate of ∼2×1027 photons s−1 to be caused by SO molecules in the excited a1Δ state being directly ejected from the vent at a thermodynamic quenching temperature of ∼1500 K, assuming a SO/SO2 abundance ratio of ∼0.1 and a total venting rate of ∼1031 molecules s−1 (Strobel and Wolven 2001, Astrophys. Space Sci. 277, 1-17). The shape of our complete (1.6-2.5 μm) spectrum suggests that the volcano Loki contains a small (∼2 km2) hot spot at 960±12 K, as well as a larger (∼50 km2) area at 640±5 K.  相似文献   

5.
We present a Monte Carlo (MC) model of [OI] 6300 Å and [SII] 6716 Å emission from Io entering eclipse. The simulation accounts for the 3-D distribution of SO2, O, SO, S, and O2 in Io’s atmosphere, several volcanic plumes, and the magnetic field around Io. Thermal electrons from the jovian plasma torus are input along the simulation domain boundaries and move along the magnetic field lines distorted by Io, occasionally participating in collisions with neutrals. We find that the atmospheric asymmetry resulting from varying degrees of atmospheric collapse across Io (due to eclipse ingress) and the presence of volcanoes contributes significantly to the unique morphology of the [OI] 6300 Å emission. The [OI] radiation lifetime of ∼134 s limits the emission to regions that have a sufficiently low neutral density so that intermolecular collisions are rare. We find that at low altitudes (typically <40 km) and in volcanic plumes (Pele, Prometheus, etc.) the number density is large enough (>4 × 109 cm−3) to collisionally quench nearly all (>95%) of the excited oxygen for reasonable quenching efficiencies. Upstream (relative to the plasma flow), Io’s perturbation of the jovian magnetic field mirrors electrons with high pitch angles, while downstream collisions can trap the electrons. This magnetic field perturbation is one of the main physical mechanisms that results in the upstream/downstream brightness asymmetry in [OI] emission seen in the observation by Trauger et al. (Trauger, J.T., Stapelfeldt, K.R., Ballester, G.E., Clarke, J.I., 1997. HST observations of [OI] emissions from Io in eclipse. AAS-DPS Abstract (1997DPS29.1802T)). There are two other main causes for the observed brightness asymmetry. First, the observation’s viewing geometry of the wake spot crosses the dayside atmosphere and therefore the wake’s observational field of view includes higher oxygen column density than the upstream side. Second, the phased entry into eclipse results in less atmospheric collapse and thus higher collisional quenching on the upstream side relative to the wake. We compute a location (both in altitude and latitude) for the intense wake emission feature that agrees reasonably well with this observation. Furthermore, the peak intensity of the simulated wake feature is less than that observed by a factor of ∼3, most likely because our model does not include direct dissociation-excitation of SO2 and SO. We find that the latitudinal location of the emission feature depends not so much on the tilt of the magnetic field as on the relative north/south flux tube depletion that occurs due to Io’s changing magnetic latitude in the plasma torus. From 1-D simulations, we also find that the intensity of [SII] 6716 and 6731 Å emission is much weaker than that of [OI] even if the [SII] excitation cross section is 103 times larger than excitation to [OI]. This is because the density of S+ is much less than that of O and because the Einstein-A coefficient of the [SII] emission is a factor of ∼10 smaller than that of [OI].  相似文献   

6.
Hubble Space Telescope/Wide Field and Planetary Camera 2 (HST/WFPC2) images of Io obtained between 1995 and 2007 between 0.24 and 0.42 μm led to the detection of the Pele plume in reflected sunlight in 1995 and 1999; imaging of the Pele plume via absorption of jovian light in 1996 and 1999; detection of the Prometheus-type Pillan plume in reflected sunlight in 1997; and detection of the 2007 Pele-type Tvashtar plume eruption in reflected sunlight and via absorption of jovian light. Based on a detailed analysis of these observations we characterize and compare the gas and dust properties of each of the detected plumes. In each case, the brightness of the plumes in reflected sunlight is less at 0.26 μm than at 0.33 μm. Mie scattering analysis of the wavelength dependence of each plume’s reflectance signature suggests that range of particle sizes within the plumes is quite narrow. Assuming a normal distribution of particle sizes, the range of mean particle sizes is ~0.035–0.12 μm for the 1997 Pillan eruption, ~0.05–0.08 μm for the 1999 Pele and 2007 Tvasthar plumes, and ~0.05–0.11 μm for the 1995 Pele plume, and in each case the standard deviation in the particle size distribution is <15%. The Mie analysis also suggests that the 2007 Tvashtar eruption released ~109 g of sulfur dust, the 1999 Pele eruption released ~109 g of SO2 dust, the 1997 Pillan eruption released ~1010 g of SO2 dust, and the 1995 Pele plume may have released ~1010 g of SO2 dust. Analysis of the plume absorption signatures recorded in the F255W filter bandpass (0.24–0.28 μm) indicates that the opacity of the 2007 Tvashtar plume was 2× that of the 1996 and 1999 Pele plume eruptions. While the sulfur dust density estimated for the Tvashtar from the reflected sunlight data could have produced 61% of the observed plume opacity, <10% of the 1999 Pele F255W plume opacity could have resulted from the SO2 dust detected in the eruption. Accounting for the remaining F255W opacity level of the Pele and Tvasthar plumes based on SO2 and S2 gas absorption, the SO2 and S2 gas density inferred for each plume is almost equivalent corresponding to ~2–6 × 1016 cm?2 and 3–5 × 1015 cm?2, respectively, producing SO2 and S2 gas resurfacing rates ~0.04–0.2 cm yr?1 and 0.007–0.01 cm yr?1; and SO2 and S2 gas masses ~1–4 × 1010 g and ~2–3 × 109 g; for a total dust to gas ratio in the plumes ~10?1–10?2. The 2007 Tvashtar plume was detected by HST at ~380 ± 40 km in both reflected sunlight and absorbed jovian light; in 1999, the detected Pele plume altitude was 500 km in absorbed jovian light, but in reflected sunlight the detected height was ~2× lower. Thus, for the 1999 Pele plume, similar to the 1979 Voyager Pele plume observations, the most efficient dust reflections occurred in the region closest to the plume vent. The 0.33–0.42 μm brightness of the 1997 Pillan plume was 10–20× greater than the Pele or Tvashtar plumes, exceeding by a factor of 3 the average brightness levels observed within 200 km of 1979 Loki eruption vent. But, the 0.26 μm brightness of the 1997 Pillan plume in reflected sunlight was significantly lower than would be predicted by the dust scattering model. Presuming that the 0.26 μm brightness of the 1997 Pillan plume was attenuated by the eruption plume’s gas component, then an SO2 gas density ~3–6 × 1018 cm?2 is inferred from the data (for S2/SO2 ratios ?4%), comparable to the 0.3–2 × 1018 cm?2 SO2 density detected at Loki in 1979 (Pearl, J.C. et al. [1979]. Nature 280, 755; Lellouch et al., 1992), and producing an SO2 gas mass ~3–8 × 1011 g and an SO2 resurfacing rate ~8–23 cm yr?1. These results confirm the connection between high (?1017 cm?2) SO2 gas content and plumes that scatter strongly at nearly blue wavelengths, and it validates the occurrence of high density SO2 gas eruptions on Io. Noting that the SO2 gas content inferred from a spectrum of the 2003 Pillan plume was significantly lower ~2 × 1016 cm?2 (Jessup, K.L., Spencer, J., Yelle, R. [2007]. Icarus 192, 24–40); and that the Pillan caldera was flooded with fresh SO2 frost/slush just prior to the 1997 Pillan plume eruption (Geissler, P., McEwen, A., Phillips, C., Keszthelyi, L., Spencer, J. [2004a]. Icarus 169, 29–64; Phillips, C.B. [2000]. Voyager and Galileo SSI Views of Volcanic Resurfacing on Io and the Search for Geologic Activity at Europa. Ph.D. Thesis, Univ. of Ariz., Tucson); we propose that the density of SO2 gas released by this volcano is directly linked to the local SO2 frost abundance at the time of eruption.  相似文献   

7.
To determine how active volcanism might affect the standard picture of sulfur dioxide photochemistry on Io, we have developed a one-dimensional atmospheric model in which a variety of sulfur-, oxygen-, sodium-, potassium-, and chlorine-bearing volatiles are volcanically outgassed at Io's surface and then evolve due to photolysis, chemical kinetics, and diffusion. Thermochemical equilibrium calculations in combination with recent observations of gases in the Pele plume are used to help constrain the composition and physical properties of the exsolved volcanic vapors. Both thermochemical equilibrium calculations (Zolotov and Fegley 1999, Icarus141, 40-52) and the Pele plume observations of Spencer et al. (2000; Science288, 1208-1210) suggest that S2 may be a common gas emitted in volcanic eruptions on Io. If so, our photochemical models indicate that the composition of Io's atmosphere could differ significantly from the case of an atmosphere in equilibrium with SO2 frost. The major differences as they relate to oxygen and sulfur species are an increased abundance of S, S2, S3, S4, SO, and S2O and a decreased abundance of O and O2 in the Pele-type volcanic models as compared with frost sublimation models. The high observed SO/SO2 ratio on Io might reflect the importance of a contribution from volcanic SO rather than indicate low eddy diffusion coefficients in Io's atmosphere or low SO “sticking” probabilities at Io's surface; in that case, the SO/SO2 ratio could be temporally and/or spatially variable as volcanic activity fluctuates. Many of the interesting volcanic species (e.g., S2, S3, S4, and S2O) are short lived and will be rapidly destroyed once the volcanic plumes shut off; condensation of these species near the source vent is also likely. The diffuse red deposits associated with active volcanic centers on Io may be caused by S4 radicals that are created and temporarily preserved when sulfur vapor (predominantly S2) condenses around the volcanic vent. Condensation of SO across the surface and, in particular, in the polar regions might also affect the surface spectral properties. We predict that the S/O ratio in the torus and neutral clouds might be correlated with volcanic activity—during periods when volcanic outgassing of S2 (or other molecular sulfur vapors) is prevalent, we would expect the escape of sulfur to be enhanced relative to that of oxygen, and the S/O ratio in the torus and neutral clouds could be correspondingly increased.  相似文献   

8.
We obtained time-resolved, near-infrared spectra of Io during the 60-90 min following its reappearance from eclipse by Jupiter on five occasions in 2004. The purpose was to search for spectral changes, particularly in the well-known SO2 frost absorption bands, that would indicate surface-atmosphere exchange of gaseous SO2 induced by temperature changes during eclipse. These observations were a follow-on to eclipse spectroscopy observations in which Bellucci et al. [Bellucci et al., 2004. Icarus 172, 141-148] reported significant changes in the strengths of two strong SO2 bands in data acquired with the VIMS instrument aboard the Cassini spacecraft. One of the bands (4.07 μm [ν1 + ν3]) observed by Bellucci et al. is visible from ground-based observatories and is included in our data. We detected no changes in Io’s spectrum at any of the five observed events during the approximately 60-90 min during which spectra were obtained following Io’s emergence from Jupiter’s shadow. The areas of the three strongest SO2 bands in the region 3.5-4.15 μm were measured for each spectrum; the variation of the band areas with time does not exceed that which can be explained by the Io’s few degrees of axial rotation during the intervals of observation, and in no case does the change in band strength approach that seen in the Cassini VIMS data. Our data are of sufficient quality and resolution to show the weak 2.198 μm (4549.6 cm−1) 4ν1 band of SO2 frost on Io for what we believe is the first time. At one of the events (June 22, 2004), we began the acquisition of spectra ∼6 min before Io reappeared from Jupiter’s shadow, during which time it was detected through its own thermal emission. No SO2 bands were superimposed on the purely thermal spectrum on this occasion, suggesting that the upper limit to condensed SO2 in the vertical column above Io’s surface was ∼4 × 10−5 g cm−2.  相似文献   

9.
We have studied data from the Galileo spacecraft's three remote sensing instruments (Solid-State Imager (SSI), Near-Infrared Mapping Spectrometer (NIMS), and Photopolarimeter-Radiometer (PPR)) covering the Zamama-Thor region of Io's antijovian hemisphere, and produced a geomorphological map of this region. This is the third of three regional maps we are producing from the Galileo spacecraft data. Our goal is to assess the variety of volcanic and tectonic materials and their interrelationships on Io using planetary mapping techniques, supplemented with all available Galileo remote sensing data. Based on the Galileo data analysis and our mapping, we have determined that the most recent geologic activity in the Zamama-Thor region has been dominated by two sites of large-scale volcanic surface changes. The Zamama Eruptive Center is a site of both explosive and effusive eruptions, which emanate from two relatively steep edifices (Zamama Tholi A and B) that appear to be built by both silicate and sulfur volcanism. A ∼100-km long flow field formed sometime after the 1979 Voyager flybys, which appears to be a site of promethean-style compound flows, flow-front SO2 plumes, and adjacent sulfur flows. Larger, possibly stealthy, plumes have on at least one occasion during the Galileo mission tapped a source that probably includes S and/or Cl to produce a red pyroclastic deposit from the same vent from which silicate lavas were erupted. The Thor Eruptive Center, which may have been active prior to Voyager, became active again during the Galileo mission between May and August 2001. A pillanian-style eruption at Thor included the tallest plume observed to date on Io (at least 500 km high) and new dark lava flows. The plume produced a central dark pyroclastic deposit (probably silicate-rich) and an outlying white diffuse ring that is SO2-rich. Mapping shows that several of the new dark lava flows around the plume vent have reoccupied sites of earlier flows. Unlike most of the other pillanian eruptions observed during the Galileo mission, the 2001 Thor eruption did not produce a large red ring deposit, indicating a relative lack of S and/or Cl gases interacting with the magma during that eruption. Between these two eruptive centers are two paterae, Thomagata and Reshef. Thomagata Patera is located on a large shield-like mesa and shows no signs of activity. In contrast, Reshef Patera is located on a large, irregular mesa that is apparently undergoing degradation through erosion (perhaps from SO2-sapping or chemical decomposition of sulfur-rich material) from multiple secondary volcanic centers.  相似文献   

10.
Using the Hubble Space Telescope's Space Telescope Imaging Spectrograph we have obtained for the first time spatially resolved 2000-3000 Å spectra of Io's Prometheus plume and adjoining regions on Io's anti-jovian hemisphere in the latitude range 60° N-60° S, using a 0.1″ slit centered on Prometheus and tilted roughly 45° to the spin axis. The SO2 column density peaked at 1.25×1017 cm−2 near the equator, with an additional 5×1016 cm−2 enhancement over Prometheus corresponding to a model volcanic SO2 output of 105 kg s−1. Apart from the Prometheus peak, the SO2 column density dropped fairly smoothly away from the subsolar point, even over regions that included potential volcanic sources. At latitudes less than ±30°, the dropoff rate was consistent with control by vapor pressure equilibrium with surface frost with subsolar temperature 117.3±0.6 K, though SO2 abundance was higher than predicted by vapor pressure control at mid-latitudes, especially in the northern hemisphere. We conclude that, at least at low latitudes on the anti-jovian hemisphere where there are extensive deposits of optically-thick SO2 frost, the atmosphere is probably primarily supported by sublimation of surface frost. Although the 45° tilt of our slit prevents us from separating the dependence of atmospheric density on solar zenith angle from its dependence on latitude, the pattern is consistent with a sublimation atmosphere regardless of which parameter is the dominant control. The observed drop in gas abundance towards higher latitudes is consistent with the interpretation of previous Lyman alpha images of Io as indicating an atmosphere concentrated at low latitudes. Comparison with previous disk-resolved UV spectroscopy, Lyman-alpha images, and mid-infrared spectroscopy suggests that Io's atmosphere is denser and more widespread on the anti-jovian hemisphere than at other longitudes. SO2 gas temperatures were in the range of 150-250 K over the majority of the anti-jovian hemisphere, consistent with previous observations. SO was not definitively detected in our spectra, with upper limits to the SO/SO2 ratio in the range 1-10%, roughly consistent with previous observations. S2 gas was not seen anywhere, with an upper limit of 7.5×1014 cm−2 for the Prometheus plume, confirming that this plume is significantly poorer in S2 than the Pele plume (S2 /SO2<0.005, compared to 0.08-0.3 at Pele). In addition to the gas absorption signatures, we have observed continuum emission in the near ultraviolet (near 2800 Å) for the first time. The brightness of the observed emission was directly correlated with the SO2 abundance, strongly peaking in the equatorial region over Prometheus. Emission brightness was modestly anti-correlated with the jovian magnetic latitude, decreasing when Io intersected the torus centrifugal equator.  相似文献   

11.
Between 1999 and 2002, the Galileo spacecraft made 6 close flybys of Io during which many observations of Io's thermal radiation were made with the photopolarimeter-radiometer (PPR). While the NIMS instrument could measure thermal emission from hot spots with T>200 K, PPR was the only Galileo instrument capable of mapping the lower temperatures of older, cooling lava flows, and the passive background. We tabulate all data taken by PPR of Io during these flybys and describe some scientific highlights revealed by the data. The data include almost complete coverage of Io at better than 250 km resolution, with extensive regional coverage at higher resolutions. We found a modest poleward drop in nighttime background temperatures and evidence of thermal inertia variations across the surface. Comparison of high spatial resolution temperature measurements with observed daytime SO2 gas pressures on Io provides evidence for local cold trapping of SO2 frost on scales smaller than the 60 km resolution of the PPR data. We also calculated the power output from several hot spots and estimated total global heat flow to be about 2.0-2.6 W m−2. The low-latitude diurnal temperature variations for the regions between obvious hot spots are well matched by a laterally-inhomogeneous thermal model with less than 1 W m−2 endogenic heat flow.  相似文献   

12.
Two classes of volcanic plumes on Io   总被引:1,自引:0,他引:1  
Comparison of Voyager 1 and Voyager 2 images of the south polar region of Io has revealed that a major volcanic eruption occured there during the period between the two spacecraft encounters. An annular deposit ~1400 km in diameter formed around the Aten Patera caldera (311°W, 48°S), the floor of which changed from orange to red-black. The characteristics of this eruption are remarkably similar to those described earlier for an eruption centered on Surt caldera (338°W, 45°N) that occured during the same period, also at high latitude, but in the north. Both volcanic centers were evidently inactive during the Voyager 1 and 2 encounters but were active sometime between the two. The geometric and colorimetric characteristics, as well as scale of the two annular deposits, are virtually identical; both resemble the surface features formed by the eruption of Pele (255°W, 18°S). These three very large plume eruptions suggest a class of eruption distinct from that of six smaller plumes observed to be continously active by both Voyagers 1 and 2. The smaller plumes, of which Prometheus is the type example, are longer-lived, deposit bright, whitish material, erupt at velocities of ~0.5 km sec?1, and are concentrated at low latitudes in an equatorial belt around the satellite. The very large Pele-type plumes, on the other hand, are relatively short-lived, deposit darker red materials, erupt at ~1.0 km sec?1, and (rather than restricted to a latitudinal band) are restricted in longitude from 240° to 360°W. Both direct thermal infrared temperature measurements and the implied color temperatures for quenched liquid sulfur suggest that hot spot temperatures of ~650°K are associated with the large plumes and temperatures <400°K with the small plumes. The typical eruption duration of the small plumes is at least several years; that of the large plumes appears to be of the order of days to weeks. The two classes therefore differ by more than two orders of magnitude in duration of eruption. Based on uv, visible, and infrared spectra, the small plumes seem to contain and deposit SO2 in their annuli whereas the large plumes apparently do not. Two other plumes that occur at either end of the linear feature Loki may be intermediate or hybrid between the two classes, exhibiting attributes of both. Additionally, Loki occurs in the area of overlap in the regional distributions of the two plume classes. Two distinct volcanic systems involving different volatiles may be responsible for the two classes. We propose that the discrete temperatures associated with the two classes are a direct reflection of sulfur's peculiar variation in viscosity with temperature. Over two temperature ranges (~400 to 430°K and >650°K), sulfur is a low-viscosity fluid (orange and black, respectively); at other temperatures it is either solid or has a high viscosity. As a result, there will be two zones in Io's crust in which liquid sulfur will flow freely: a shallow zone of orange sulfur and a deeper zone of black sulfur. A low-temperature system driven by SO2 heated to 400 to 400°K by the orange sulfur zone seems the best model for the small plumes; a system driven by sulfur heated to >650°K by hot or even molten silicates in the black sulfur zone seems the best explanation for the large plume class. The large Pele-type plumes are apparently concentrated in a region of the satellite in which a thinner sulfur-rich crust overlies the tidally heated silicate lithosphere, so the black sulfur zone may be fairly shallow in this region. The Prometheus-type plumes are possibly confined to the equatorial belt by some process that concentrates SO2 fluid in the equatorial crust.  相似文献   

13.
Galileo's Solid State Imager (SSI) observed Tvashtar Catena four times between November 1999 and October 2001, providing a unique look at a distinctive high latitude volcanic complex on Io. The first observation (orbit I25, November 1999) resolved, for the first time, an active extraterrestrial fissure eruption; the brightness temperature was at least 1300 K. The second observation (orbit I27, February 2000) showed a large (∼500 km2) region with many, small, hot, regions of active lava. The third observation was taken in conjunction with Cassini imaging in December 2000 and showed a Pele-like, annular plume deposit. The Cassini images revealed an ∼400 km high Pele-type plume above Tvashtar Catena. The final Galileo SSI observation of Tvashtar (orbit I32, October 2001), revealed that obvious (to SSI) activity had ceased, although data from Galileo's Near Infrared Mapping Spectrometer (NIMS) indicated that there was still significant thermal emission from the Tvashtar region. In this paper, we primarily analyze the style of eruption during orbit I27 (February 2000). Comparison with a lava flow cooling model indicates that the behavior of the Tvashtar eruption during I27 does not match that of simple advancing lava flows. Instead, it may be an active lava lake or a complex set of lava flows with episodic, overlapping eruptions. The highest reliable color temperature is ∼1300 K. Although higher temperatures cannot be ruled out, they do not need to be invoked to fit the observed data. The total power output from the active lavas in February 2000 was at least 1011 W.  相似文献   

14.
The Io plasma torus, composed of mostly heavy ions of oxygen and sulfur, is sustained by an Iogenic mass loading rate of ∼1030 amu s−1 = 1.6 × 1028 SO2 s−1 or approximately 103 kg s−1(A.L. Broadfoot et al., 1979, Science 204, 979-982). We argue on the basis of available power sources, reanalysis of F. Bagenal (1997, Geophys. Res. Lett. 24, 2111-2114), HST UV remote sensing, and detailed model calculations that at most 20% of this mass leaves Io in the form of ions, i.e., ≤3 × 1027 × (ne,0/3600 cm−3) ions s−1, where ne,0 is the average torus electron density. For the Galileo spacecraft Io pass in December 1995, the ion mass loading rate was ≤3 × 1027 ions s−1, whereas for the Voyager epoch with lower ne,0 (=2000 cm−3), this rate would be ≤1.7 × 1027 ions s−1, consistent with the D.E. Shemansky (1980, Astrophys. J. 242, 1266-1277) mass loading limit of ≤1 × 1027 ions s−1. We investigate the processes that control Io’s large scale electrodynamic interaction and find that the elastic collision rate exceeds the ionization/pickup rate by at least a factor of 5 for all atmospheric column densities considered (1016-1021 m−2) and by a factor of ∼100 for the most realistic column density. Consequently, elastic collisions are mostly responsible for Io’s high conductances and thus generate Io’s large scale electrodynamic interaction such as the generation of Io’s electric current system and the slowing of the plasma flow. The electrodynamic part of Io’s interaction is thus best described as an ionosphere-like interaction rather than a comet-like interaction. An analytic expression for total electron impact rates is derived for Io’s atmosphere, which is independent of any particular model for the 3D interaction of torus electrons with its atmosphere.  相似文献   

15.
The temporal signature of thermal emission from a volcano is a valuable clue to the processes taking place both at and beneath the surface. The Galileo Near Infrared Mapping Spectrometer (NIMS) observed the volcano Prometheus, on the jovian moon Io, on multiple occasions between 1996 and 2002. The 5 micron (μm) brightness of this volcano shows considerable variation from orbit to orbit. Prometheus exhibits increases in thermal emission that indicate episodic (though non-periodic) effusive activity in a manner akin to the current Pu'u 'O'o-Kupaianaha (afterwards referred to as the Pu'u 'O'o) eruption of Kilauea, Hawai'i. The volume of material erupted during one Prometheus eruption episode (defined as the interval from minimum thermal emission to peak and back to minimum) from 6 November 1996 to 7 May 1997 is estimated to be ∼0.8 km3, with a peak instantaneous volumetric flux (effusion rate) of ∼140 m3 s−1, and an averaged volumetric flux (eruption rate) of ∼49 m3 s−1. These quantities are used to model subsurface structure, magma storage and magma supply mechanisms, and likely magma chamber depth. Prometheus appears to be supplied by magma from a relatively shallow magma chamber, with a roof at a minimum depth of ∼2-3 km and a maximum depth of ∼14 km. This is a much shallower depth range than sources of supply proposed for explosive, possibly ultramafic, eruptions at Pillan and Tvashtar. As Prometheus-type effusive activity is widespread on Io, shallow magma chambers containing magma of basaltic or near-basaltic composition and density may be common. This analysis strengthens the analogy between Prometheus and Pu'u 'O'o, at least in terms of eruption style. Even though the style of eruption appears to be similar (effusive emplacement of thin, insulated, compound pahoehoe flows) the scale of activity at Prometheus greatly exceeds current activity at Pu'u 'O'o in terms of volume erupted, area covered, and magma flux. Whereas the estimated magma chamber at Prometheus dwarfs the Pu'u 'O'o magma chamber, it fits within expectations if the Pu'u 'O'o chamber were scaled for the greater volumetric flux and lower gravity of Io. Recent volumetric eruption rates derived from Galileo data for Prometheus were considerably smaller than the rate that produced the extensive flows formed in the ∼17 years between the Voyager and Galileo missions. These smaller eruption rates, coupled with the fact that flows are not expanding laterally, may mean that the immediate heat source that generates the Prometheus plume is simultaneously running out of available volatiles and the thermal energy that drives mobilization of volatiles. This raises the question of whether the current Prometheus eruption is in its last throes.  相似文献   

16.
We have observed about 16 absorption lines of the ν2 SO2 vibrational band on Io, in disk-integrated 19-μm spectra taken with the TEXES high spectral resolution mid-infrared spectrograph at the NASA Infrared Telescope Facility in November 2001, December 2002, and January 2004. These are the first ground-based infrared observations of Io's sunlit atmosphere, and provide a new window on the atmosphere that allows better longitudinal and temporal monitoring than previous techniques. Dramatic variations in band strength with longitude are seen that are stable over at least a 2 year period. The depth of the strongest feature, a blend of lines centered at 530.42 cm−1, varies from about 7% near longitude 180° to about 1% near longitude 315° W, as measured at a spectral resolution of 57,000. Interpretation of the spectra requires modeling of surface temperatures and atmospheric density across Io's disk, and the variation in non-LTE ν2 vibrational temperature with altitude, and depends on the assumed atmospheric and surface temperature structure. About half of Io's 19-μm radiation comes from the Sun-heated surface, and half from volcanic hot spots with temperatures primarily between 150 and 200 K, which occupy about 8% of the surface. The observations are thus weighted towards the atmosphere over these low-temperature hot spots. If we assume that the atmosphere over the hot spots is representative of the atmosphere elsewhere, and that the atmospheric density is a function of latitude, the most plausible interpretation of the data is that the equatorial atmospheric column density varies from about 1.5×1017 cm−2 near longitude 180° W to about 1.5×1016 cm−2 near longitude 300° W, roughly consistent with HST UV spectroscopy and Lyman-α imaging. The inferred atmospheric kinetic temperature is less than about 150 K, at least on the anti-Jupiter hemisphere where the bands are strongest, somewhat colder than inferred from HST UV spectroscopy and millimeter-wavelength spectroscopy. This longitudinal variability in atmospheric density correlates with the longitudinal variability in the abundance of optically thick, near-UV bright SO2 frost. However it is not clear whether the correlation results from volcanic control (regions of large frost abundance result from greater condensation of atmospheric gases supported by more vigorous volcanic activity in these regions) or sublimation control (regions of large frost abundance produce a more extensive atmosphere due to more extensive sublimation). Comparison of data taken in 2001, 2002, and 2004 shows that with the possible exception of longitudes near 180° W between 2001 and 2002, Io's atmospheric density does not appear to decrease as Io recedes from the Sun, as would be expected if the atmosphere were supported by the sublimation of surface frost, suggesting that the atmosphere is dominantly supported by direct volcanic supply rather than by frost sublimation. However, other evidence such as the smooth variation in atmospheric abundance with latitude, and atmospheric changes during eclipse, suggest that sublimation support is more important than volcanic support, leaving the question of the dominant atmospheric support mechanism still unresolved.  相似文献   

17.
We present the first reported measurements of the intensity of a “hotband” transition for the H3+ molecular ion in the northern auroral/polar region of Jupiter. This transition is identified as the R(3, 4+) line of the (2v2(l=0)→v2) hotband, with a wavelength of 3.94895 μm. This is the first time such a transition has been measured outside the laboratory, and the wavelength as measured on Jupiter is within the experimental accuracy of the lab measurement. This detection makes it possible to investigate H3+ transitions that simultaneously originate from different vibrational levels. We use the intensity ratio between this line and the Q(1, 0) fundamental transition to derive effective vibrational temperatures, column densities, and total emission parameters as a function of position across the auroral/polar region. Effective temperatures range from ∼900 to ∼1250 K; an increase in average temperature during our observing run of ∼100 K is noted. The derived temperatures are toward the high end or in excess of the auroral temperature range that has been reported in the literature to date. The relationship among emission intensity, temperature, and density is shown to be complex. This may reflect the nonthermalization of the vibrational levels at the gas densities prevailing in the jovian thermosphere. An alternative analysis allowing for this effect is presented. But this approach requires thermospheric temperatures to be ∼1500 K at the level that the majority of H3+ is being produced, higher than has previously been proposed.  相似文献   

18.
Silicon tetrafluoride (SiF4) is observed in terrestrial volcanic gases and is predicted to be the major F-bearing species in low-temperature volcanic gases on Io [Schaefer, L., Fegley Jr., B., 2005b. Alkali and halogen chemistry in volcanic gases on Io. Icarus 173, 454-468]. SiF4 gas is also a potential indicator of silica-rich crust on Io. We used F/S ratios in terrestrial and extraterrestrial basalts, and gas/lava enrichment factors for F and S measured at terrestrial volcanoes to calculate equilibrium SiF4/SO2 ratios in volcanic gases on Io. We conclude that SiF4 can be produced at levels comparable to the observed NaCl/SO2 gas ratio. We also considered potential loss processes for SiF4 in volcanic plumes and in Io's atmosphere including ion-molecule reactions, electron chemistry, photochemistry, reactions with the major atmospheric constituents, and condensation. Photochemical destruction (tchem ∼266 days) and/or condensation as Na2SiF6 (s) appear to be the major sinks for SiF4. We recommend searching for SiF4 with infrared spectroscopy using its 9.7 μm band as done on Earth.  相似文献   

19.
Polar brightness temperatures on Io are higher than expected for any passive surface heated by absorbed sunlight. This discrepancy implies large scale volcanic activity from which we derive a new component of Io's heat flow. We present a ‘Three Component’ thermal background, infrared emission model for Io that includes active polar regions. The widespread polar activity contributes an additional ∼0.6 W m−2 to Io's heat flow budget above the ∼2.5 W m−2 from thermal anomalies. Our estimate for Io's global average heat flow increases to ∼3±1 W m−2 and ∼1.3±0.4×1014 watts total.  相似文献   

20.
Surface changes on Io during the Galileo mission   总被引:1,自引:0,他引:1  
A careful survey of Galileo SSI global monitoring images revealed more than 80 apparent surface changes that took place on Io during the 5 year period of observation, ranging from giant plume deposits to subtle changes in the color or albedo of patera surfaces. Explosive volcanic activity was discovered at four previously unrecognized centers: an unnamed patera to the south of Karei that produced a Pele-sized red ring, a patera to the west of Zal that produced a small circular bright deposit, a large orange ring detected near the north pole of Io, and a small bright ring near Io's south pole. Only a handful of Io's many active volcanoes produced large scale explosive eruptions, and several of these erupted repeatedly, leaving at least 83% of Io's surface unaltered throughout the Galileo mission. Most of the hot spots detected from SSI, NIMS and ground-based thermal observations caused no noticeable surface changes greater than 10 km in extent over the five year period. Surface changes were found at every location where active plumes were identified, including Acala which was never seen in sunlight and was only detected through auroral emissions during eclipse. Two types of plumes are distinguished on the basis of the size and color of their deposits, confirming post-Voyager suggestions by McEwen and Soderblom [Icarus 55 (1983) 191]. Smaller plumes produce near-circular rings typically 150-200 km in radius that are white or yellow in color unless contaminated with silicates, and frequently coat their surroundings with frosts of fine-grained SO2. The larger plumes are much less numerous, limited to a half dozen examples, and produce oval, orange or red, sulfur-rich rings with maximum radii in the north-south direction that are typically in the range from 500 to 550 km. Both types of plumes can be either episodic or quasi-continuous over a five year period. Repeated eruptions of the smaller SO2-rich plumes likely contribute significantly to Io's resurfacing rate, whereas dust ejection is likely dominated by the tenuous giant plumes. Both types of plume deposits fade on time-scales of months to years through burial and alteration. Episodic seepages of SO2 at Haemus Montes, Zal Montes, Dorian Montes, and the plateau to the north of Pillan Patera may have been triggered by activity at nearby volcanic centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号