首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Recent HST images of the saturnian satellites Prometheus and Pandora show that their longitudes deviate from predictions of ephemerides based on Voyager images. Currently Prometheus is lagging and Pandora leading these predictions by somewhat more than 20°. We show that these discrepancies are fully accounted for by gravitational interactions between the two satellites. These peak every 24.8 days at conjunctions and excite chaotic perturbations. The Lyapunov exponent for the Prometheus-Pandora system is of order 0.3 year−1 for satellite masses based on a nominal density of 0.63 g cm−3. Interactions are strongest when the orbits come closest together. This happens at intervals of 6.2 years when their apses are antialigned. In this context, we note the sudden changes of opposite signs in the mean motions of Prometheus and Pandora at the end of 2000 occurred around the time their apsidal lines were antialigned.  相似文献   

2.
Saturn’s narrow F ring is flanked by two nearby small satellites, Prometheus and Pandora, discovered in Voyager images taken in 1980 and 1981 (Synnott et al., 1983, Icarus 53, 156-158). Observations with the Hubble Space Telescope (HST) during the ring plane crossings (RPX) of 1995 led to the unexpected finding that Prometheus was ∼19° behind its predicted orbital longitude, based on the Synnott et al. (1983) Voyager ephemeris (Bosh and Rivkin, 1996 Science 272, 518-521; Nicholson et al., 1996, Science 272, 509-515). Whereas Pandora was at its predicted location in August 1995, McGhee (2000, Ph.D. thesis, Cornell University) found from the May and November 1995 RPX data that Pandora also deviates from the Synnott et al. (1983) Voyager ephemeris. Using archival HST data from 1994, previously unexamined RPX images, and a large series of targeted WFPC2 observations between 1996 and 2002, we have determined highly accurate sky-plane positions for Prometheus, Pandora, and nine other satellites found in our images. We compare the Prometheus and Pandora measurements to the predictions of substantially revised and improved ephemerides for the two satellites based on an extensive analysis of a large set of Voyager images (Murray et al., 2000, Bull. Am. Astron. Soc. 32, 1090; Evans, 2001 Ph.D. thesis, Queen Mary College). From December 1994 to December 2000, Prometheus’ orbital longitude lag was changing by −0.71° year−1 relative to the new Voyager ephemeris. In contrast, Pandora is ahead of the revised Voyager prediction. From 1994 to 2000, its longitude offset changed by +0.44° year−1, showing in addition an ∼585 day oscillatory component with amplitude ΔλCR0 = 0.65 ± 0.07° whose phase matches the expected perturbation due to the nearby 3:2 corotation resonance with Mimas, modulated by the 71-year libration in the longitude of Mimas due to its 4:2 resonance with Tethys. We determine orbital elements for freely precessing equatorial orbits from fits to the 1994-2000 HST observations, from which we conclude that Prometheus’ semimajor axis was 0.31 km larger, and Pandora’s was 0.20 km smaller, than during the Voyager epoch. Subsequent observations in 2001-2002 reveal a new twist in the meanderings of these satellites: Prometheus’ mean motion changed suddenly by an additional −0.77° year−1, equivalent to a further increase in semimajor axis of 0.33 km, at the same time that Pandora’s mean motion changed by +0.92° year−1, corresponding to a change of −0.42 km in its semimajor axis. There is an apparent anticorrelation of the motions of these two moons seen in the 2001-2002 observations, as well as over the 20-year interval since the Voyager epoch. This suggests a common origin for their wanderings, perhaps through direct exchange of energy between the satellites as the result of resonances, possibly involving the F ring.  相似文献   

3.
Stéfan Renner  Bruno Sicardy 《Icarus》2005,174(1):230-240
Hubble Space Telescope (HST) images of Prometheus and Pandora show longitude discrepancies of about 20° with respect to the Voyager ephemerides, with an abrupt change in mean motion at the end of 2000 (French et al., 2003, Icarus 162, 143-170; French and McGhee, 2003, Bull. Am. Astron. Soc. 34, 06.07). These discrepancies are anti-correlated and arise from chaotic interactions between the two moons, occurring at interval of 6.2 yr, when their apses are anti-aligned (Goldreich and Rappaport, 2003a, Icarus 162, 391-399). This behavior is attributed to the overlap of four 121:118 apse-type mean motion resonances (Goldreich and Rappaport, 2003b, Icarus 166, 320-327). We study the Prometheus-Pandora system using a Radau-type integrator taking into account Saturn's oblateness up to and including terms in J6, plus the effects of the major satellites. We first confirm the chaotic behavior of Prometheus and Pandora. By fitting the numerical integrations to the HST data (French et al., 2003, Icarus 162, 143-170; French and McGhee, 2003, Bull. Am. Astron. Soc. 34, 06.07), we derive the satellite masses. The resulting GM values (with their standard 3-σ errors) for Prometheus and Pandora are respectively and . Using the nominal shape of the two moons (Thomas, 1989, Icarus 77, 248-274), we derive Prometheus and Pandora's densities, 0.40+0.03−0.07 and 0.49+0.05−0.09 g cm−3, respectively. Our numerical fits also enable us to constrain the time of the latest apse anti-alignment in 2000. Finally, using our fit, we predict the orbital positions of the two satellites during the Cassini tour, and provide a lower limit of the uncertainties due to chaos. These uncertainties amount to about 0.2° in mean longitude at the arrival of the Cassini spacecraft in July 2004, and to about 3° in 2008, at the end of the nominal tour.  相似文献   

4.
The system of Saturn's inner satellites is saturated with many resonances. Its structure should be strongly affected by tidal forces driving the satellites through several orbit–orbit resonances. The evolution of these satellites is investigated using analytic and numerical methods. We show that the pair of satellites Prometheus and Pandora has a particularly short lifetime (<20 Myr) if the orbits of the satellites converge without capture into a resonance. The capture of Pandora into a resonance with Prometheus increases the lifetime of the couple by a few tens of Myr. However, resonances of the system are not well separated, and capture results in a chaotic motion. Secondary resonances also disrupt the resonant configurations. In all cases, the converging orbits of these two satellites result in a close encounter. The implications for the origin of Saturn's rings are discussed.  相似文献   

5.
Possible rotation states of two satellites of Saturn, Prometheus (S16) and Pandora (S17), are studied by means of numerical experiments. The attitude stability of all possible modes of synchronous rotation and the motion close to these modes is analyzed by means of computation of the Lyapunov spectra of the motion. The stability analysis confirms that the rotation of Prometheus and Pandora might be chaotic, though the possibility of regular behaviour is not excluded. For the both satellites, the attitude instability zones form series of concentric belts enclosing the main synchronous resonance center in the phase space sections. A hypothesis is put forward that these belts might form “barriers” for capturing the satellites in synchronous rotation. The satellites in chaotic rotation can mimic ordinary regular synchronous behaviour: they preserve preferred orientation for long periods of time, the largest axis of satellite’s figure being directed approximately towards Saturn.  相似文献   

6.
Topographic models of Saturn's F-Ring shepherd satellites Prometheus and Pandora were derived from the shapes of limbs and terminators in Voyager images, modified locally to accommodate large craters and ridges. The models are presented here in tabular and graphic form, including the first published maps of the satellites. The shape of Prometheus is approximated by a triaxial ellipsoid with axes of 145, 85 and 60 km. The volume is estimated to be 3.9 ± 1.0 × 105 km3, significantly smaller than previous estimates. A system of prominent ridges and valleys cross the north polar region. Prometheus appears to be less heavily cratered than the other small satellites near the edge of the rings, though this may be an artifact of the low resolution of available images. Pandora is approximated by a triaxial ellipsoid with axes of 114, 84 and 62 km. The volume is estimated to be 3.1 ± 1.0 × 105 km3. Its surface appears to be very heavily cratered.  相似文献   

7.
The chaotic orbital motion of Prometheus and Pandora, the 16th and 17th satellites of Saturn, is studied. Chaos in their orbital motion, as found by Goldreich & Rappaport and Renner & Sicardy, is due to interaction of resonances in the resonance multiplet corresponding to the 121:118 commensurability of the mean motions of the satellites. It is shown rigorously that the system moves in adiabatic regime. The Lyapunov time (the 'time horizon of predictability' of the motion) is calculated analytically and compared to the available numerical–experimental estimates. For this purpose, a method of analytical estimation of the maximum Lyapunov exponent in the perturbed pendulum model of non-linear resonance is applied. The method is based on the separatrix map theory. An analytical estimate of the width of the chaotic layer is made as well, based on the same theory. The ranges of chaotic diffusion in the mean motion are shown to be almost twice as big compared to previous estimates for both satellites.  相似文献   

8.
We revisit the dynamics of Prometheus and Pandora, two small moons flanking Saturn's F ring. Departures of their orbits from freely precessing ellipses result from mutual interactions via their 121:118 mean motion resonance. Motions are chaotic because the resonance is split into four overlapping components. Orbital longitudes were observed to drift away from predictions based on Voyager ephemerides. A sudden jump in mean motions took place close to the time at which the orbits' apses were antialigned in 2000. Numerical integrations reproduce both the longitude drifts and the jumps. The latter have been attributed to the greater strength of interactions near apse antialignment (every 6.2 yr), and it has been assumed that this drift-jump behavior will continue indefinitely. We re-examine the dynamics of the Prometheus-Pandora system by analogy with that of a nearly adiabatic, parametric pendulum. In terms of this analogy, the current value of the action of the satellite system is close to its maximum in the chaotic zone. Consequently, at present, the two separatrix crossings per precessional cycle occur close to apse antialignment. In this state libration only occurs when the potential's amplitude is nearly maximal, and the “jumps” in mean motion arise during the short intervals of libration that separate long stretches of circulation. Because chaotic systems explore the entire region of phase space available to them, we expect that at other times the Prometheus-Pandora system would be found in states of medium or low action. In a low action state it would spend most of the time in libration, and separatrix crossings would occur near apse alignment. We predict that transitions between these different states can happen in as little as a decade. Therefore, it is incorrect to assume that sudden changes in the orbits only happen near apse antialignment.  相似文献   

9.
Using the Hubble Space Telescope's Space Telescope Imaging Spectrograph we have obtained for the first time spatially resolved 2000-3000 Å spectra of Io's Prometheus plume and adjoining regions on Io's anti-jovian hemisphere in the latitude range 60° N-60° S, using a 0.1″ slit centered on Prometheus and tilted roughly 45° to the spin axis. The SO2 column density peaked at 1.25×1017 cm−2 near the equator, with an additional 5×1016 cm−2 enhancement over Prometheus corresponding to a model volcanic SO2 output of 105 kg s−1. Apart from the Prometheus peak, the SO2 column density dropped fairly smoothly away from the subsolar point, even over regions that included potential volcanic sources. At latitudes less than ±30°, the dropoff rate was consistent with control by vapor pressure equilibrium with surface frost with subsolar temperature 117.3±0.6 K, though SO2 abundance was higher than predicted by vapor pressure control at mid-latitudes, especially in the northern hemisphere. We conclude that, at least at low latitudes on the anti-jovian hemisphere where there are extensive deposits of optically-thick SO2 frost, the atmosphere is probably primarily supported by sublimation of surface frost. Although the 45° tilt of our slit prevents us from separating the dependence of atmospheric density on solar zenith angle from its dependence on latitude, the pattern is consistent with a sublimation atmosphere regardless of which parameter is the dominant control. The observed drop in gas abundance towards higher latitudes is consistent with the interpretation of previous Lyman alpha images of Io as indicating an atmosphere concentrated at low latitudes. Comparison with previous disk-resolved UV spectroscopy, Lyman-alpha images, and mid-infrared spectroscopy suggests that Io's atmosphere is denser and more widespread on the anti-jovian hemisphere than at other longitudes. SO2 gas temperatures were in the range of 150-250 K over the majority of the anti-jovian hemisphere, consistent with previous observations. SO was not definitively detected in our spectra, with upper limits to the SO/SO2 ratio in the range 1-10%, roughly consistent with previous observations. S2 gas was not seen anywhere, with an upper limit of 7.5×1014 cm−2 for the Prometheus plume, confirming that this plume is significantly poorer in S2 than the Pele plume (S2 /SO2<0.005, compared to 0.08-0.3 at Pele). In addition to the gas absorption signatures, we have observed continuum emission in the near ultraviolet (near 2800 Å) for the first time. The brightness of the observed emission was directly correlated with the SO2 abundance, strongly peaking in the equatorial region over Prometheus. Emission brightness was modestly anti-correlated with the jovian magnetic latitude, decreasing when Io intersected the torus centrifugal equator.  相似文献   

10.
We have obtained numerically integrated orbits for Saturn's coorbital satellites, Janus and Epimetheus, together with Saturn's F-ring shepherding satellites, Prometheus and Pandora. The orbits are fit to astrometric observations acquired with the Hubble Space Telescope and from Earth-based observatories and to imaging data acquired from the Voyager spacecraft. The observations cover the 38 year period from the 1966 Saturn ring plane crossing to the spring of 2004. In the process of determining the orbits we have found masses for all four satellites. The densities derived from the masses for Janus, Epimetheus, Prometheus, and Pandora in units of g cm−3 are , , , and , respectively.  相似文献   

11.
The temporal signature of thermal emission from a volcano is a valuable clue to the processes taking place both at and beneath the surface. The Galileo Near Infrared Mapping Spectrometer (NIMS) observed the volcano Prometheus, on the jovian moon Io, on multiple occasions between 1996 and 2002. The 5 micron (μm) brightness of this volcano shows considerable variation from orbit to orbit. Prometheus exhibits increases in thermal emission that indicate episodic (though non-periodic) effusive activity in a manner akin to the current Pu'u 'O'o-Kupaianaha (afterwards referred to as the Pu'u 'O'o) eruption of Kilauea, Hawai'i. The volume of material erupted during one Prometheus eruption episode (defined as the interval from minimum thermal emission to peak and back to minimum) from 6 November 1996 to 7 May 1997 is estimated to be ∼0.8 km3, with a peak instantaneous volumetric flux (effusion rate) of ∼140 m3 s−1, and an averaged volumetric flux (eruption rate) of ∼49 m3 s−1. These quantities are used to model subsurface structure, magma storage and magma supply mechanisms, and likely magma chamber depth. Prometheus appears to be supplied by magma from a relatively shallow magma chamber, with a roof at a minimum depth of ∼2-3 km and a maximum depth of ∼14 km. This is a much shallower depth range than sources of supply proposed for explosive, possibly ultramafic, eruptions at Pillan and Tvashtar. As Prometheus-type effusive activity is widespread on Io, shallow magma chambers containing magma of basaltic or near-basaltic composition and density may be common. This analysis strengthens the analogy between Prometheus and Pu'u 'O'o, at least in terms of eruption style. Even though the style of eruption appears to be similar (effusive emplacement of thin, insulated, compound pahoehoe flows) the scale of activity at Prometheus greatly exceeds current activity at Pu'u 'O'o in terms of volume erupted, area covered, and magma flux. Whereas the estimated magma chamber at Prometheus dwarfs the Pu'u 'O'o magma chamber, it fits within expectations if the Pu'u 'O'o chamber were scaled for the greater volumetric flux and lower gravity of Io. Recent volumetric eruption rates derived from Galileo data for Prometheus were considerably smaller than the rate that produced the extensive flows formed in the ∼17 years between the Voyager and Galileo missions. These smaller eruption rates, coupled with the fact that flows are not expanding laterally, may mean that the immediate heat source that generates the Prometheus plume is simultaneously running out of available volatiles and the thermal energy that drives mobilization of volatiles. This raises the question of whether the current Prometheus eruption is in its last throes.  相似文献   

12.
V.V. Kouprianov 《Icarus》2005,176(1):224-234
The problem of observability of chaotic regimes in the rotation of planetary satellites is studied. The analysis is based on the inertial and orbital data available for all satellites discovered up to now. The Lyapunov spectra of the spatial chaotic rotation and the full range of variation of the spin rate are computed numerically by integrating the equations of the rotational motion; the initial data are taken inside the main chaotic layer near the separatrices of synchronous resonance in phase space. The model of a triaxial satellite in a fixed elliptic orbit is adopted. A short Lyapunov time along with a large range of variation of the spin rate are used as criteria for observability of the chaotic motion. Independently, analysis of stability of the synchronous state with respect to tilting the axis of rotation provides a test for the physical opportunity for a satellite to rotate chaotically. Finally, a calculation of the times of despinning due to tidal evolution shows whether a satellite's spin could evolve close to the synchronous state. Apart from Hyperion, already known to rotate chaotically, only Prometheus and Pandora, the 16th and 17th satellites of Saturn, pass all these four tests.  相似文献   

13.
A mid-ocean-ridge spreading analog is used to constrain the opening rates and brittle-ductile transition depths for two axisymmetric ridged bands on Europa. Estimates of brittle-ductile transition depth based on the morphologies of Yelland and Ino Lineae are combined with a conductive cooling model based on a mid-ocean ridge analog to estimate the opening rates and active lifetimes of the bands. This model limits local strain rates to ∼10−15-10−12 s−1, opening rates to 0.2-40 mm yr−1, and active lifetimes of the bands to 0.1-30 Myr. If the observed structures in the outer portions of ridged bands are indeed normal faults, the estimated range for the tensile strength of ice on Europa is 0.4-2 MPa, consistent with nonsynchronous rotation as the dominant driving mechanism for band opening.  相似文献   

14.
Saturn's F ring has been the subject of study due to its peculiar structure and the proximity to two satellites, named Prometheus (interior) and Pandora (exterior to the ring), which cause perturbations to the ring particles. Early results from Voyager data have proposed that the ring is populated with centimetre- and micrometre-sized particles. The Cassini spacecraft also detected a less dense part in the ring with width of 700 km. Small particles suffer the effects of solar radiation. Burns et al. showed that due to effects of one component of the solar radiation, the Poynting–Robertson drag, a ring particle will decay in the direction of the planet in a time much shorter than the age of the Solar system. In this work, we have analysed a sample of dust particles (1, 3, 5 and 10 μm) under the effects of solar radiation, the Poynting–Robertson drag and the radiation pressure components and the gravitational effects of the satellites Prometheus and Pandora. In this case, the high increase of the eccentricity of the particles leads almost all of them to collide with the outer edge of the A ring. The inclusion of the oblateness of Saturn in this system significantly changes the outcome, since the large variation of the eccentricity is reduced by the oblateness effect. As a result, there is an increase in the lifetime of the particle in the envelope region. Our results show that even the small dust particles, which are very sensitive to the effects of solar radiation, have an orbital evolution similar to larger particles located in the F ring. The fate of all particles is a collision with Prometheus or Pandora in less than 30 years. On the other hand, collisions of these particles with moonlets/clumps present in the F ring could change this scenario.  相似文献   

15.
Mean-sea-level data from coastal tide gauges in the north Indian Ocean were used to show that low-frequency variability is consistent among the stations in the basin. Statistically significant trends obtained from records longer than 40 years yielded sea-level-rise estimates between 1.06–1.75 mm yr− 1, with a regional average of 1.29 mm yr− 1, when corrected for global isostatic adjustment (GIA) using model data. These estimates are consistent with the 1–2 mm yr− 1 global sea-level-rise estimates reported by the Intergovernmental Panel on Climate Change.  相似文献   

16.
We performed a complete wavelet analysis of Saturn’s C ring on 62 stellar occultation profiles. These profiles were obtained by Cassini’s Ultraviolet Imaging Spectrograph High Speed Photometer. We used a WWZ wavelet power transform to analyze them. With a co-adding process, we found evidence of 40 wavelike structures, 18 of which are reported here for the first time. Seventeen of these appear to be propagating waves (wavelength changing systematically with distance from Saturn). The longest new wavetrain in the C ring is a 52-km-long wave in a plateau at 86,397 km. We produced a complete map of resonances with external satellites and possible structures rotating with Saturn’s rotation period up to the eighth order, allowing us to associate a previously observed wave with the Atlas 2:1 inner Lindblad resonance (ILR) and newly detected waves with the Mimas 6:2 ILR and the Pandora 4:2 ILR. We derived surface mass densities and mass extinction coefficients, finding σ = 0.22(±0.03) g cm−2 for the Atlas 2:1 ILR, σ = 1.31(±0.20) g cm−2 for the Mimas 6:2 ILR, and σ = 1.42(±0.21) g cm−2 for the Pandora 4:2 ILR. We determined a range of mass extinction coefficients (κ = τ/σ) for the waves associated with resonances with κ = 0.13 (±0.03) to 0.28(±0.06) cm2 g−1, where τ is the optical depth. These values are higher than the reported values for the A ring (0.01-0.02 cm2 g−1) and the Cassini Division (0.07-0.12 cm2 g−1 from Colwell et al. (Colwell, J.E., Cooney, J.H., Esposito, L.W., Srem?evi?, M. [2009]. Icarus 200, 574-580)). We also note that the mass extinction coefficient is probably not constant across the C ring (in contrast to the A ring and the Cassini Division): it is systematically higher in the plateaus than elsewhere, suggesting smaller particles in the plateaus. We present the results of our analysis of these waves in the C ring and estimate the mass of the C ring to be between3.7(±0.9) × 1016 kg and 7.9(±2.0) × 1016 kg (equivalent to an icy satellite of radius between 28.0(±2.3) km and 36.2(±3.0) km with a density of 400 kg m−3, close to that of Pan or Atlas). Using the ring viscosity derived from the wave damping length, we also estimate the vertical thickness of the C ring between 1.9(±0.4) m and 5.6(±1.4) m, comparable to the vertical thickness of the Cassini Division.  相似文献   

17.
Reconstruction of Mediterranean sea level fields for the period 1945–2000   总被引:1,自引:1,他引:0  
The distribution of sea level in the Mediterranean Sea is recovered for the period 1945–2000 by using a reduced space optimal interpolation analysis. The method involves estimating empirical orthogonal functions from satellite altimeter data spanning the period 1993–2005 that are then combined with tide gauge data to recover sea level fields over the period 1945–2000. The reconstruction technique is discussed and its robustness is checked through different tests. For the altimetric period (1993–2000) the prediction skill is quantified over the whole domain by comparing the reconstructed fields with satellite altimeter observations. For past times the skill can only be tested locally, by validating the reconstruction against independent tide gauge records. The reconstructed distribution of sea level trends for the period 1945–2000 shows a positive peak in the Ionian Sea (up to 1.5 mm yr− 1) and a negative peak of − 0.5 mm yr− 1 in a small area to the south-east of Crete. Positive trends are found nearly everywhere, being larger in the western Mediterranean (between 0.5 and 1 mm yr− 1) than in the eastern Mediterranean (between 0 and 0.5 mm yr− 1). The estimated rate of mean sea level rise for the period 1945–2000 is 0.7 ± 0.2 mm yr− 1, i.e. about a half of the rate estimated for global mean sea level. These overall results do not appear to be very sensitive to the distribution of tide gauges. The poorest results are obtained in open-sea regions with intense mesoscale variability not correlated with any tide gauge station, such as the Algerian Basin.  相似文献   

18.
Assuming that soft X-ray sources in symbiotic stars result from strong thermonuclear runaways, and supersoft X-ray sources from weak thermonuclear runaways or steady hydrogen burning symbiotic stars, we investigate the Galactic soft and supersoft X-ray sources in symbiotic stars by means of population synthesis. The Galactic occurrence rates of soft X-ray sources and supersoft X-ray sources are from ~2 to 20 yr?1, and ~2 to 17 yr?1, respectively. The numbers of X-ray sources in symbiotic stars range from 2390 to 6120. We simulate the distribution of X-ray sources over orbital periods, masses and mass accretion rates of white dwarfs. The agreement with observations is reasonable.  相似文献   

19.
We estimate the intensity of Late-glacial and Holocene methane emissions from peatlands based on their paleo net primary production (PNPP). The PNPP is derived from the carbon accumulation rates of the studied bog profile (Etang de la Gruère, Switzerland), which are corrected for the degree of peat degradation. The obtained PNPP curve is taken as a proxy for methane emissions. It shows relatively high values (90 g C m− 2 yr− 1) early in the Bolling/Allerod and drops to low values (40 g C m− 2 yr− 1) during the Younger Dryas cold period. With the onset of the Holocene the PNPP increases strongly up to 150 g C m− 2 yr− 1 around ca. 10,000 Cal. yr bp. This is followed by a decline to minimum values (30 to 40 g C m− 2 yr− 1) between 6500 and 4000 Cal. yr bp. Thereafter, the PNPP starts to increase again to reach its highest value (175 g C m− 2 yr− 1) around 1000 Cal. yr bp.The PNPP curve correlates well with the evolution of the atmospheric methane concentrations as derived from Greenland ice-cores. For example, minima in atmospheric methane reported during the Younger Dryas and around 5200 Cal. yr bp are coinciding with the lowest values of PNPP and the negative atmospheric methane peak at 8200 Cal. yr bp corresponds to a marked decrease in PNPP.Our PNPP curve suggests that the methane emissions from northern peatlands evolved similar to those of low latitude wetlands and together they largely determined the evolution of atmospheric methane throughout the Late-glacial and the Holocene. The abruptness of the rise of atmospheric methane at the end of the Younger Dryas probably points to an additional source (e.g. marine gas hydrates), but very early in the Holocene the peatlands have likely become the dominant source of atmospheric methane.  相似文献   

20.
Steven W. Ruff 《Icarus》2004,168(1):131-143
Spectral features observed in Mars Global Surveyor Thermal Emission Spectrometer data (∼1670-220 cm−1) of martian surface dust provide clues to its mineralogy. An emissivity peak at ∼1630 cm−1 is consistent with the presence of an H2O-bearing mineral. This spectral feature can be mapped globally and shows a distribution related to the classical bright regions on Mars that are known to be dust covered. An important spectral feature at ∼830 cm−1 present in a newly derived average spectrum of surface dust likely is a transparency feature arising from the fine particulate nature of the dust. Its shape and location are consistent with plagioclase feldspars and also zeolites, which essentially are the hydrous form of feldspar. The generally favored visible/near-infrared spectral analog for martian dust, JSC Mars-1 altered tephra, does not display the ∼830 cm−1 feature. Zeolites commonly form from the interaction of low temperature aqueous fluids and volcanic glass in a variety of geologic settings. The combination of spectral features that are consistent with zeolites and the likelihood that Mars has (or had) geologic conditions necessary to produce them makes a strong case for recognizing zeolite minerals as likely components of the martian regolith.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号