首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sub-millimeter 12CO (346 GHz) and 13CO (330 GHz) line absorptions, formed in the mesosphere and lower thermosphere of Venus (70–120 km), have been mapped across the nightside Venus disk during 2001–2009 inferior conjunctions, employing the James Clerk Maxwell Telescope (JCMT). Radiative transfer analysis of these thermal line absorptions supports temperature and CO mixing profile retrievals, as well as Doppler wind fields (described in the companion paper, Clancy et al., 2012). Temporal sampling over the hourly, daily, weekly and interannual timescales was obtained over 2001–2009. On timescales inferred as several weeks, we observe changes between very distinctive CO and temperature nightside distributions. Retrieved nightside CO, temperature distributions for January 2006 and August 2007 observations display strong local time, latitudinal gradients consistent with early morning (2–3 am), low-to-mid latitude (0–40NS) peaks of 100–200% in CO and 20–30 K in temperature. The temperature increases are most pronounced above 100 km altitudes, whereas CO variations extend from 105 km (top altitude of retrieval) down to below 80 km in the mesosphere. In contrast, the 2004 and 2009 periods of observation display modest temperature (5–10 K) and CO (30–60%) increases, that are centered on antisolar (midnight) local times and equatorial latitudes. Doppler wind derived global (zonal and should be SSAS) circulations from the same data do not exhibit variations correlated with these CO, temperature short-term variations. However, large-scale residual wind fields not fit by the zonal, SSAS circulations are observed in concert with the strong temperature, CO gradients observed in 2006 and 2007 (Clancy et al., 2010). These short term variations in nightside CO, temperature distributions may also be related to observed nightside variations in O2 airglow (Hueso, H., Sánchez-Lavega, A., Piccioni, G., Drossart, P., Gérard, J.C., Khatuntsev, I., Zasova, L., Migliorini, A. [2008]. J. Geophys. Res. 113, E00B02. doi:10.1029/2008JE003081) and upper mesospheric SO and SO2 layers (Sandor, B.J., Clancy, R.T., Moriarty-Schieven, G.H., Mills, F.P. [2010]. Icarus 208, 49–60).The retrieved temperature profiles also exhibit 20 K long-term (2001–2009) variations in nightside (whole disk) average mesospheric (80–95 km) temperatures, similar to 1982–1991 variations identified in previous millimeter CO line observations (Clancy et al., 1991). Global average diurnal variations in lower thermospheric temperatures and mesospheric CO abundances decreased by a factor-of-two between 2000–2002 versus 2007–2009 periods of combined dayside and nightside observations. The infrequency and still limited temporal extent of the observations make it difficult to assign specific timescales to such longer term variations, which may be associated with longer term variations observed for cloud top SO2 (Esposito, L.W., Bertaux, J.-L., Krasnopolsky, V., Moroz, V.I., Zasova, L.V. [1997]. Chemistry of lower atmosphere and clouds. In: Bougher, S.W., Hunten, D.M., Phillips, R.J. (Eds.), VENUS II, 1362pp) and mesospheric water vapor (Sandor, B.J., Clancy, R.T. [2005]. Icarus 177, 129–143) abundances.  相似文献   

2.
Sub-millimeter 12CO (346 GHz) and 13CO (330 GHz) line absorptions, formed within the mesospheric to lower thermospheric altitude (70–120 km) region of the Venus atmosphere, have been mapped across the nightside disk of Venus during 2001–2009 inferior conjunctions, employing the James Clerk Maxwell Telescope (JCMT). Radiative transfer analysis of these thermal line absorptions supports temperature and CO mixing profile retrievals, as described in a companion paper (Clancy et al., 2012). Here, we consider the analysis of the sharp line absorption cores of these CO spectra in terms of accurate Doppler wind profile measurements at 95–115 km altitudes versus local time (~8 pm–4 am) and latitude (~60N–60S). These Doppler wind measurements support determinations of the nightside zonal and subsolar-to-antisolar (SSAS) circulation components over a variety of timescales. The average behavior fitted from 21 retrieved maps of 12CO Doppler winds (obtained over hourly, daily, weekly, and interannual intervals) indicates stronger average zonal (85 m/s retrograde) versus SSAS (65 m/s) circulation at the 1 μbar pressure (108–110 km altitude) level. However, the absolute and relative magnitudes of these circulation components exhibit extreme variability over daily to weekly timescales. Furthermore, the individual Doppler wind measurements within each nightside mapping observation generally show significant deviations (20–50 m/s, averaged over 5000 km horizontal scales) from the simple zonal/SSAS solution, with distinct local time and latitudinal characters that are also time variable. These large scale residual circulations contribute 30–70% of the observed nightside Doppler winds at any given time, and may be most responsible for global variations in nightside lower thermospheric trace composition and temperatures, as coincidentally retrieved CO abundance and temperature distributions do not correlate with solution retrograde zonal and SSAS winds (see companion paper, Clancy et al., 2012). Limited comparisons of these nightside submillimeter results with dayside infrared Doppler wind measurements suggest distinct dayside versus nightside circulations, in terms of zonal winds in particular. Combined 12CO and 13CO Doppler wind mapping observations obtained since 2004 indicate that the average zonal and SSAS wind components increase by 50–100% between altitudes of 100 and 115 km. If gravity waves originating from the cloud levels are responsible for the extension of zonal winds into the thermosphere (Alexander, M.J. [1992]. Geophys. Res. Lett. 19, 2207–2210), such waves deposit substantial momentum (i.e., break) in the lower nightside thermosphere.  相似文献   

3.
R.T. Clancy  D.O. Muhleman 《Icarus》1985,64(2):157-182
Microwave spectra of carbon monoxide (12CO) in the mesosphere of Venus were measured in December 1978, May and December 1980, and January, September, and November 1982. These spectra are analyzed to provide mixing profiles of CO in the Venus mesosphere and best constrain the mixing profile of CO between ~ 100 and 80 km altitude. From the January 1982 measurement (which, of all our spectra, best constrains the abundance of CO below 80 km altitude) we find an upper limit for the CO mixing ratio below 80 km altitude that is two to three times smaller than the stratospheric (~65 km) value of 4.5 ± 1.0 × 10?5 determined by P. Connes, J. Connes, L.D. Kaplan, and W. S. Benedict (1968, Astrophys. J.152, 731–743) in 1967, indicating a possible long-term change in the lower atmospheric concentration of CO. Intercomparison among the individual CO profiles derived from our spectra indicates considerable short-term temporal and/or spatial variation in the profile of CO mixing in the Venus mesosphere above 80 km. A more complete comparison with previously published CO microwave spectra from a number of authors specifies the basic diurnal nature of mesospheric CO variability. CO abundance above ~ 95 km in the Venus atmosphere shows approximately a factor of 2–4 enhancement on the nightside relative to the dayside of Venus. Peak nightside CO abundance above ~95 km occurs very near to the antisolar point on Venus (local time of peak CO abundance above ~95 km occurs at 0.6?0.6+0.7 hr after midnight on Venus), strongly suggesting that retrograde zonal flow is substantially reduced at an altitude of 100 km in the Venus mesosphere. In contrast, CO abundances between 80 and 90 km altitude show a maximum that is shifted from the antisolar point toward the morningside of Venus (local time of peak CO abundance between 80 and 90 km occurs at 8.5 ± 1.0 hr past midnight on Venus). The magnitude of the diurnal variation of CO abundance between 80 and 90 km is again, approximately a factor of 2–4. Disk-averaged spectra of Venus do not determine the exact form for the diurnal distribution of CO in the Venus mesosphere as indicated by comparison of synthetic spectra, based upon model distributions, and the measured spectra. However, the offset in phase for the diurnal variation for the >95 km and 80–90-km-altitude regions requires an asymmetric (in solar zenith angle) distribution.  相似文献   

4.
The Venus mesosphere constitutes a highly variable transition region between the zonal rotation of the lower atmosphere and the diurnal circulation of the upper atmosphere. It further serves as the primary photochemical region of the Venus atmosphere. We obtained James Clerk Maxwell Telescope (JCMT, Mauna Kea Hawaii) sub-millimeter line observations of mesospheric 12CO and 13CO during coordinated space (MESSENGER and Venus Express) and ground-based observations of Venus in June of 2007. Such CO spectra line measurements support temperature, CO mixing ratio, and wind retrievals over the 80-110 km altitude range, encompassing the upper mesosphere and lower thermosphere of Venus. Five-point beam integrations were obtained across the observed Venus disk, allowing distinction of afternoon (noon to 6 p.m.) versus evening (6 p.m. to midnight) local times and northern (0-60N) versus southern (0-60S) latitudes. Distinctive diurnal variations (noon to midnight) are retrieved for both temperatures above 95 km and CO mixing ratios above 85 km altitudes. Separate CO line maps obtained on (UT) June 2, 3, 6, and 11 indicate moderate daily variability in afternoon and evening CO mixing ratios (20-50%) and temperatures (5-10 K). Average Venus mesospheric temperatures over this period were 10 K warmer than returned from 1978 to 1979 Pioneer Venus or 2000-01 sub-millimeter measurements, without evidence for the very large temperature inversions indicated by Venus Express SPICAV measurements at 90-100 km altitudes (Bertaux, J.L., Vandaele, A.-C., Korablev, O., Villard, E., Fedorova, A., Fussen, D., Quémerais, E., Belyaev, D., Mahieux, A., Montmessin, F., Muller, C., Neefs, E., Nevejans, D., Wilquet, V., Dubois, J.P. Hauchecorne, A., Stepanov, A., Vinogradov, I., Rodin, A., Bertaux, J.-L., Nevejans, D., Korablev, O., Montmessin, F., Vandaele, A.-C., Fedorova, A., Cabane, M., Chassefière, E., Chaufray, J.Y., Dimarellis, E., Dubois, J.P., Hauchecorne, A., Leblanc, F., Lefèvre, F., Rannou, P., Quémerais, E., Villard, E., Fussen, D., Muller, C., Neefs, E., Van Ransbeeck, E., Wilquet, V., Rodin, A., Stepanov, A., Vinogradov, I., Zasova, L., Forget, F., Lebonnois, S., Titov, D., Rafkin, S., Durry, G., Gérard, J.C., Sandel, B., 2007. A warm layer in Venus’ cryosphere and high-altitude measurements of HF, HCl, H2O and HDO. Nature 450, 646-649). Measured Doppler shifts associated with June 2 and 11 12CO line center absorptions indicate nearly supersonic (200 m/s, Mach 1) afternoon-to-evening (retrograde) circulation; composed of additive subsolar-to-antisolar (SSAS) and zonal retrograde wind components, which are not separable due to the particular observational geometry.  相似文献   

5.
A. Seiff  Donn B. Kirk 《Icarus》1982,49(1):49-70
Data on the thermal structure of the nightside middle atmosphere of Venus, from 84 to 137 km altitude, have been obtained from analysis of deceleration measurements from the third Pioneer Venus small probe, the night probe, which entered the atmosphere near the midnight meridian at 27°S latitude. Comparison of the midnight sounding with the morning sounding at 31°S latitude indicates that the temperature structure is essentially diurnally invariant up to 100 km, above which the nightside structure diverges sharply from the dayside toward lower temperatures. Very large diurnal pressure differences develop above 100 km with dayside pressure ten times that on the nightside at 126 km altitude. This has major implications for upper atmospheric dynamics. The data are compared with the measurements of G. M. Keating, J. Y. Nicholson, and L. R. Lake (1980, J. Geophys. Res., 85, 7941–7956) above 140 km with theoretical thermal structure models of Dickinson, and with data obtained by Russian Venera spacecraft below 100 km. Midnight temperatures are ~ 130°K, somewhat warmer than those reported by Keating et al.  相似文献   

6.
We present the first detections of the ground-state H216O (110-101) rotational transition (at 556.9 GHz) and the 13CO (5-4) rotational transition from the atmosphere of Venus, measured with the Submillimeter Wave Astronomy Satellite (SWAS). The observed spectral features of these submillimeter transitions originate primarily from the 70-100 km altitude range, within the Venus mesosphere. Observations were obtained in December 2002, and January, March, and July 2004, coarsely sampling one Venus diurnal period as seen from Earth. The measured water vapor absorption line depth shows large variability among the four observing periods, with strong detections of the line in December 2002 and July 2004, and no detections in January and March 2004. Retrieval of atmospheric parameters was performed using a multi-transition inversion algorithm, combining simultaneous retrievals of temperature, carbon monoxide, and water profiles under imposed constraints. Analysis of the SWAS spectra resulted in measurements or upper limits for the globally averaged mesospheric water vapor abundance for each of the four observation periods, finding variability over at least two orders of magnitude. The results are consistent with both temporal and diurnal variability, but with short-term fluctuations clearly dominating. These results are fully consistent with the long-term study of mesospheric water vapor from millimeter and submillimeter observations of HDO [Sandor, B.J., Clancy, R.T., 2005. Icarus 177, 129-143]. The December 2002 observations detected very rapid change in the mesospheric water abundance. Over five days, a deep water absorption feature consistent with a water vapor abundance of 4.5±1.5 parts per million suddenly gave way to a significantly shallower absorption, implying a decrease in the water vapor abundance by a factor of nearly 50 in less that 48 h. In 2004, similar changes in the water vapor abundance were measured between the March and July SWAS observing periods, but variability on time scales of less than a week was not detected. The mesospheric water vapor is expected to be in equilibrium with aerosol particles, primarily composed of concentrated sulfuric acid, in the upper haze layers of the Venus atmosphere. If true, moderate amplitude (10-15 K) variability in mesospheric temperature, previously noted in millimeter spectroscopy observations of Venus, can explain the rapid water vapor variability detected by SWAS.  相似文献   

7.
We report on direct wind measurements in Venus’ mesosphere (90-115 km), performed in support of Venus Express, and based on CO millimeter observations. Most observations, sampling the CO(2-1) and CO(1-0) lines, were acquired with the IRAM 30-m telescope, over four distinct periods: (i) Summer 2006; (ii) May-June 2007, in association with the coordinated ground-based campaign; (iii) August 2007 inferior conjunction and (iv) September 2007. In the latter period, additional measurements (CO(3-2)) were obtained with the APEX 12-m telescope. Overall, the measurements indicate a large body of temporal variability of the Venus mesospheric field, but general features emerge: (i) winds strongly increase with altitude within the mesosphere, by a factor of 2-3 over a decade in pressure; (ii) many, but not all, of our observations can be viewed as the superposition of zonal retrograde and subsolar-to-antisolar (SSAS) flows of comparable speeds, typically 30-50 m/s near 0.1 mbar () and 90-120 m/s near 0.01 mbar () (iii) the wind field was very stable over three consecutive observing days in May-June 2007, but much more variable on a similar time base in August 2007 (iv) at a resolution, the nightside wind field appears very complex, with evidence that the SSAS flow does not reach high latitudes, and possible evidence for additional meridional winds. Our Summer 2006 observations, which sample Venus’ dayside, seem to suggest that a prograde zonal flow is superimposed to the SSAS circulation for this period. This surprising result, which implies a pre-midnight convergence of the wind field, requires confirmation, and fruitful comparisons may be obtained from the analysis of motions in the O2 emission images, as observed by Venus Express.  相似文献   

8.
An analysis of ion data from 390 Venus Express, VEX, orbits demonstrates that the flow of solar wind- and ionospheric ions near Venus is characterized by a marked asymmetry. The flow asymmetry of solar wind H+ and ionospheric O+ points steadily in the opposite direction to the planet’s orbital motion, and is most pronounced near the Pole and in the tail/nightside region. The flow asymmetry is consistent with aberration forcing, here defined as lateral forcing induced by the planet’s orbital motion. In addition to solar wind forcing by the radial solar wind expansion, Venus is also subject a lateral/aberration forcing induced by the planet’s orbital motion transverse to the solar wind flow.The ionospheric response to lateral solar wind forcing is analyzed from altitude profiles of the ion density, ion velocity and ion mass-flux. The close connection between decreasing solar wind H+ mass-flux and increasing ionospheric O+ mass-flux, is suggestive of a direct/local solar wind energy and momentum transfer to ionospheric plasma. The bulk O+ ion flow is accelerated to velocities less than 10 km/s inside the dayside/flank Ionopause, and up to 6000 km in the tail. Consequently, the bulk O+ outflow does not escape, but remains near Venus as a fast (km/s) O+ zonal wind in the Venus polar and nightside upper ionosphere. Furthermore, the total O+ mass-flux in the Venus induced magnetosphere, increases steadily downward to a maximum of 2 × 10−14 kg/(m2 s) at ≈400 km altitude, suggesting a downward transport of energy and momentum. The O+, and total mass-flux, decay rapidly below 400 km. With no other plasma mass-flux as replacement, we argue that the reduction of ion mass-flux is caused by ion-neutral drag, a transfer of ion energy and momentum to neutrals, implying that the O+ plasma wind is converted to a neutral (thermosphere) wind at Venus. Incidentally, such a neutral wind would go in the same direction as the Venus atmosphere superrotation.  相似文献   

9.
A two-dimensional model of the ionosphere of Venus which simulates ionospheric dynamics by self-consistently solving the plasma equations of motion, including the inertial term, in finite difference form has been constructed. The model, which is applied over the solar zenith angle range extending from 60 to 140° and the altitude range 100 to 480 km, simulates the measured horizontal velocity field quite satisfactorily. The ion density field is somewhat overestimated on the dayside because of the choice model neutral atmosphere and underestimated on the nightside because of setting the ionopause height at too low an altitude. It is concluded that solar photoionization on the dayside and ion recombination on the nightside are the processes mainly responsible for accelerating the plasma to the observed velocities. The plasma flow appears to be sufficient to maintain the nightside ionosphere at or near the observed median level of ion densities.  相似文献   

10.
The upper ionospheres of Mars and Venus are permeated by the magnetic fields induced by the solar wind. It is a long-standing question whether these fields can put the dense ionospheric plasma into motion. If so, the transterminator flow of the upper ionosphere could explain a significant part of the ion escape from the planets atmospheres. But it has been technically very challenging to measure the ion flow at energies below 20 eV. The only such measurements have been made by the ORPA instrument of the Pioneer Venus Orbiter reporting speeds of 1-5 km/s for O+ ions at Venus above 300 km altitude at the terminator ( [Knudsen et al., 1980] and [Knudsen et al., 1982]). At Venus the transterminator flow is sufficient to sustain a permanent nightside ionosphere, at Mars a nightside ionosphere is observed only sporadically. We here report on new measurements of the transterminator ion flow at Mars by the ASPERA-3 experiment on board Mars Express with support from the MARSIS radar experiment for some orbits with fortunate observation geometry. We observe a transterminator flow of O+ and O2+ ions with a super-sonic velocity of around 5 km/s and fluxes of 0.8×109/cm2 s. If we assume a symmetric flux around the terminator this corresponds to an ion flow of 3.1±0.5×1025/s half of which is expected to escape from the planet. This escape flux is significantly higher than previously observed on the tailside of Mars. A possible mechanism to generate this flux can be the ionospheric pressure gradient between dayside and nightside or momentum transfer from the solar wind via the induced magnetic field since the flow velocity is in the Alfvénic regime. We discuss the implication of these new observations for ion escape and possible extensions of the analysis to dayside observations which may allow us to infer the flow structure imposed by the induced magnetic field.  相似文献   

11.
Using synthetic spectra derived from an updated model atmosphere together with a continuum model that includes contributions from haze, cloud and ground, we have re-analyzed the recently published (Geballe et al., 2003, Astrophys. J. 583, L39-L42) high-resolution 3 μm spectrum of Titan which contains newly-detected bands of HCN (in emission) and C2H2 and CH3D (in absorption), in addition to previously detected bands of CH4. In the 3.10-3.54 μm interval the analysis yields strong evidence for the existence of a cloud deck or optically thick haze layer at about the 10 mbar (∼ 100 km) level. The haze must extend well above this altitude in order to mask the strong CH4 lines at 3.20-3.50 μm. These cloud and haze components must be transparent at 2.87-2.92 μm, where analysis of the CH3D spectrum demonstrates that Titan's surface is glimpsed through a second cloud deck at about the 100 mbar (∼ 50 km) level. Through a combination of areal distribution and optical depth this cloud deck has an effective transmittance of ∼ 20%. The spectral shape of Titan's continuum indicates that the higher altitude cloud and haze particles responsible for suppressing the CH4 absorptions have a largely organic make-up. The rotational temperature of the HCN ranges from 140 to 180 K, indicating that the HCN emission occurs over a wide range of altitudes. This emission, remodeled using an improved collisional deactivation rate, implies mesospheric mixing ratio curves that are consistent with previously predictions. The stratospheric and mesospheric C2H2 mixing ratios are ∼10−5, considerably less than previous model predictions (Yung et al., 1984), but approximately consistent with recent observational results. Upper limits to mixing ratios of HC3N and C4H2 are derived from non-detections of those species near 3.0 μm.  相似文献   

12.
We report vertical thermal structure and wind velocities in the Venusian mesosphere retrieved from carbon monoxide (12CO J=2-1 and 13CO J=2-1) spectral line observations obtained with the Heinrich Hertz Submillimeter Telescope (HHSMT). We observed the mesosphere of Venus from two days after the second Messenger flyby of Venus (on 5 June 2007 at 23:10 UTC) during five days. Day-to-day and day-to-night temperature variations and short-term fluctuations of the mesospheric zonal flow were evident in our data. The extensive layer of warm air detected recently by SPICAV at 90-100 km altitude is also detected in the temperature profiles reported here.These data were part of a coordinated ground-based Venus observational campaign in support of the ESA Venus Express mission. Furthermore, this study attempts to cross-calibrate space- and ground-based observations, to constrain radiative transfer and retrieval algorithms for planetary atmospheres, and to contribute to a more thorough understanding of the global patterns of circulation of the Venusian atmosphere.  相似文献   

13.
Venus was observed at 2.4 and 3.7 μm with a resolving power of 4×104 using the long-slit high-resolution spectrograph CSHELL at NASA IRTF. The observations were made along a chord that covered a latitude range of ± 60° at a local time near 8:00. The continuous reflectivity and limb brightening at 2.4 μm are fitted by the clouds with a single scattering albedo 1−a=0.01 and a pure absorbing layer with τ=0.09 above the clouds. The value of 1−a agrees with the refractive index of H2SO4 (85%) and the particle radius of 1 μm. The absorbing layer is similar to that observed by the UV spectrometer at the Pioneer Venus orbiter. However, its nature is puzzling. CO2 was measured using its R32 and R34 lines. The retrieved product of the CO2 abundance and airmass is constant at 1.9 km-atm along the instrument slit in the latitude range of ± 60°. The CO mixing ratio (measured using the P21 line) is rather constant at 70 ppm, and its variations of ∼10% may be caused by atmospheric dynamics. The observed value is higher than the 50 ppm retrieved previously from a spectrum of the full disk, possibly, because of some downward extension of the mesospheric morningside bulge of CO. The observations of the HF R3 line reveal a constant HF mixing ratio of 3.5±0.5 ppb within ± 60° of latitude, which is within the scatter in the previous measurements of HF. OCS has been detected for the first time at the cloud tops by summing 17 lines of the P-branch. The previous detections of OCS refer to the lower atmosphere at 30-35 km. The retrieved OCS mixing ratio varies with a scale height of 1 to 3 km. The mean OCS mixing ratio is ∼2 ppb at 70 km and ∼14 ppb at 64 km. Vertical motions in the atmosphere may change the OCS abundance. The detected OCS should significantly affect Venus' photochemistry. A sensitive search for H2S using its line at 2688.93 cm−1 results in a 3 sigma upper limit of 23 ppb, which is more restrictive than the previous limit of 100 ppb.  相似文献   

14.
The MESSENGER Fast Imaging Plasma Spectrometer (FIPS) measured the bulk plasma characteristics of Mercury's magnetosphere and solar wind environment during the spacecraft's first two flybys of the planet on 14 January 2008 (M1) and 6 October 2008 (M2), producing the first measurements of thermal ions in Mercury's magnetosphere. In this work, we identify major features of the Mercury magnetosphere in the FIPS proton data and describe the data analysis process used for recovery of proton density (np) and temperature (Tp) with a forward modeling technique, required because of limitations in measurement geometry. We focus on three regions where the magnetospheric flow speed is likely to be low and meets our criteria for the recovery process: the M1 plasma sheet and the M1 and M2 dayside and nightside boundary-layer regions. Interplanetary magnetic field (IMF) conditions were substantially different between the two flybys, with intense reconnection signatures observed by the Magnetometer during M2 versus a relatively quiet magnetosphere during M1. The recovered ion density and temperature values for the M1 quiet-time plasma sheet yielded np∼1–10 cm−3, Tp∼2×106 K, and plasma β∼2. The nightside boundary-layer proton densities during M1 and M2 were similar, at np∼4–5 cm−3, but the temperature during M1 (Tp∼4–8×106 K) was 50% less than during M2 (Tp∼8×106 K), presumably due to reconnection in the tail. The dayside boundary layer observed during M1 had a density of ∼16 cm−3 and temperature of 2×106 K, whereas during M2 this region was less dense and hotter (np∼8 cm−3 and Tp∼10×106 K), again, most likely due to magnetopause reconnection. Overall, the southward interplanetary magnetic field during M2 clearly produced higher Tp in the dayside and nightside magnetosphere, as well as higher plasma β in the nightside boundary, ∼20 during M2 compared with ∼2 during M1. The proton plasma pressure accounts for only a fraction (24% for M1 and 64% for M2) of the drop in magnetic pressure upon entry into the dayside boundary layer. This result suggests that heavy ions of planetary origin, not considered in this analysis, may provide the “missing” pressure. If these planetary ions were hot due to “pickup” in the magnetosheath, the required density for pressure balance would be an ion density of ∼1 cm−3 for an ion temperature of ∼108 K.  相似文献   

15.
《Planetary and Space Science》2007,55(12):1673-1700
Spectroscopy for the investigation of the characteristics of the atmosphere of Venus (SPICAV) is a suite of three spectrometers in the UV and IR range with a total mass of 13.9 kg flying on the Venus Express (VEX) orbiter, dedicated to the study of the atmosphere of Venus from ground level to the outermost hydrogen corona at more than 40,000 km. It is derived from the SPICAM instrument already flying on board Mars Express (MEX) with great success, with the addition of a new IR high-resolution spectrometer, solar occultation IR (SOIR), working in the solar occultation mode. The instrument consists of three spectrometers and a simple data processing unit providing the interface of these channels with the spacecraft.A UV spectrometer (118–320 nm, resolution 1.5 nm) is identical to the MEX version. It is dedicated to nadir viewing, limb viewing and vertical profiling by stellar and solar occultation. In nadir orientation, SPICAV UV will analyse the albedo spectrum (solar light scattered back from the clouds) to retrieve SO2, and the distribution of the UV-blue absorber (of still unknown origin) on the dayside with implications for cloud structure and atmospheric dynamics. On the nightside, γ and δ bands of NO will be studied, as well as emissions produced by electron precipitations. In the stellar occultation mode the UV sensor will measure the vertical profiles of CO2, temperature, SO2, SO, clouds and aerosols. The density/temperature profiles obtained with SPICAV will constrain and aid in the development of dynamical atmospheric models, from cloud top (∼60 km) to 160 km in the atmosphere. This is essential for future missions that would rely on aerocapture and aerobraking. UV observations of the upper atmosphere will allow studies of the ionosphere through the emissions of CO, CO+, and CO2+, and its direct interaction with the solar wind. It will study the H corona, with its two different scale heights, and it will allow a better understanding of escape mechanisms and estimates of their magnitude, crucial for insight into the long-term evolution of the atmosphere.The SPICAV VIS-IR sensor (0.7–1.7 μm, resolution 0.5–1.2 nm) employs a pioneering technology: an acousto-optical tunable filter (AOTF). On the nightside, it will study the thermal emission peeping through the clouds, complementing the observations of both VIRTIS and Planetary Fourier Spectrometer (PFS) on VEX. In solar occultation mode this channel will study the vertical structure of H2O, CO2, and aerosols.The SOIR spectrometer is a new solar occultation IR spectrometer in the range λ=2.2–4.3 μm, with a spectral resolution λλ>15,000, the highest on board VEX. This new concept includes a combination of an echelle grating and an AOTF crystal to sort out one order at a time. The main objective is to measure HDO and H2O in solar occultation, in order to characterize the escape of D atoms from the upper atmosphere and give more insight about the evolution of water on Venus. It will also study isotopes of CO2 and minor species, and provides a sensitive search for new species in the upper atmosphere of Venus. It will attempt to measure also the nightside emission, which would allow a sensitive measurement of HDO in the lower atmosphere, to be compared to the ratio in the upper atmosphere, and possibly discover new minor atmospheric constituents.  相似文献   

16.
Chemical kinetic model for the lower atmosphere of Venus   总被引:1,自引:0,他引:1  
A self-consistent chemical kinetic model of the Venus atmosphere at 0-47 km has been calculated for the first time. The model involves 82 reactions of 26 species. Chemical processes in the atmosphere below the clouds are initiated by photochemical products from the middle atmosphere (H2SO4, CO, Sx), thermochemistry in the lowest 10 km, and photolysis of S3. The sulfur bonds in OCS and Sx are weaker than the bonds of other elements in the basic atmospheric species on Venus; therefore the chemistry is mostly sulfur-driven. Sulfur chemistry activates some H and Cl atoms and radicals, though their effect on the chemical composition is weak. The lack of kinetic data for many reactions presents a problem that has been solved using some similar reactions and thermodynamic calculations of inverse processes. Column rates of some reactions in the lower atmosphere exceed the highest rates in the middle atmosphere by two orders of magnitude. However, many reactions are balanced by the inverse processes, and their net rates are comparable to those in the middle atmosphere. The calculated profile of CO is in excellent agreement with the Pioneer Venus and Venera 12 gas chromatographic measurements and slightly above the values from the nightside spectroscopy at 2.3 μm. The OCS profile also agrees with the nightside spectroscopy which is the only source of data for this species. The abundance and vertical profile of gaseous H2SO4 are similar to those observed by the Mariner 10 and Magellan radio occultations and ground-based microwave telescopes. While the calculated mean S3 abundance agrees with the Venera 11-14 observations, a steep decrease in S3 from the surface to 20 km is not expected from the observations. The ClSO2 and SO2Cl2 mixing ratios are ∼10−11 in the lowest scale height. The existing concept of the atmospheric sulfur cycles is incompatible with the observations of the OCS profile. A scheme suggested in the current work involves the basic photochemical cycle, that transforms CO2 and SO2 into SO3, CO, and Sx, and a minor photochemical cycle which forms CO and Sx from OCS. The net effect of thermochemistry in the lowest 10 km is formation of OCS from CO and Sx. Chemistry at 30-40 km removes the downward flux of SO3 and the upward flux of OCS and increases the downward fluxes of CO and Sx. The geological cycle of sulfur remains unchanged.  相似文献   

17.
We speculate on the origin and physical properties of haze in the upper atmosphere of Venus. It is argued that at least four distinct types of particles may be present. The densest and lowest haze, normally seen by spacecraft, probably consists of a submicron sulfuric acid aerosol which extends above the cloud tops (at ~70 km) up to ~80 km; this haze represents an extension of the upper cloud deck. Measurements of the temperature structure between 70 and 120 km indicate that two independent water ice layers may occasionally appear. The lower one can form between 80 and 100 km and is probably the detached haze layer seen in high-contrast limb photography. This ice layer is likely to be nucleated on sulfuric acid aerosols, and is analogous to the nacreous (stratospheric) clouds on Earth. At the Venus “mesopause” near 120 km, temperatures are frequently cold enough to allow ice nucleation on meteoric dust or ambient ions. The resulting haze (which is analogous to noctilucent clouds on Earth) is expected to be extremely tenous, and optically invisible. On both Earth and Venus, meteoric dust is present throughout the upper atmosphere and probably has similar properties.  相似文献   

18.
We present the spatial distribution of air temperature on Venus’ night side, as observed by the high spectral resolution channel of VIRTIS (Visible and Infrared Thermal Imaging Spectrometer), or VIRTIS-H, on board the ESA mission Venus Express. The present work extends the investigation of the average thermal fields in the northern hemisphere of Venus, by including the VIRTIS-H data. We show results in the pressure range of 100–4 mbar, which corresponds to the altitude range of 65–80 km. With these new retrievals, we are able to compare the thermal structure of the Venus’ mesosphere in both hemispheres.The major thermal features reported in previous investigations, i.e. the cold collar at about 65–70°S latitude, 100 mbar pressure level, and the asymmetry between the evening and morning sides, are confirmed here. By comparing the temperatures retrieved by the VIRTIS spectrometer in the North and South we find that similarities exist between the two hemispheres. Solar thermal tides are clearly visible in the average temperature fields. To interpret the thermal tide signals (otherwise impossible without day site observations), we apply model simulations using the Venus global circulation model Venus GCM (Lebonnois, S., Hourdin, F., Forget, F., Eymet, V., Fournier, R. [2010b]. International Venus Conference, Aussois, 20–26 June 2010) of the Laboratoire de Météorologie Dynamique (LMD). We suggest that the signal detected at about 60–70° latitude and pressure of 100 mbar is a diurnal component, while those located at equatorial latitudes are semi-diurnal. Other tide-related features are clearly identified in the upper levels of the atmosphere.  相似文献   

19.
We report temperatures in Venus’ upper mesosphere/lower thermosphere, deduced from reanalyzing very high resolution infrared spectroscopy of CO2 emission lines acquired in 1990 and 1991. Kinetic temperatures at ~110 km altitude (0.15 Pa) are derived from the Doppler width of fully-resolved single line profiles measured near 10.4 μm wavelength using the NASA GSFC Infrared Heterodyne Spectrometer (IRHS) at the NASA IRTF on Mauna Kea, HI, close to Venus inferior conjunction and two Venus solstices. Measured temperatures range from ~200 to 240 K with uncertainty typically less than 10 K. Temperatures retrieved from similar measurement in 2009 using the Cologne Tuneable Heterodyne Infrared Spectrometer (THIS) at the NOAO McMath Telescope at Kitt Peak, AZ are 10–20 K lower. Temperatures retrieved more recently from the SOIR instrument on Venus EXpress are consistent with these results when the geometry of observation is accounted for. It is difficult to compare ground-based sub-mm retrievals extrapolated to 110 km due to their much larger field of view, which includes the night side regions not accessible to infrared heterodyne observations. Temperature variability appears to be high on day-to-day as well as longer timescales. Observed short term and long term variability may be attributed to atmospheric dynamics, diurnal variability and changes over solar activity and seasons. The Venus International Reference Atmosphere (VIRA) model predicts cooler temperatures at the sampled altitudes in the lower thermosphere/upper mesosphere and is not consistent with these measurements.  相似文献   

20.
Across the nightside of Venus, daily measurements from the PV Orbiter Ion Mass Spectrometer often indicate an ionosphere of relatively abundant concentration, with a composition characteristic of the dayside ionosphere. Such conditions are interspersed by other days on which the ionosphere appears to largely “disappear” down to about 200 km, with ion concentrations at lower heights also much reduced. These characteristics, coupled with observations of strong day to night flows of O+ in the upper ionosphere, support arguments that ion transport from the dayside is important for the maintenance of the nightside ionosphere. Also, U.S. and Soviet observations of nightside energetic electron fluxes have prompted consideration of impact ionization as an additional nightside ion source. The details of the ion and neutral composition at low altitudes on the nightside provide an important input for further analysis of the maintenance process. In the range 140–160 km, strong concentrations of O2+ and NO+ indicate that the ionization peak is at times composed of at least two prominent ion species. Nightside concentrations of O2+ and NO+ as large as 105 and 104/cm3, respectively, appear to require sources in addition to that provided by transport. The most probable sources are considered briefly, and no satisfactory explanation is yet found for the observed NO+ concentrations. Further analysis beyond the scope of this paper is required to resolve this issue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号